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Abstract

Bayesian additive regression trees (BART) provide a framework for flexible nonparametric 

modeling of relationships of covariates to outcomes. Recently, BART models have been shown to 

provide excellent predictive performance, for both continuous and binary outcomes, and exceeding 

that of its competitors. Software is also readily available for such outcomes. In this article we 

introduce modeling that extends the usefulness of BART in medical applications by addressing 

needs arising in survival analysis. Simulation studies of one-sample and two-sample scenarios, in 

comparison with long-standing traditional methods, establish face validity of the new approach. 

We then demonstrate the model’s ability to accommodate data from complex regression models 

with a simulation study of a nonproportional hazards scenario with crossing survival functions, 

and survival function estimation in a scenario where hazards are multiplicatively modified by a 

highly nonlinear function of the covariates. Using data from a recently published study of patients 

undergoing hematopoietic stem cell transplantation, we illustrate the use and some advantages of 

the proposed method in medical investigations.
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1. Introduction

Survival analysis addresses data that contain information on the time to occurrence of some 

event, often death or relapse after treatment for a disease. A common feature of such time-

to-event data is right-censoring, caused by some observations for which the event time is not 

available but it is known that the event did not occur until some observed time point. The 

literature contains a rich set of models and analysis methods for such data in a wide variety 

of contexts [1, 2, 3, 4, 5]. Survival analysis naturally focuses on the probability S(t) that the 

event does not occur by time t for all t > 0. Also of interest is the hazard h(t), the time rate of 

the probability of event occurrence in the next instance given that it has not occurred by time 
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t. These functions and various aspects of them are targets of inference when data are 

available from a homogeneous population [6, 7, 8, 9, 10]. Comparison of these functions is 

the focus when two or more populations arise as, for example, in considering alternative 

treatments for a disease [11, 12, 13].

More generally, in a regression context, investigators quantify how these inference targets 

vary with the values of a regressor x. The Cox proportional hazards model [14, 15, 16] is a 

popular choice for regression. It has also been well scrutinized [17, 18, 19] and alternatives 

have been proposed [20, 21, 22]. In practice, regression relationships in survival data are 

often complex. These can include nonlinear functions of covariates, interactions, high 

dimensional parameter spaces and nonproportional hazards. Several solutions have been 

proposed; for example, using lasso-type penalization [23, 24, 25], boosting with Cox-

gradient descent [26, 27] and random survival forests [28]. We describe in this paper new 

methodology that can be readily used for many of these contexts. While we demonstrate its 

usefulness and advantages only in some focused contexts here, we believe it can be adapted 

to most of those mentioned in this and the previous paragraph.

Single tree based methods developed in the 1980’s and 90’s [29, 30, 31] have been extended 

more recently to ensemble methods that use a sizable set of trees [32, 33, 34]. These models 

perform very well for their originally intended purpose: fitting nonlinear functional 

relationships in regression. A particularly successful development, one that also includes 

measures of uncertainty in the resulting predictions, is the BART (Bayesian Additive 

Regression Trees) model [35]. The authors of the article demonstrate, via simulations in a 

variety of scenarios, that BART compares favorably with its competitors such as boosting, 

lasso, MARS, neural nets and random forests. We employ BART in this paper because of its 

predictive performance and its natural quantification of uncertainty that allows construction 

of credible and prediction intervals. Like its competitors, BART can effectively address 

nonlinear relationships of a response variable to a (possibly large) set of regressors. As these 

relationships are estimated simultaneously with all the regressors, possible interactions 

between them are automatically addressed by tree based methods. In addition, it has been 

demonstrated that BART’s excellent predictive performance is maintained when additional 

irrelevant regressors are added [35](page 288), diminishing the need to carry out variable or 

model selection. However, it is also possible to carry out variable selection [35](page 276) 

and quantitatively describe the effect of individual variables on the outcome.

