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Research Article

Our categories make us who we are; they are the skele-
ton upon which grows the rest of our psychological 
being. A reflection of their diverse importance is the fact 
that they have been studied from multiple perspectives: 
for example, as a lens through which people perceive 
visual and acoustic objects in the world (Liberman, Har-
ris, Hoffman, & Griffith, 1957; Regier & Kay, 2009) and 
the similarity relationships between these objects (Gold-
stone, 1994; Medin & Schaffer, 1978), and as the structure 
of concepts that organize people’s knowledge and define 
who they are (Kaplan & Murphy, 2000; Murphy, 2002; 
Pazzani, 1991). Some approaches are also highly quanti-
tative. The literature on semantic organization uses for-
mal methods from logic theory to explain the division of 
information into clusters of semantic nodes (Anderson, 
1983; A. M. Collins & Quillian, 1969), and the literature 
on category learning is ripe with models showing how 
corrective feedback about category membership can 

shape categorization decisions (Anderson, 1996; Ashby & 
Maddox, 1993; Kruschke, 1992; Love, Medin, & Gureckis, 
2004; Nosofsky, 1986).

All of these approaches, however, have skirted a basic 
question of category representation: How might the 
visual features of common object categories be extracted 
from the many exemplar images of these objects that 
people encounter in their day-to-day lives?

Growing in parallel with these largely behavioral litera-
tures has been another literature that may help answer 
this question. The field of computer vision is rich with 
operators and algorithms developed to detect members of 
object classes directly from pixels in images (Duda, Hart, 
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& Stork, 2012). Moreover, these tools work with featurally 
complex real-world categories, and their performance is 
evaluated using new, or “unseen,” category exemplars not 
used during model training. In contrast, behavioral work 
on category learning has placed less emphasis on real-
world application and model prediction, focusing instead 
on how categories defined by a small number of simple 
features are learned from feedback (see Ashby & Maddox, 
2005). Thus, there is a gap in researchers’ fundamental 
understanding of categories; much is known about how 
simple features can be learned and used to discriminate 
one category from another, but little is known about the 
features composing the categories of common objects 
that populate everyday experience. By bridging these dif-
ferent approaches, researchers can achieve a new under-
standing of categories. Our premise is that tools from 
computer vision can, and should, be exploited to charac-
terize the feature representations of categories as they 
exist “in the wild,” formed simply from a lifetime of expe-
rience seeing category exemplars.

The Generative Modeling of Visual 
Categories

We adopt a generative-modeling approach. Because gen-
erative models are usually unsupervised, they capture the 
implicit learning from exemplars that people and other 
animals use to acquire the within-category feature struc-
ture of visual object categories. Figure 1 helps to make 
this point. A generative model learns the features that are 
common among the objects of a category, much as the 
human visual system causes the perception of rectangles 
in this figure by finding common features among cate-
gory exemplars grouped at the basic level.

Generative models can be contrasted with discrimina-
tive models, which use supervised error feedback to learn 
features that discriminate target from nontarget categories 
(Ulusoy & Bishop, 2005). The vast majority of category-
learning studies have adopted a discriminative-modeling 
approach (Ashby & Maddox, 1993; Kruschke, 1992; Nosof-
sky, 1986), which is appropriate given the heavy reliance 
on the artificial-classification-learning paradigm in this lit-
erature. A generative approach, however, is more appro-
priate for modeling data that do not reflect explicit 
classification decisions (Kurtz, 2015; Levering & Kurtz, 
2014; see also Chin-Parker & Ross, 2004), such as the 
visual search data in the present study. Our position is that 
generative models better capture the features of a category 
used to construct visual working memory representations 
of search targets, which are similar to the features one 
might call to mind when forming a mental image of a tar-
get category. If one is searching for a Pekin duck, one 
would probably look for a white, mailbox-sized object 
with orange at the top and bottom, even though these 

features would potentially yield poor discrimination of 
Pekin ducks from poodles and pumpkins.

Hierarchies of Categories

We evaluate our model within the context of a simple 
conceptual structure, a three-level hierarchy. Objects can 
be categorized at multiple levels in a conceptual hierar-
chy. A sea vessel powered by wind can be categorized as 
a sailboat (subordinate level), as simply a boat (basic 
level), or more broadly as a vehicle (superordinate level). 
The acquisition of and access to categorical information 
seems to be anchored around the basic level. This basic-
level superiority effect (BSE) was first reported by Rosch, 
Mervis, Gray, Johnson, and Boyes-Braem (1976). They 
used a speeded category-verification task and found that 
people were faster in judging a picture of an object as a 
member of a cued category when the cue was at the 
basic level rather than a more specific or inclusive level. 
Subsequent work revealed a broader scope of the BSE by 
showing that the basic level is the preferred level used in 
speech and that the first nouns generally learned and 
spoken by children refer to basic-level categories (Mervis 
& Rosch, 1981; Rosch, 1978).

