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Abstract

Clinical Cord Blood (CB) Hematopoietic Cell Transplantation (HCT) has progressed well since 

the initial successful CB HCT that saved the life of a young boy with Fanconi anemia. The 

recipient is alive and well now 28 years out since that first transplant with CB cells from his HLA-

matched sister. CB HCT has now been used to treat over 35,000 patients with various malignant 

and non-malignant disorders mainly using HLA-matched or partially HLA-disparate allogeneic 

CB cells. There are advantages and disadvantages to using CB for HCT compared to other sources 

of transplantable hematopoietic stem (HSC) and progenitor (HPC) cells. One disadvantage of the 

use of CB as a source of transplantable HSC and HPC is the limited number of these cells in a 

single CB collected, and slower time to neutrophil, platelet and immune cell recovery. This review 

describes current attempts to: increase the collection of HSC/HPC from CB, enhance the homing 

of the infused cells, ex-vivo expand numbers of collected HSC/HPC and increase production of 

the infused CB cells that reach the marrow. The ultimate goal is to manipulate efficiency and 

efficacy for safe and economical use of single unit CB HCT.
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1. Introduction

Hematopoietic cell transplantation (HCT) is a life-saving procedure for treatment of 

malignant and non-malignant disorders, and is usually a last resort for those whom there is 

no other treatment available [1,2]. The life-saving cells necessary to establish a new 

hematopoietic system to replace the damaged or malignant cells are hematopoietic stem 
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(HSC) and progenitor (HPC) cells [3–5]. These cells give rise to all the blood forming 

elements. Their production is regulated by various proteins, such as cytokines and 

chemokines, other growth regulatory molecules, the in vivo microenvironmental niche 

composed of various stromal cells and the extracellular matrix, and the hypoxic atmosphere 

within the niche [6,7].

HSC and HPC are found in various tissues, including bone marrow (BM) which is the major 

site of production of blood cells in the adult. HSC/HPC are also found circulating in the 

blood but their numbers in blood under normal steady state conditions are low, unless these 

cells are mobilized from the BM with chemotherapy, growth modulating proteins such as 

Granulocyte Colony Stimulating Factor (G-CSF), or smaller molecules (Macrophage 

Inflammatory Protein (MIP)-1α or GRO-β), including synthetic ones (AMD3100/Plerixafor) 

[3,6]. HSC and HPC can also be found in umbilical cord blood (CB), at the birth of a baby 

[1,2]. Currently the three main clinical sources of HSC and HPC for HCT are BM, 

mobilized peripheral blood (mPB), and CB. Each have been used successfully and have 

advantages and disadvantages.

The advantages of CB for HCT include the ease of collection of the CB at the birth of the 

baby, with no problems for the mother or baby, the ability to store CB collections 

immediately after cryopreservation in either a public CB bank for use by others after HLA-

typing, or in a family bank for future use by the baby donor or perhaps for a family member. 

At present, CB has been used to transplant over 35,000 recipients with success rates 

equivalent to those done with BM or mPB [1,2]. One outstanding advantage of CB, besides 

the almost immediate availability of the cells for transplant, is the documented lower graft 

vs. host disease (GVHD) associated with the use of CB, in comparison to that of BM or 

mPB [1,2]. This lowered level of resultant GVHD associated with CB as the donor cell 

population of HSC and HPC has allowed CB to be used in situations of increased HLA-

disparity compared to that of BM or mPB, opening up the opportunity for transplants that 

cannot be performed safely with equivalent partially HLA-mismatched BM or mPB. Thus, 

there is great optimism for use of CB as a source of HSC and HPC for HCT. However, there 

are disadvantages to using CB compared to BM and mPB, including the more limited 

numbers of cells collected at the birth of the baby, which is a one-time only collection, and 

the slower time to engraftment for neutrophils, platelets, and immune cell reconstitution 