In explaining the BSE, researchers have appealed to 
similarity relationships within and between categories. 
Basic-level categories are thought to maximize within-
category similarity while simultaneously minimizing 
between-category similarity, striking a balance between 
the two; subordinate or superordinate-level categories do 
one or the other, but not both (Rosch et al., 1976).  Murphy 
and Brownell (1985) advanced this idea by theorizing that 
the BSE is a by-product of concurrent specificity and dis-
tinctiveness processes pulling categorization in opposing 
directions. Subordinate-level categories tend to have very 
specific features; collies are medium-sized dogs with thin 
snouts, upright ears, and white hair around their shoul-
ders. However, these features overlap with those of other 
dog categories, so it is sometimes challenging to distin-
guish collies from German shepherds or shelties. Superor-
dinate-level categories have the opposite strengths and 
weaknesses. The features of animals overlap minimally 
with the features of vehicles or musical instruments, which 
makes the category distinct. However, animal features are 
also highly variable, so this superordinate category lacks 
specificity. The basic level strikes a balance between these 
opposing processes, and this balance is believed to under-
lie the BSE. Despite their variability in appearance, dogs 
have many features in common yet are still relatively dis-
tinct from ducks and dolphins and dinosaurs. The present 
work extends this framework by making the processes of 
specificity and distinctiveness computationally explicit, 
and applying these principles directly to images of cate-
gory exemplars.
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Categorical Search

We evaluated the visual representation of common object 
categories using a categorical search task (Maxfield, 
Stadler, & Zelinsky, 2014; Schmidt & Zelinsky, 2009; 
Zelinsky, Adeli, Peng, & Samaras, 2013; Zelinsky, Peng, 
Berg, & Samaras, 2013). Categorical search differs from 
standard visual search in that targets are designated by a 
category label (e.g., “dog”) instead of by a picture precue 
(e.g., an image of a specific dog), a situation that rarely 
exists outside the laboratory. Moreover, categorical search 
can be meaningfully divided into two epochs: (a) the 
time between the onset of a search display and first fixa-
tion on a target (longer times indicate weaker target 
guidance) and (b) the time between first fixation on the 
target and the correct target-present judgment (longer 
times indicate more difficult target verification). Categor-
ical search therefore embeds a standard category-verifi-
cation task within a search task, which makes it a 
powerful paradigm for studying the relationship between 
overt attention and categorization.

We introduce a method for quantifying the visual fea-
tures of common object categories and show that these 
features serve both to guide overt attention to a target 
and to categorize the target after it is fixated, producing 
a BSE during this latter, target-verification epoch. The fact 
that our model captured these disparate guidance and 
verification behavioral patterns provides converging evi-
dence, within the context of a single categorical search 
task, that it can successfully identify the visual features 
used to represent common object categories. Thus, this 
work creates a strong theoretical bridge between the 
attention (target guidance) and recognition (category ver-
ification) literatures.

Behavioral Experiment

Method

Participants. Twenty-six Stony Brook University 
undergraduates participated in a categorical search task. 
Sample size was determined on the basis of a previous 
study using a similar method (Maxfield & Zelinsky, 2012). 
All participants reported that they had normal or cor-
rected-to-normal visual acuity and color vision, and that 
English was their native language. All also provided 
informed consent prior to participation, in accordance 
with Stony Brook University’s Committee on Research 
Involving Human Subjects.

Stimuli and apparatus. Images of common objects 
were obtained from ImageNet (http://www.image-net 
.org) and various Web sources. Each image was closely 
cropped, using a rectangular marquee, to depict only 
the object and a minimal amount of background. 
Because object typicality can affect categorization and 

search (Maxfield et al., 2014; Murphy & Brownell, 
1985), we selected targets that were typical members of 
their categories at the subordinate, basic, and superor-
dinate levels. We did this by having 45 participants 
complete a preliminary norming task in which 240 
images (5 exemplars from each of 48 subordinate cat-
egories) were rated for both typicality and how closely 
each matched a mental image of the object category 
(image agreement; Snodgrass & Vanderwart, 1980) at 
each hierarchical level using a scale from 1 (high 
typicality/high image agreement) to 7 (low typicality/low 
image agreement). The 3 most typical exemplars of 
each category were used as targets in the search task. 
Their mean ratings for typicality and image agreement 
were 2.29 and 2.31, respectively. In total, there were 68 
categories spanning the three hierarchical levels: 4 
superordinate-level categories, each having 4 basic-
level categories, which in turn each had 3 subordinate-
level categories. Figure 2 lists the category names at all 
three levels.

Eye position during the search task was sampled at 
1000 Hz using an Eyelink 1000 eye tracker (SR Research, 
Mississauga, Ontario, Canada) with default saccade-
detection settings. Calibrations were accepted only if the 
average spatial error was less than 0.5° and the maximum 
error was less than 1°. Head position and viewing dis-
tance were fixed at 65 cm using a chin rest for the dura-
tion of the experiment. Stimuli were presented on a 
flat-screen CRT monitor set to a resolution of 1,024 × 768 
pixels and a refresh rate of 100 Hz. Text was drawn in 
18-point Tahoma font, and image patches subtended 
approximately 2.5° of visual angle. Trials were initiated 
using a button on the top of a game-pad controller, and 
judgments were reported by pressing the left and right 
triggers.