[1,2]. Being able to successfully address these two concerns would make CB an even more 

desirable source of transplantable HSC and HPC, and would likely greatly enhance the 

clinical use of these cells for HCT. Moreover, in addition to use of CB, BM or mPB for 

transplantation, another treatment has more recently emerged, that of haploidentical HCT, 

which seems to also have the advantage of increased use in an HLA-disparate setting, 

lowered GVHD, and with enhanced time to engraftment [8]. However, haplo-identical 

transplantation is not without its own inherent problems, including enhanced relapse rates 

over time. Which source of cells will be best for which situation will “play-out” in time. In 

the meantime, efforts are on-going by numerous research and transplant investigators to find 

ways to enhance the numbers of HSC/HPC from CB, and to accelerate the time to 

engraftment with CB. Results are promising, and hopefully efforts in this important 

endeavor will continue to move forward.
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2. Background to the Field

The first CB HCT was performed in October 1988 at the Hopital St. Louis, in Paris under 

the direction of Eliane Gluckman, M.D., with an HLA-matched sibling CB collection that 

was processed, frozen and then hand-delivered to Dr. Gluckman by my laboratory [9]. The 

initial scientific studies suggesting CB as a source of transplantable HSC and HPC [10–14], 

as well as this first [9] and a number of subsequent HLA-matched sibling CB transplants 

that started the field of CB HCT came from my laboratory and from our first proof-of-

principle CB bank [15–19]. These first CB HCT efforts have been described [9,20–22]. 

Many of the first HCT advantages and disadvantages first noticed by us and our clinical 

collaborations still persist to this day, 28 years after the first transplant. While better clinical 

procedures have enhanced HCT outcome with HLA-matched and-partially matched 

allogeneic transplants, there is much room for improvement. Efforts towards this outcome by 

our group and others are described below.

3. Ongoing Experimental Laboratory and Clinical Efforts to Enhance CB 

HCT

Clinical efforts for, and the status of, CB HCT have been described in detail in several of our 

recent review articles [1,2]. Present efforts to enhance the efficacy of CB HCT include: A) 

more effective means to manage high quality and quantity collections of CB that maximize 

numbers of functional HSC; B) efforts to increase the homing capacity of HSC, since only a 

small portion of the HSC infused intravenously (i.v.) during HCT actually reach and/or 

engraft in the BM, a necessary site of eventual lodgement for HSC in order for their 

maintenance, expansion and differentiation to mature blood cells; C) the capacity to expand 

numbers of collected HSC and HPC outside the body (ex-vivo); and D) determine how best 

to enhance the production of the cells that eventually reach (home to) the BM, as part of the 

actual engraftment procedure.

3A.) Enhancing Cell Collections

Our original cell collection procedures have been reported [9,10,23–25]. There is nothing 

magical about these collections, and different collection sites have different ways to manage 

the collections at the birth of the baby [26–28]. In fact, there are now a number of companies 

that have managed these collections with enhanced efficiency [27,28]. However, the 

numbers of HSC/HPC and other cells collected by the best and most efficient means are still 

sub-par with regards to optimal collections. Efforts to procure more cells have included 

perfusing the placenta [29]. While one can collect more cells this way, this procedure is too 

cumbersome for routine use, and would have to be done at very select birthing centers. We 

have recently focused on a better appreciation of HSC biology to uncover a means to 

enhance collection of HSC in single CB collections [30,31]. We initially evaluated collection 

of HSC from mouse BM before proceeding to collection of CB. Our efforts were based on 

the increasing knowledge that HSC in vivo reside in microenvironmental niches that are 

grossly hypoxic (1–5% O2 tension) compared to that of the hyperoxic atmospheric 

conditions (~20% O2 tension). Thus, the BM environment needed to nurture, maintain, and 

expand HSC is extremely hypoxic compared to air. It has been known since the late 1970’s, 
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based on the work of others, and ourselves, that HPC proliferate better in vitro under 

hypoxia, than in ambient air (normoxia) [32–38]. In fact, we showed that cells expand better 

in long-term in vitro culture when they are grown under conditions of hypoxia (e.g. 5% O2) 

compared to normoxia [35]. The HPC are also more sensitive to stimulation by growth 

modulating cytokines in hypoxia. However, virtually all studies of HSC/HPC numbers and 

function have been performed after their collection and processing in ambient air 

(normoxia), regardless of their subsequent culture in hypoxia or normoxia. Moreover, the 

cells have always been injected in recipients (mice or man) under normoxic conditions. 