Search procedure. On each trial, a category name was 
displayed for 2,500 ms, followed by a central fixation 
cross for 500 ms and finally a six-item search display 
(Fig. 3). Items in the search display were image patches 
of objects arranged on a circle having a radius of 8°. 
There were 288 trials, half with the target present and 
half with the target absent. Target-present trials depicted 
a target and five distractor objects chosen from random 
nontarget categories. Each participant saw one of the 
three selected exemplars for a given target category twice 
at each hierarchical level, with exemplars counterbal-
anced across participants. Half of the target-absent trials 
depicted six distractors from random categories that dif-
fered from the target category at the superordinate level; 
the other half depicted five distractors and one lure, 
because lures are needed to encourage encoding at the 
cued level (see Tanaka & Taylor, 1991). The lure was a 
categorical sibling of the cued target, drawn from target 
images included within the category one level above in 

http://www.image-net
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Vehicle

Truck

Boat

Car

Police Car

Race Car

Taxi

Cruise Ship
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Biplane
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Fire Truck
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Superordinate LevelBasic LevelSubordinate Level
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Dining-Room
Chair

Twin Bed

Canopy Bed

Bunk Bed

Bed

Coffee Table

Dining-Room 
Table

End Table

Subordinate LevelBasic Level

Fig. 2. (continued)

the category hierarchy (e.g., a police car when the cue 
was “taxi” or a truck when the cue was “car”). Lures on 
trials in which the target was cued at the superordinate 
level (e.g., a sugar cookie when the cue was “vehicle”) 
were indistinguishable from the distractor objects, except 
for the fact that these lures were objects in the set of tar-
get categories (the set of nonlure distractors was disjoint 
from the set of target categories).

Results

Error rates differed between hierarchy conditions, F(5, 
21) = 15.19, p < .001, η2 = .378. Post hoc tests (least sig-
nificant difference corrected) showed that accuracy on 
target-present trials was lower at the superordinate level 
(M = 84.9%, 95% confidence interval, or CI = [81.1, 88.7]) 
than at the basic level (M = 91.6%, 95% CI = [89.5, 93.7]) 
and the subordinate level (M = 92.3%, 95% CI = [90, 94.6]), 

ps < .001. These additional misses are consistent with 
previous findings (Maxfield & Zelinsky, 2012) and reflect 
participants’ occasional failure to recognize a target as a 
member of the cued superordinate category (Murphy & 
Brownell, 1985). On target-absent trials, accuracy was 
lower at the subordinate level (M = 89.0%, 95% 
CI =  [87.0, 91.0]) compared with the basic (M = 95.9%, 
95% CI = [94.7, 97.3]) and superordinate (M = 95.4%, 95% 
CI = [93.2, 97.5]) levels, ps < .001. This increase in false 
positives was due to lures at the subordinate level being 
occasionally mistaken for members of the cued target 
category. Neither pattern of errors compromises our con-
clusions. Only trials responded to correctly were included 
in the subsequent analyses.

As in previous work (Castelhano, Pollatsek, & Cave, 
2008; Maxfield & Zelinsky, 2012; Schmidt & Zelinsky, 2009), 
search performance was divided into target-guidance and 
-verification epochs that were analyzed separately. Target 
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Jacket
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Hat

Winter Jacket
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Trench Coat

Fig. 2. The names of the 68 object categories used as search targets, grouped by subordinate (48), basic (16), and superordinate (4) hierarchical 
level.

guidance was defined in two ways: as the time between the 
onset of the search display and the participant’s first fixa-
tion on the target (time to target) and as the proportion of 
trials in which the target was the first object fixated during 
search (immediate target fixations). Target verification was 
defined as the time between a participant’s first fixation on 
the target and his or her correct target-present manual 
response.

Analyses of the initial guidance epoch of search 
revealed significant differences in time to target between 
conditions, F(2, 24) = 22.08, p < .001, η2 = .508. Targets 
cued at the subordinate level were fixated sooner on 
average than targets cued at the basic level, which were 
fixated sooner than targets cued at the superordinate 
level (ps ≤ .021; Fig. 4a). This same trend held for the 
proportion of immediate target fixations, F(2, 24) = 13.31, 
p < .001, η2 = .456 (Fig. 4b), a more conservative mea-
sure of guidance. Subordinate-level targets were fixated 
first more often than basic-level targets (p < .001), and 

basic-level targets were fixated first more often than 
superordinate-level targets (p < .001). Initial saccade 
latency did not differ reliably between cuing conditions 
(p = .452), which suggests that these differences in time 
to target and proportion of immediate target fixations 
were not due to a speed-accuracy trade-off. Differences 
between conditions were also found during the verifica-
tion epoch of search, F(2, 24) = 5.71, p = .006, η2 = .215. 
As shown in Figure 4c, these differences took the form 
of a BSE; targets cued at the basic level were verified 
faster than those cued at the subordinate level (p = .01) 
and the superordinate level (p = .004). These findings 
not only extend previous work in showing that the hier-
archical level at which a target is cued differentially 
affects target-guidance and -verification processes 
( Maxfield & Zelinsky, 2012), but also create a challeng-
ing guidance and verification behavioral ground truth 
against which our generative model of category repre-
sentation can be evaluated.
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Computational Experiment