Thus, it was possible that the routine collection of BM or CB cells in ambient air, as 

everyone including ourselves have done, was influencing the HSC/HPC content of the 

collected cells. We hypothesized that upon collection of BM and CB cells, the immediate 

exposure of the cells to the high O2 content of ambient air would grossly alter numbers and 

function of HSC and HPC, by a phenomenon we termed: “Extra Physiologic Oxygen Shock/

Stress” (EPHOSS) [30,31]. This in fact, turned out to be true. For mouse BM collections, we 

used two methods. First, the cells were collected and processed from one femur under 

constant hypoxia (3% O2), and the contralateral femur was collected and processed in 

ambient air. Alternatively, two femurs were collected under hypoxia, the cells pooled, and 

then split such that half remained for processing under hypoxia, and the other half processed 

in air. For CB the cells were first collected at the birth in air tight arterial, 

hypoxicequilibrated blood-gas syringes to minimize exposure to air, prior to rapidly placing 

the collected cells in the hypoxic chamber for pooling and splitting. Half were left in 

hypoxia, and the other half then removed for replacement in ambient air. It is important to 

emphasize that the cells collected and processed in hypoxia never left the hypoxic 

environment, and everything in the hypoxic chamber including glassware, plastic ware, 

syringes, pipettes, culture and other media had to be equilibrated at 3% O2 in the hypoxic 

chamber for at least 18 hours prior to cell collections. The collected cells were assessed for 

HSC and HPC by phenotype (using rigorous definition for Long-Term (LT)-HSC, Short-

Term (ST)-HSC, Multi-Potential Progenitors (MPP), Common Myeloid Progenitors (CMP), 

Granulocyte Macrophage Progenitors (GMP), etc.) and by function for granulocyte 

macrophage (CFU-GM), erythroid (BFU-E), and multipotential (CFU-GEMM) progenitors 

by colony assay in vitro, and for in vivo infusion in lethally irradiated mice for mouse BM 

donor cell engraftment, and in sublethally-irradiated immune deficient (non-obese diabetic, 

severe combined immunodeficient, IL-2 Receptor null: NSG) mice for human CD34+ CB 

cell engraftment. Even the injections of the hypoxia collected and processed cells were 

injected i.v. in the hypoxic chamber, where the mice were rapidly placed into a holder where 

they could breathe 20% O2 while their tails where the cells were injected were in the 

hypoxic atmosphere. Collection of cells in hypoxia resulted in 3–5 fold increases in HSC 

numbers by rigorous phenotyping of mouse BM or human CB cells, and in 3–5 fold 

increases in numbers of functional HSC, as assayed by limiting dilution analysis of donor 

cells in lethally-irradiated congenic mouse recipients. This hypoxic collection and 

processing was concomitantly associated with decreased numbers of phenotypically- and 

functionally-defined HPC (MPP, CMP, GMP, CFU-GM, BFU-E, and CFU-GEMM). 

Moreover, the CFU-GM, BFU-E, and CFU-GEMM that were collected and processed in 

hypoxia were in a slow- or non-cycling-state, compared to the rapid cycling status (~50% in 

S-phase) of these HPC that were collected and processed in air. Thus, there are many more 
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HSC and fewer HPC when cells are collected in the more physiologic hypoxic atmosphere 

than those cells collected in ambient air, and this process of decreased HSC and increased 

cycling HPC occurs within 15 minutes, or possibly sooner when the collected cells hit 

normoxic atmospheric conditions. Hence, all investigators have previously greatly 

underestimated numbers of HSC, and overestimated numbers of HPC when cells are 

collected and processed in normoxia [30,31]. This difference in numbers of HSC collected 

could make a major difference in context of CB HCT, where numbers of HSC from single 

CB collections have thus far been limited.