Method
Two distinct effects of category hierarchy were found in 
the behavioral data: a subordinate-level advantage in tar-
get guidance and a basic-level advantage in target verifi-
cation. In this section, we explain both of these behavioral 
patterns using a single unsupervised generative model 
that extracts features from images of category exemplars 
and then reduces the dimensionality of these representa-
tions to obtain what we refer to as category-consistent 
features (CCFs). Figure 5 provides an overview of this 
model.1

Using the same category hierarchy as in the behavioral 
experiment, we built from ImageNet and Google Images 
(https://images.google.com/) an image data set for model 
learning. This set consisted of 100 exemplars for each of 
the 48 subordinate-level categories (4,800 images in total; 
see Fig. 1 for tiny views of most of these images). Each 
exemplar was an image patch closely cropped around 
the depicted object. Exemplars for basic-level and super-
ordinate-level categories were the sets created by com-
bining the subordinate, children, exemplars under the 
parent categories. For example, the basic-level “boat” cat-
egory had 300 exemplars, consisting of 100 speed boats, 
100 sailboats, and 100 cruise ships, and the superordi-
nate-level “vehicle” category had 1,200 exemplars, con-
sisting of the 300 exemplars each from the “boat,” “car,” 
“truck,” and “plane” sibling categories.

The first step in representing an object category was 
the extraction of features from its exemplars. Two types 
of features were used: scale-invariant feature transform 

(SIFT) and color-histogram features. SIFT features cap-
ture the structure of gradients in images using 16 spatially 
distributed histograms of scaled and normalized oriented-
edge energy (Lowe, 2004). Color-histogram features (van 
de Weijer & Schmid, 2006) capture the distribution of hue 
in an image. In the current implementation, each color-
histogram feature was represented by 64 bins of hue in 
360° HSV (hue, saturation, value) color space. Using 
dense sampling (and discarding samples from uniform 
regions), we extracted five scales of SIFT descriptors, 
from patches of 12 × 12, 24 × 24, 36 × 36, 48 × 48, and 
60  × 60 pixels, and a color-histogram feature from a 
fixed-size 20- × 20-pixel patch surrounding the center 
position of each SIFT descriptor in each of the 4,800 
exemplars. Color histograms were pooled over patches 
within exemplars to create a single 64-bin color histo-
gram for each exemplar. However, to compare SIFT fea-
tures between exemplars it was necessary to find a 
common feature space, and for this we used the Bag-of-
Words (BoW) method (Csurka, Dance, Fan, Willamowski, 
& Bray, 2004). The SIFT features extracted from all the 
exemplars were put into a metaphorical bag, and k-means 
clustering was performed on this bag to obtain a com-
mon vocabulary of 1,000 visual words (k = 1,000). The 64 
hue features from the color histogram were concatenated 
to the end of the SIFT BoW histograms generated from 
this vocabulary to create a 1,064-dimensional feature 
space in which each of the 4,800 exemplars could be 
represented as a BoW histogram, with each bin of the 
histogram corresponding to 1 of the 1,064 visual-word 
features and the height of each bin indicating the fre-
quency of that feature in that exemplar.

Central Fixation 
(500 ms)

Target Cue
(2,500 ms)

Vehicle

Plane

Passenger
Airliner

+

Search Display
(Guidance Epoch)

Search Display
(Verification Epoch)

Fig. 3. Procedure for the categorical search task. A target was designated by its category name at one of three hierarchical levels. Next, following 
a delay, a six-item search display was presented. The arrow and circle (not shown to participants) illustrate, respectively, the movement of gaze to 
the target (the target-guidance epoch) and its subsequent verification as a member of the cued category (the target-verification epoch).

https://images.google.com/
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Having put all the category exemplars in a common 
feature space, we next found those features that were 
most representative of each target category. This process 
began by averaging the BoW exemplar histograms to 
obtain what might be called a prototype for each cate-
gory (Rosch, 1973), although we avoid using this 

theoretically laden term so as not to associate a prototype 
with a particular step in the computation of CCFs. Each 
averaged category histogram captured the mean fre-
quency of each of the 1,064 features in the category’s 
exemplars, along with the variance for each of these 
means (see Fig. S2 in the Supplemental Material for a 
partial averaged histogram for the “taxi” category, and see 
Fig. S3a for a visualization of every complete histogram 
contributing to the averaged histogram for that 
category).