However, while it is logistically possible to do CB collections and processing in hypoxia, 

this would be a complicated procedure, and would have to be done in very selected CB 

collection centers that maintain good manufacturing procedures. Thus, it was necessary to 

understand the mechanisms involved in the phenomenon of EPHOSS, to see if there was a 

simpler means of preserving the cells, as they would be in their residing in vivo hypoxic 

environment. We found that collection of HSC in ambient air was associated with increased 

generation of mitochondrial reactive oxygen species (ROS), increased mitochondrial mass, 

and higher membrane potential [30,31]. We linked EPHOSS directly to a mitochondrial 

permeability transition pore (MPTP), -cyclophilin D-P53 axis, in which increased O2 present 

in ambient air opened the MPTP causing increased release of mitochondrial ROS. ROS is 

known to be an inducer of cell differentiation. We also linked EPHOSS to an hypoxia-

inducing factor-1alpha, and hypoxamir micro RNA (miR)210 activity [30,31]. We were able 

to use the GVHD antagonizing drug cyclosporine A (CsA), to keep the MPTP closed under 

normoxic conditions, which ablated the EPHOSS effects. Thus, the immediate collection 

and processing of mouse BM or human CB cells in ambient air but in the presence of CsA 

mimicked the effects of hypoxia with collection of increased numbers of phenotypically- 

and functionally-defined HSC, and with an associated concomitant decrease in HPC. It now 

remains to be determined if CsA can be used in a CB banking scenario to enhance numbers 

of collected HSC. More work is necessary in this area as CsA is not an easy compound to 

work with. It is difficult to get into solution and the exact concentration to use for best 

advantage may need to be worked out for different collection scenarios.

3B.) Enhancing the Homing Capabilities of HSC for More Efficient Engraftment

There have been a number of attempts to enhance the capacity of HSC to home to the BM 

after i.v. injection/infusion for enhanced engrafting capability. Some current efforts include: 

inhibition of the enzymatic activities of Dipeptidylpeptidase (DPP)4 [39–43], use of 

prostaglandin E (PGE) [44–46], short term treatment of cells with hyperthermia [47], and 

enforced fucosylation of the cells [48,49].

3Bi.) Inhibition of DPP4—DPP4 has the capacity to truncate certain proteins at a 

penultimate N-terminal amino acid that is a proline or alanine, and to a lesser extent when 

that amino acid is a serine and perhaps a threonine [50,51]. There are an increasing number 

of cytokines and chemokines with putative and documented real DPP4 truncation sites 

[41,50,51]. One regulatory protein that we originally focused on was the CXC chemokine, 

stromal cell derived factor-1 (SDF-1; also known as CXCL12) which binds and signals 

through the CXCR4 receptor [52]. SDF-1/CXCL12 is a potent chemotactic (directed cell 
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movement) and homing molecule for HSC and HPC [6,7,52]. DPP4 truncation of SDF-1/

CXCL12 results in a molecule that lacks chemotactic activity, but the truncated SDF-1/

CXCL12 can block the chemotactic activity of full-length SDF-1/CXCL12 [39]. Inhibition 

of DPP4 or deletion of the dpp4 gene in mice results in enhanced chemotaxis of HPC, and 

probably HSC, and enhanced homing and engrafting capability of mouse BM HSC into 

lethally-irradiated mice [40,41] and of human CD34+ CB cells (enriched for HSC and HPC) 

into sublethally-irradiated immune-deficient mice [53]. Inhibition of DPP4 also accelerates 

hematopoietic recovery in mice after radiation or chemotherapeutic drugs. Based in part on 

this information, a clinical trial was set into motion in which human recipients with end-

stage leukemia and lymphoma were conditioned as usual, but also given oral administration 

of sitagliptin [42,43], an FDA approved DPP4 inhibitor that had previously been used by 

others to treat patients with Type 2 diabetes. The conditioned patients were then infused i.v. 

with a single CB unit. The results were encouraging in that the time to neutrophil 

engraftment with sitagliptin was 21 days, compared to the greater than 24 days associated 

with single unit CB transplantation [42]. However, the sitagliptin was only given to 

recipients once a day for 4 days, and the DPP4 enzymatic levels, while immediately being 

decreased after the first of each sitagliptin administration, quickly rebounded, and sometime 

over-bounded within 4–6 hours [42,43]. Thus, the patients did not respond as well as normal 

donors to the sitagliptin, since normal donors that received sitagliptin demonstrated reduced 

DPP4 levels for at least 24 hours after administration of a single dose of oral sitagliptin. A 

follow-up trial using sitagliptin twice a day for 4 days in the same context of single CB 

transplantation has resulted in a much reduced time to neutrophil engraftment of 16–17 days 