Although methods for selecting features abound in the 
computer vision literature (e.g., R. T. Collins, Liu, &  
Leordeanu, 2005; Ullman, Vidal-Naquet, & Sali, 2002), 
most of these are tailored to finding features that dis-
criminate between categories of objects for the purpose 
of classification. This makes them poorly aligned with 
our generative approach. Instead, feature selection under 
the CCF model is grounded in signal detection theory 
(Green & Swets, 1966). We assumed that features having 
a high frequency and a low variance were more impor-
tant than the rest, and used these simple measures to 
prune away the other features. Specifically, we identified 
features having a high mean frequency over the category 
exemplars using the interquartile range rule: For a given 
category histogram, these features were those with an 
average frequency (X) greater than 1.5 * (Q3(X) – Q1(X)), 
where Q1 and Q3 are the first and third quartiles, respec-
tively. The 1,000-dimensional SIFT features and the 
64-dimensional color features were analyzed separately. 
For each of these frequently occurring features, we then 
computed the inverse of its coefficient of variation by 
dividing its mean frequency by its standard deviation, a 
commonly used method for quantifying a scale-invariant 
signal-to-noise ratio (SNR; Russ, 2011). Finally, k-means 
clustering, with k = 2,  was performed on the SNRs of all 
features in the set to find a category-specific threshold to 
separate the important features from the less important 
features. The CCFs for a given category are defined as 
those features having SNRs falling above this threshold.

CCFs are therefore the features that occur both fre-
quently and reliably across the exemplars of a category, 
and each category has different CCFs in this 1,064-dimen-
sional feature space. These CCFs, and not the noisier cat-
egory histogram formed by simply averaging exemplar 
histograms, are what we believe constitute the learned 
visual representation of an object category (see Fig. S3b 
in the Supplemental Material for the CCFs from the “taxi” 
category and note how they compare with the corre-
sponding averaged category histogram in Fig. S3a).

Results

Can the CCF model capture the patterns of target guidance 
and verification observed in behavior? We show that these 
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two very different patterns can be modeled as different 
properties of the same CCF category representations.

Target guidance. The behavioral data showed that tar-
get guidance got weaker as targets were cued at higher 
levels in the category hierarchy. Guidance was strongest 
following a subordinate-level cue, weaker following a 
basic-level cue, and weakest following a superordinate-
level cue. How does the CCF model explain target guid-
ance and its change across hierarchical levels?

According to the CCF model, target guidance is pro-
portional to the number of CCFs used to represent a tar-
get category. The logic underlying this prediction is 
straightforward. To the extent that CCFs are the important 
features in the representation of a category, more CCFs 
mean a better and more specific category representation 
(see also Schmidt, MacNamara, Proudfit, & Zelinsky, 
2014). A target category having a larger number of CCFs 
would therefore be represented with a higher degree of 
specificity and, consequently, fixated more efficiently 
than a target having a sparser “template” (Schmidt & 

Zelinsky, 2009). As shown in Figure 6, the number of 
CCFs per category indeed varied with hierarchical level; 
the subordinate-level categories had the most CCFs, fol-
lowed by the basic-level and finally the superordinate-
level categories. This too was predicted. Subordinate-level 
categories have more details in common that can be rep-
resented and selected as CCFs, whereas at the higher 
levels, greater variability between exemplars causes fea-
tures to be excluded as CCFs, so there is a smaller total 
number.

Figure 4 shows that the effect of hierarchical level on 
target guidance can be captured simply by the mean num-
bers of CCFs extracted for the 48 subordinate-level target 
categories, the 16 basic-level categories, and the 4 catego-
ries at the superordinate level. Specifically, we linearly 
transformed the mean number of CCFs at each level to put 
these means into the same scale as the behavioral data and 
then plotted these transformed means in  Figure 4b to cap-
ture the downward trend in the proportion of immediate 
target fixations. The multiplicative inverses (1/number of 
CCFs) of these transformed means are plotted in Figure 4a 
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Fig. 5. Overview of the category-consistent features (CCF) model. One hundred images of object exemplars from each of 48 subordinate-level 
categories were used to build the model. These exemplars were also combined to create 16 basic-level categories (each with 300 exemplars) and 
4 superordinate-level categories (each with 1,200 exemplars), for a total of 68 object categories across the three levels. Examples from the taxi, car, 
and vehicle categories are shown (a). Next, scale-invariant feature transform (SIFT) and color-histogram features were extracted from each exem-
plar, and the Bag-of-Words (BoW) method was used to create from these features a common feature space consisting of 1,064 visual words (b). For 
each exemplar, a 1,064-bin BoW histogram was obtained; each bin corresponded to a visual word, and its height indicated the frequency of that 
feature in the exemplar image. BoW histograms were averaged by category (c) to obtain 68 averaged histograms, each having a mean frequency 
and variability associated with each visual word. Features having too low a frequency or too high a variability were excluded, to create a lower-
dimensional feature representation of each category consisting of its CCFs—those highly informative features that were present both frequently and 
consistently across the exemplars of that category (d). This dimensionality reduction is illustrated in each histogram pair by the darker shading of 
CCFs in the lower histogram.
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to capture the increase in time to target (poorer guidance) 
with movement up the category hierarchy. The model’s 
behavior fell within the 95% CIs surrounding all six of the 
behavioral means. This finding has implications for search 
theory. It suggests that the stronger target guidance 
reported for exemplar search (e.g., targets cued by picture 
preview) compared with categorical search (e.g., targets 
cued by category name) may be due, not to a qualitative 
difference in underlying processes, but rather to a quanti-
tative difference in the number of “good” features in the 
target representations used to create the priority maps that 
ultimately guide search (Zelinsky & Bisley, 2015). Many 
strong guiding features can be extracted when the oppor-
tunity exists to preview a specific target exemplar, but 
strong guidance in a categorical search task requires a tar-
get category represented by many CCFs.