(Farag and Broxmeyer, unpublished data). This simple procedure of adding a relatively 

inexpensive orally-active reagent such as sitagliptin to the transplant procedure bodes well 

for a simple and inexpensive means to enhance single CB transplantation. More efforts are 

needed to be sure about the efficacy of this treatment, and if it also allows enhanced 

engraftment of platelets and immune cells, as these types of cells are also delayed in context 

of CB transplantation. It may be that DPP4 inhibition in context of CB transplantation is not 

only enhancing the activity of a chemotactic/homing molecule such as SDF-1/CXCL12 by 

blocking its truncation [39] in the setting of conditioning and transplantation of the patient, 

but inhibition of DPP4 also enhances the activity of other hematopoietically active 

molecules, such as granulocyte (G), macrophage (M) colony stimulating factor (CSF), G-

CSF, interleukin (IL)-3, erythropoietin (EPO), and probably thrombopoietin (TPO), as well 

as many other cytokines/chemokines with DPP4 truncation sites [41,50,51]. Moreover, 

SDF-1/CXCL12 as well as other cytokines also have cell survival activities [54,55], so 

inhibiting DPP4 activity in vivo is also likely enhancing the survival and other functional 

activities of cytokines and chemokines [41], allowing for enhanced HSC/HPC self-renewal 

and proliferation that also figure into the engrafting process.

3Bii) PGE—PGE has long been known to have functional activities on HSC/HPC 

populations, both as a negative and positive regulator of these cells [56–58]. PGE has now 

been shown to enhance the homing and engraftment of HSC in a mouse BM recipient 

context [44,45]. Use of PGE has been instituted in context of a double CB HCT situation 

with encouraging results [46]. However, it is not yet clear whether or not PGE will be 

advantageous in context of a single CB HCT. This is important, because it is necessary to 
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enhance single CB HCT, rather than that of double CB HCT, for economic reasons [59]. Of 

interest, is that in a mouse BM HCT context, the combined use of a DPP4 inhibitor and of 

PGE resulted in better engraftment than that of either a DPP4 inhibitor or PGE, each alone 

[60]. Thus, there are still ways for even greater enhancement in reducing the time to blood 

cell recovery.

3Biii) Treatment of Donor Cells with Short-Term Hyperthermia—CXCR4 is a 

potent receptor for SDF-1/CXCL12 activities on hematopoiesis [52]. For CXCR4 to be most 

potent, it is necessary for it to be incorporated into cell membrane lipid rafts. In this context, 

hyperthermia pre-treatment of cells was assessed to see if it enhanced the potency of 

CXCR4 for response to the chemotactic activity of SDF-1/CXCL12 [47]. Heating CD34+ 

human CB cells, and the CXCR4-expressing factor-dependent cell line MO7e for 4 hours at 

39.5°C greatly enhanced the chemotactic response of these cells to SDF-1/CXCL12, and 

also the sensitivity of the cells to SDF-1/CXCL12. The hyperthermia-pre-treated cells 

responded to much lower concentrations of SDF-1/CXCL12 than did the cells treated at 

37°C. The enhanced chemotactic response to hyperthermia-treated CD34+ cells was equally 

apparent for the immature CD34+ CD38− containing HSCs and the more mature CD34+ 

CD38+ (containing HPC) subsets of CD34+ cells. Of relevance for HCT, pretreating human 

CD34+ CB cells for 4 hours at 39.5°C prior to transplantation into sublethally irradiated 

NSG immune-deficient mice significantly enhanced the engraftment of the human CB cells 

by at least 2 fold as assessed by human CD45+ CB chimerism in the NSG mice [47]. Hence, 

this is another inexpensive, and easily performed method to ex-vivo prime CB HSC/HPC for 

better engraftment. Heat treatment may be useful alone or as an adjuvant with other 

therapies to enhance the efficacy of CB HCT. This has yet to be tried in context of clinical 

CB HCT.