Target verification. If more CCFs enable greater spec-
ificity in the target representation, the converse is also 
true. With movement up the category hierarchy, decreas-
ing numbers of CCFs incur a cost to specificity; this cost 
is greatest for superordinate-level categories, least for 
subordinate-level categories, and in between for basic-
level categories. We show that target verification can be 
modeled by combining this trend with a second and 
opposing trend, one based on the distance to neighbor-
ing categories.

Sibling distance. In the context of a categorical search 
task, the target-verification epoch is the time between the 
first fixation on the target and the correct target-present 
judgment. The CCF model predicts that this time is pro-
portional to the distance between the CCFs of the target 

category and the features of the exemplars composing the 
target’s categorical siblings, which are defined as categories 
sharing the same parent (one level up in the category hier-
archy). This logic is also straightforward. Verification dif-
ficulty should depend on the distance between the target 
category and the most similar nontarget categories in the 
test set; as this distance increases, target verification should 
become easier. This follows from the fact that smaller dis-
tances create greater potential for feature overlap between 
categories, and to the extent that this happens, one cat-
egory might become confused with another. In the present 
context, these least distant, most similar nontarget catego-
ries would be the categorical siblings of the target category. 
If the target was a police car, the nontarget objects creating 
the greatest potential for confusion would be exemplars of 
race cars and taxis, and these objects would largely deter-
mine the difficulty of verifying the presence of a police 
car. Indeed, members of these sibling categories were the 
same objects used as categorical lures in order to obtain 
our behavioral demonstration of a basic-level advantage.

To model the distance between a target category and 
its categorical siblings, we computed for each sibling cat-
egory the mean chi-squared distance between its CCF 
histogram and the BoW histogram for every exemplar 
under the parent category. We denote the full set of BoW 
bins as F = {1, . . ., 1,064} and the CCFs for target category 
k as F′k, such that k ∈ {1, . . ., 68} and F′k are indices to a 
subset of bins in F (i.e., F′k ⊆ F). Chi-squared distance is 
defined as follows:

 
χ

φ φ

φ φ
2

2
1

2
x y

x y

x y
i

i i

i i

,
( ( ))

,( ) = ( ) −
( ) + ( )∑  (1)

0.45

0.50

0.55

0.60

0.65

60

65

70

75

80

85

Subordinate Basic Superordinate

Si
bl

in
g 

Di
st

an
ce

Nu
m

be
r o

f C
CF

s

Level in Category Hierarchy

Number of CCFs Sibling Distance

Fig. 6. Mean number of category-consistent features (CCFs) and mean sibling dis-
tance from the CCF model by hierarchical level. Error bars indicate ±1 SEM, computed 
by treating the number of categories at each level as the number of sample observa-
tions (n).



880 Yu et al.

where x and y are the two histograms to be compared, 
and φi is the value at the ith bin of the 1,064-bin feature 
histogram. Note, however, that following the dimension-
ality reduction that occurred in selecting the CCFs, the 
sibling CCF histograms may no longer be in the same 
feature space as the BoW histograms for the exemplars. 
To compute the distances, we therefore had to put the 
CCF and BoW histograms back into a common feature 
space, and we did this by adopting the following algo-
rithm. For comparisons between a given CCF histogram 
of category k and the BoW histograms for the category’s 
exemplars, chi-squared distances were computed for 
only those bins in the BoW histograms for which there 
were corresponding bins in the CCF histogram, such that 
i ∈ F′k. For comparisons between the exemplar histo-
grams from category j and the CCF histogram from a 
sibling category, k, chi-squared distances were limited to 
the feature space formed by the union of the CCF histo-
grams for the two categories, such that i ∈ ∪ (F′j, F′k).