3Biv.) Fucosylation—The ability of cells to home to the BM involves many steps, 

including the capture, rolling and arrest of the cells on the BM endothelium. This is 

mediated in part by endothelial E- and P- selectin interactions with the HSC and HPC. For 

this interaction to occur involves specific fucosylations on the cells interacting with and 

traversing the endothelium. Since there are apparently reduced levels of fucosylation of E- 

and P- selectin ligands on CB cells, it was postulated that increasing the levels of 

fucosylation on the surface of cell populations containing HSC and HPC would improve the 

engraftment capabilities of these donor cells. This was first addressed in human-mouse 

chimera studies [48], and then in a human clinical trial [49], both which demonstrated 

positive results. In the clinical study, the median time to neutrophil engraftment was 17 days 

compared to historical control values of 26 days, platelet recovery was reduced to 35 

compared to controls of 45 days [49]. This clinical study was done in context of a double CB 

HCT, and will have to be verified in a single CB unit HCT setting before its full worth is 

determined. The time to neutrophil engraftment seen in this double CB HCT scenario was 

similar to that seen above in a single CB HCT setting using sitagliptin twice a day for 4 

days. Whether or not combining fucosylation with DPP4 inhibition will further accelerate 

the time to donor engraftment in the setting of single unit CB HCT remains to be seen.
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3Bv.) Future Efforts to Enhance Homing of CB for More Efficacious HCT—
There are now encouraging reports that the homing and then subsequent engraftment of CB 

cells can be enhanced. Above, we noted DPP4 inhibition [39–43], PGE treatment [44–46], 

hyperthermia [47], and fucosylation [48,49] in this context. There are likely other simple 

methods to accomplish this end-point, but combined treatments, such as already 

demonstrated with DPP4 inhibition plus PGE [60], may be advantageous.

3C. Ex-vivo Expansion of HSC and HPC to Increase the Numbers of these Cells, and 
Enhance CB HCT

One limiting factor, believed in part to be due to the slower time to engraftment with CB 

compared to BM or mPB, is the limited numbers of cells, including HSC and HPC, that can 

be collected at the birth of a baby from a single collection. The numbers of HSC/HPC 

decline rapidly within hours after the birth of a baby, and what one collects is all one can get 

in this situation [11]. To make up for this relative paucity of cells in a single CB collection, 

investigators went to use of double CB HCT [1,2]. This did help move the field of CB HCT 

forward, but at this time there is no definitive proof that double CB HCT is any more 

effective than single CB HCT [1,2], although most centers still use two CB units for HCT. 

Double CB HCT certainly served its purpose for increased numbers of CB HCT, but there is 

no apparent difference in times to engraftment with double compared to single CB HCT, 

both of which still lag behind the accelerated times to engraftment noted with BM- or mPB-

HCT. The expense for two vs. one CB unit is usually twice the cost, and one way to decrease 

the cost, is to find a relatively inexpensive means to enhance single CB HCT [59]. As a 

means to find a way to increase the numbers of CB HSC/HPC for CB HCT, different groups 

have experimented with means to expand the numbers of these cells outside the body (ex-
vivo). Towards this ultimate aim to increase numbers of HSC and HPC, the cytokines stem 

cell factor (SCF), Flt3-ligand (FL), and TPO have been used to good advantage in an 

experimental situation. There have been a number of other means to ex-vivo expand HSC, 

and some of these have been assessed in a clinical setting, but it is of interest that many of 

the ex-vivo expansion procedures, regardless of their efforts have in some way had to 

incorporate some cytokine combination such as SCF, FL and TPO in the experimental 

design. The additional maneuver enhances ex-vivo expansion of HSC beyond that of the 

cytokine combination. However, without the cytokine combination these procedures have 

little or no effect by themselves.

3Ci.) Clinical Assessment of Ex-Vivo Expanded CB Cells—The first successful 

attempt at clinical use of ex-vivo expanded CB cells involved Notch-mediated culture of 

CD34+ CB cells [61]. The isolated CD34+ cells were cultured for 16 days in culture vessels 

pre-coated with Deltaext-IgG with fibronectin fragment CH-296 overnight, and then in serum-

free medium with IL-3, IL-6, TPO, FL, and SCF. The infusion of these cultured cells 

resulted in an apparent shortening of the time to neutrophil engraftment. CB cells were also 

cultured by others in the presence of nicotinamide and a non-cultured T-cell fraction which 

resulted in encouraging results [62]. More recently, a third group took advantage of 

background studies that demonstrated that a small molecule, SR1 [63], in combination with 

a cytokine cocktail could expand HSC numbers, in order to bring this procedure to the clinic 

[64]. This effort also resulted in quite impressive results. However, all these clinical studies 
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were done in context of a double CB HCT in which the recipients were provided with donor 

cells from a manipulated and also unmanipulated CB collection. Thus, although the results 

noted above are impressive, it remains to be seen if in fact the ex-vivo cultured cells can by 

themselves, without the added presence of a second unmanipulated CB unit actually engraft, 

and if so, can it accelerate the time to neutrophil, platelet and immune cell recovery 

compared to that noted by either single or even double unmanipulated CB HCT.

3Cii.) Additional Experimental Laboratory Assessment of Ex-Vivo Expanded 
CB Cells—There are a number of small molecule experimental procedures that have been 

evaluated in a laboratory setting, all of which enhance the ex-vivo expansion of CB CD34+ 

cells and the HSC and HPC population within this phenotyped population of CD34+ cells 

beyond that of a cocktail of cytokines. This includes SR1 [63,64], an aryl hydrocarbon 

receptor antagonist, and also pyrimidoindole derivatives [65], which acted as agonists of 

human HSC self-renewal events.

It was known that enhancing the expression of the homeobox protein HoxB4 resulted in ex-
vivo expansion of HSCs [66,67], and most recently we reported that activation of the 

pluripotent transcription factor Oct 4, using an Oct4-activating compound (OAC1) in the 

presence of SCF, FL and TPO greatly expanded both phenotypically- and functionally-

defined human HSC and HPC from a starting population of human CB CD34+ cells [68]. 

Interestingly, the OAC1-expansion was mediated by enhanced expression of HOXB4, as 

siRNA that decreased expression of either Oct4 or HoxB4 prevented the OAC1-induced 

enhancement in ex-vivo expansion of HSC and HPC [68]. Since enhanced sustained 

expression of HoxB4 has been associated with leukemogenesis, we checked if we could 

detect signs of leukemia with our ex-vivo expanded cells. The expanded cells neither caused 

the formation of teratomas when subcutaneously injected into nude mice, whereas the 

injection of a human embryonic stem cell line as a control did cause teratomas that 

contained tissue from all three germ layers [68]. We did not detect any evidence of leukemia 

in the NSG mice injected with the ex-vivo expanded cells for the 4 months of the 

engraftment period in primary mice or in the secondary recipients after another 4 months 

[68]. It seems likely that the transient induced expression of Oct4 and HoxB4 by short term 

expansion of the CD34+ CB cells to OAC-1 may be safe, and that only prolonged activation 

of HoxB4 results in leukemogenesis. However, caution is needed in evaluating this, as well 

as any other ex-vivo expanded cell population when considering their use in a clinical setting 

[68].

Epigenetic modification of cells is also being considered in the context of ex-vivo expansion 

[69]. While still quite experimental, and with the understanding that caution is necessary if 

one were to proceed to clinical analysis, the use of histone deacetylase inhibitors (HDACIs), 

primarily valproic acid (VPA) in context of cytokines resulted in very large increases in 

number of engraftable cells in NSG mice [70]. The investigators determined that the 

frequency of SCID-repopulating cells (SRC; a measure of human HSCs used in many of the 

above noted reports [53,63–65,68]) after ex-vivo culture of CB cells with cytokines and VPA 

was 1 SRC in every 31 cells while culture with only cytokines produced 1 SRC in 9,225 

cells, as compared to the unexpanded input CB cells of 1 SRC in 1,115 cells. This translated 

Broxmeyer Page 9

Transfus Apher Sci. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



to a phenomenal expansion of 32,258 SRCs compared to the starting unexpanded number of 

897 SRCs [70].

3Ciii.) Thoughts on Ex-Vivo Expansion—The above and other efforts to ex-vivo 
expansion of CB cells for use in CB HCT [71–74] appear encouraging, and we and others 

continue to work in this area. Greater insight into the biology of HSC and HPC will no 

doubt enhance our capacity to evolve additional ways to ex-vivo expand CB and other 

sources of HSC. However, until the clinical studies are done in context of a single 

transplantable CB unit, it is not clear how this can change how CB HCT is done. 