For example, consider two sibling categories, A and B, 
that have nonidentical CCF bins (F′A ≠ F′B) forming CCF 
histograms µ(A) and µ(B) based on exemplars An and Bn, 
where n denotes all of the exemplars for a given cate-
gory (in this study, n = 100, 300, or 1,200, depending on 
whether the category is at the subordinate, basic, or 
superordinate level). We compute the chi-squared dis-
tances between µ(A) and the BoW histograms obtained 
for all of A’s exemplars, An, for which there are corre-
sponding bins in F′A. If we denote the distance between 
the CCF histogram of A and all the A exemplar histo-
grams as dA,A, then
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We also compute the chi-squared distances between 
µ(A) and the BoW histograms obtained for all of B’s 
exemplars, dA,B, with these comparisons limited to the 
bins forming the union of the F′A and F′B CCF histograms, 
such that
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Doing the same for µ(B) and the BoW histograms of 
the B exemplars and the A exemplars, gives us dB,B and 
dB,A, respectively. Finally, taking the mean over the hun-
dreds of distances in the sets dA,A, dA,B, dB,B, and dB,A, we 
obtain an estimate of the distance between sibling cate-
gories A and B, which we refer to as sibling distance.

To the extent that smaller sibling distances mean more 
difficult category-verification decisions, the CCF model 

predicts a verification benefit for target categories desig-
nated at higher levels in the hierarchy. Computing sibling 
distances for all 68 target categories, then averaging 
within hierarchical level, we found that subordinate-level 
categories were closest to their sibling exemplars and 
that superordinate-level categories had the largest mean 
sibling distance (Fig. 6). Verification times for race cars 
should therefore be relatively long because of the prox-
imity of this category to taxi and police-car exemplars, 
whereas shorter verification times are predicted for vehi-
cles because of this category’s greater mean distance to 
Oreo cookies and other sibling exemplars. The basic-
level categories fall in between subordinate and superor-
dinate categories with respect to sibling distance and 
should therefore have an intermediate level of verifica-
tion difficulty.

Basic-level superiority effect. In our behavioral experi-
ment, however, we did not find this predicted speedup in 
target-verification times with movement up the hierarchy. 
Instead, we found the often-observed BSE: faster verifi-
cation for targets cued at the basic level compared with 
those cued at the subordinate or superordinate level. Our 
explanation of the BSE is consistent with early expla-
nations (Murphy & Brownell, 1985) in suggesting that 
there is a trade-off between two interacting processes, 
specificity, which we operationalized as the number of 
CCFs for a given category, and distinctiveness, which we 
operationalized as the distance between the CCFs of a 
given category and the features of its sibling exemplars. 
Indeed, the countervailing trends illustrated in Figure 6 
reflect these opposing processes. To model their net 
impact on target-verification time, we simply multiplied 
one by the other. Specifically, to obtain a (unit-less) esti-
mate of each category’s verification difficulty, we multi-
plied its number of CCFs by its sibling distance. At each 
hierarchical level, we averaged these values to obtain a 
mean, and we then linearly transformed the three means 
for the three levels into the behavioral scale. The results 
are shown in Figure 4c. As was the case for target guid-
ance, the model’s estimates fell within the 95% CIs sur-
rounding the behavioral means. In a control experiment, 
we found that when the same numbers of visual-word 
features were randomly selected, the model did not pre-
dict the BSE observed in behavior (see Fig. S4 in the 
Supplemental Material). Any features will not do—these 
features have to be CCFs.

Although categories at the subordinate level have the 
most CCFs (a specificity benefit), they also have the small-
est sibling distance (a distinctiveness cost). This results in 
an intermediate degree of verification difficulty. Superor-
dinate-level categories have the opposite pattern, rela-
tively few CCFs (a specificity cost) but a large sibling 
distance (a distinctiveness benefit). This, again, results in 
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an intermediate degree of verification difficulty. Basic-
level categories occupy a privileged position in the hier-
archy that avoids these two extremes. They have a 
relatively high number of CCFs while also being relatively 
distant from their sibling exemplars. This favorable trade-
off between distinctiveness and specificity produces the 
BSE, faster verification at the basic level relative to the 
levels above and below.

Predicting search behavior using the CCF model.  
The analyses we have discussed thus far demonstrated 
that the CCF model captured trends observed in target 
guidance and verification across the superordinate, 
basic, and subordinate levels, but can this model also 
predict behavior within each of these categorical levels? 
As a first step toward answering this question, we con-
ducted a trial-by-trial analysis to determine how well 
the model could predict search guidance to an exem-
plar of the target category. For each target-present trial 
in which the target was fixated and the response was 
correct, we computed the chi-squared distance between 
the CCF representation of the target category and the 
target exemplar appearing in the search display. We 
then correlated these distances with the time-to-target 
measure of target guidance obtained for these trials. To 
evaluate the CCF model’s predictions, we used the 
leave-one-out method to derive a subject model, which 
indicated how well the mean target guidance of n – 1 
(n = 26) subjects predicted the guidance of the subject 
left out. This analysis provided a rough upper limit on 
the predictive success of the CCF model, as correlations 

higher than those of the subject model would not be 
expected given variability in participants’ guidance 
behavior.

Figure 7 plots the correlations between time to target 
and both the subject model and the CCF model at each 
hierarchical level. Paired-group t tests revealed that the 
correlations did not differ reliably between the CCF and 
subject models at the subordinate (p = .078) or basic 
(p  =  .334) level, but were significantly different at the 
superordinate level (p < .001). The poor correlation for 
the CCF model at the superordinate level is consistent 
with the absence of guidance at this level, as indicated by 
the chance-level proportion of immediate target fixations 
in the behavioral experiment (Fig. 4b). These findings 
suggest not only that the CCF model predicted the fine-
grained search behavior occurring on individual trials, 
but also that the model’s predictions at the subordinate 
and basic levels were as good as could be expected given 
the level of agreement in the participants’ behavior.

Conclusion

Categories determine how people interact with the world. 
Understanding the forces that shape category representa-
tion is therefore essential to understanding behavior in 
every domain of psychological science. We have intro-
duced a computational model of category representation, 
one that accepts image exemplars of common object cat-
egories and finds the features that appear frequently and 
consistently within each category’s exemplars—what we 
refer to as CCFs.
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We validated the CCF model through comparison with 
behavior in a categorical search task. Categorical search 
is important and has diverse applications. When security 
screeners search for weapons, or radiologists search for 
tumors, they are engaging in categorical search. Categori-
cal search is also unique in that this single task enables 
study of both the representations used to guide attention 
to categorically defined targets and the representations 
underlying the recognition of these objects as members 
of the target category. We manipulated the hierarchical 
level at which categorical targets were cued and found 
that these attention and recognition processes were 
expressed in very different behavioral patterns. A subor-
dinate-level advantage was evident for target guidance; 
targets cued at the subordinate level were preferentially 
fixated compared with targets cued at the basic or super-
ordinate level. In contrast, a basic-level advantage was 
evident for target verification; fixated objects were veri-
fied faster as members of the target category following a 
basic-level cue compared with a subordinate or superor-
dinate-level cue.

In the CCF model, both patterns depend on the num-
ber of CCFs extracted from exemplars at each hierarchi-
cal level. Target guidance weakens with movement up 
the category hierarchy because exemplar variability at 
the higher levels restricts the formation of CCFs, which 
results in less effective target templates for guiding search 
(Olivers, Peters, Roos, & Roelfsema, 2011). The CCF 
model advances existing theory on search and visual 
working memory by making explicit the processes of 
extracting visual features from image exemplars of real-
world categories and consolidating these features into 
lower-dimensional category representations (CCFs) that 
can be used to guide search. The CCF model also pro-
vides a theory for understanding effects of category hier-
archy (Maxfield & Zelinsky, 2012) and target specificity 
(Schmidt & Zelinsky, 2009) on search behavior; search is 
guided more efficiently to targets specified lower in the 
category hierarchy because these objects would usually 
be represented using more CCFs.

Target verification was modeled as a multiplicative 
interaction between the number of CCFs and sibling dis-
tance, the latter a measure of similarity between the CCFs 
of a target category and the features of exemplars in its 
sibling categories. In this approach, we appealed to the 
core principles of specificity and distinctiveness that have 
been guiding categorization research for decades 
( Murphy & Brownell, 1985). The number of CCFs maps 
onto the idea of specificity. Subordinate-level categories 
are the most specific because they give rise to many 
CCFs. Sibling distance maps onto the idea of distinctive-
ness. Verification suffers with movement down the hier-
archy because target representations start to share too 
many features with their closest categorical neighbors. 
The CCF model advances categorization theory by 

making these core principles computationally explicit 
and applicable to real-world object categories.

Of potentially even broader theoretical significance is 
the question of whether search and categorization share 
the same target representation: Are the visual features 
used to guide overt attention to a categorical target in a 
search display the same as those used to categorize the 
target once it is fixated? The CCF model suggests that 
they are, and to the extent that this suggestion is sup-
ported through converging evidence (Zelinsky, Peng, et 
al., 2013), a strong theoretical bridge will be built between 
the attention and categorization literatures. Future work 
using deep convolutional neural networks to extract 
CCFs will extend this bridge to the computer vision and 
computational neuroscience literatures. Supervision is a 
powerful learning tool (Khaligh-Razavi & Kriegeskorte, 
2014), and combining it with the generative extraction of 
features from exemplars may lead to significant advances 
in the understanding of category representation.

The CCF model makes possible the rigorous study of 
how the features of visual object categories can be 
learned and represented from exposure to the vast num-
bers of diverse image exemplars accumulated throughout 
everyday experience. Recent decades have seen scientific 
doors to the real world open for many psychological pro-
cesses. The CCF model opens another such door into 
categorization.
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Note

1. MATLAB code for the CCF model can be downloaded as a 
zip file from https://github.com/cxy7452/bow-ccf
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