Economically, two CB units cost more than one CB unit, usually double the cost of a single 

CB unit, although efforts are underway by some public CB banks to reduce the cost of 

procuring two units. Add the cost of two units to the probably significant cost of the ex-vivo 
culture procedure, which would most likely have to be performed in very selective 

processing centers with good manufacturing procedure facilities, and the costs continue to 

add up [59]. The question becomes how impressive the actual clinical results will be and if 

these are better than other less expensive means for enhancing the efficacy of CB HCT.

D.) In Vivo Enhancement of the Engrafted Cells

One potential means to enhance the efficacy of CB HCT is to find a way to accelerate the 

self-renewal and differentiation capacity of the CB cells that have already homed to and 

lodged in the BM of the recipients. This would be done by infusing growth factors, which 

has been done already in context of adding G-CSF (e.g. neupogen). Presently, it is not clear 

that G-CSF has actually reduced the time to neutrophil engraftment [1]. I believe that TPO 

may have also been tried in the past to enhance engraftment of platelets, but likely without 

much success as there are no published reports on this.

Another possibility is to use a DPP4 inhibitor such as sitagliptin for more prolonged periods 

after the engraftment process has started. Since DPP4 itself is increased in amount and 

enzymatic activity during stresses such as radiation and chemotherapy [41], likely due to cell 

death which releases endogenous DPP4, and it is now clear that DPP4 can truncate and 

change the functional activities of a number of hematopoietically active cytokines such as 

GM-CSF, IL-3, G-CSF, EPO, and TPO by downregulating their positively acting functions 

[41,50,51], it may be that DPP4 inhibitors that will prevent this cytokine truncation can 

accelerate recovery after radiation or drugs such as 5 Flurouracil or cyclophosphamide. 

Hematopoietic recovery is greatly accelerated in CD26/DPP4 knockout mice, or in mice 

receiving a DPP4 inhibitor such as oral sitagliptin or i.v. administered Diprotin A (a 

tripeptide: ILE-PRO-ILE) [41]. When our clinical trials were first designed [42,43], it was 

with the knowledge that SDF-1/CXCL12 the chemotactic and homing chemokine [52] could 

be truncated [39]. Thus, we were only considering the effects on the homing process, hence 

the short-term treatment of patients with sitagliptin. Now that we understand the wide range 

of hematopoietically-active cytokines and growth factors with DPP4 truncation sites 

[41,50,51], it might be worthwhile to see if adding orally-active sitagliptin to patients for 

more than 4 days can enhance time to recovery faster than we have now seen with 

administering it 2x/day for 4 days, starting one day before the infusion of the CB unit 

(Farag, Broxmeyer, unpublished data). The safe design of such a further trial needs to be 
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considered. Another interesting way to enhance engraftment that needs further verification, 

is the use of hyperbaric oxygen for the recipient [75].

E.) Concluding Remarks

The field of CB HCT has come a long way [1,2] since the initial background laboratory 

studies that led to the field [10] and the first CB transplants, first in an HLA-matched sibling 

[9,15–21], and then in an allogeneic HLA-matched and partially HLA-matched situation 

[1,2]. Many laboratory scientists and clinical investigators continue to work to better 

understand the biology of HSC and HPC and the mechanisms involved in the regulation of 

HSC and HPC, and means to enhance CB HCT so that there is more rapid engraftment of 

neutrophils, platelets, and immune cells, without loss of the lesser amounts of GVHD found 

in CB HCT in comparison to BM or mPB HCT, and with maintenance of the anti-leukemia, 

anti-cancer effects of the CB. The newer findings will also have to take into account the 

economics of the transplant [59]. Without sacrificing the safety and efficiency of the 

procedure, cost should be taken into account. When all is said and done, simpler is usually 

better, so if one can find simple less-complicated and- expensive means that are safe and 

effective in making CB HCT better, than this needs to be seriously considered by the 

clinical-investigators and- transplanters.
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