Recently, BART methodology has been employed by Bonato et al. [36] for survival 

prediction. They present three specific models – proportional hazards regression, Weibull 

regression and accelerated failure time (AFT) – where the tree ensembles are used primarily 

on the covariate structure in hierarchical specifications. In the first, the baseline survival 

distribution is modeled separately via a Gamma process. The second uses a parametric 

baseline form with the log of the scale parameter incorporated into the tree ensemble. The 

third, being an AFT model, addresses survival times on the log scale treated as normally 

distributed variates. We propose here a more direct, simpler and widely applicable 

adaptation of BART that relaxes the parametric and semiparametric assumptions in [36]. 

This is made possible by expressing the nonparametric likelihood for the Kaplan-Meier 

estimator in a form suitable for BART. The resulting method not only uses the stochastic 
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framework of BART but also allows one to employ existing BART software by suitably 

rearranging data constructed for traditional (frequentist or Bayesian) survival analysis.

We present our work in the following sequence. In Section 2 we describe BART 

methodology briefly, and then show its direct adaptation to survival analysis. Section 3 

studies the performance of the proposed methods, first demonstrating the face validity of the 

proposed method in the simplest scenario of estimating the survival function for a 

homogeneous population. We do this by comparison with the Kaplan-Meier estimator. Next 

we extend this to a comparison of two populations. In Section 4 we demonstrate the model’s 

ability to accommodate data from complex regression models, and we provide a medical 

application that illustrates the advantages of the proposed methodology. A discussion in 

Section 5, of our contribution as well as of some planned future developments, concludes the 

article.

2. BART methodology for survival analysis

As BART is based on a collection of regression tree models, we begin with a simple 

example of a regression tree model. Suppose yi represents an outcome, and xi is a vector of 

covariates with the regression relationship yi = g(xi; T, M) + εi. Notationally, g(xi; T, M) is a 

binary tree function with components T and M that can be described as follows. T denotes 

the tree structure consisting of two sets of nodes, interior and terminal, and a branch decision 

rule at each interior node which typically is a binary split based on a single component of the 

covariate vector. An example is shown in Figure 1 wherein interior nodes appear as circles, 

and terminal nodes as rectangles. The second tree component M = {μ1,..., μb} is made up of 

the function values at the terminal nodes.

BART employs an ensemble of such trees in an additive fashion, i.e., it is the sum of m trees 

where m is typically large such as 200, 500 or 1000. The model can be represented as:

(1)

To proceed with the Bayesian specification we need a prior for f. Notationally, we use

(2)

and describe it as made up of two components: a prior on the complexity of each tree, Tj, 

and a prior on its terminal nodes, Mj|Tj. Using the Smith-Gelfand bracket notation [37] for 

distributions, we write [f] = Πj [Tj][Mj|Tj]. Following [35], we partition [Tj] into 3 

components: the probability of a node being interior, the choice of a covariate given an 

interior node and the choice of decision rule given a covariate for an interior node. The 

probability that a node at depth d is interior is defined to be α(1 + d)−γ where α ∈ (0, 1) and 

γ ≥ 0. We assume that the choice of a covariate given an interior node and the choice of 

decision rule branching value given a covariate for an interior node are both uniform. 
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Throughout this article we have employed the default prior settings as described in [35], i.e., 

α = 0.95 and γ = 2. This choice of γ is a relatively large value reflecting a belief that the 

depth of the tree should be small, i.e., the probability decays rapidly with increasing d as can 

be seen in Table 1. We then use the prior  where μjk ~ N (0, 2.25/m) on 

the values of the terminal nodes. Along with centering of the outcome, these default prior 

mean and variance are specified such that each tree is a “weak learner” playing only a small 

part in the ensemble; more details on this can be found in [35]. To complete the Bayesian 

model in Equations (1) and (2), in general, we need a prior on σ2. However, as we next 

describe, a reformulation of the model for survival data uses a probit regression with latent 

variables that have unit variance. For our purposes then, σ2 = 1.

There are many potential approaches that could be taken to utilize BART in survival 

analysis. We describe a simple and direct approach that is very flexible, and is akin to 

discrete-time survival analysis [38]. Following the capabilities of BART, we allow for 

maximum flexibility in modeling the dependence of survival times on covariates. In 

particular, we do not impose proportional hazards. To elaborate, consider data in the usual 

form: ti, δi, xi where ti is the event time, δi is an indicator distinguishing events (δ = 1) from 

right-censoring (δ = 0), xi is a vector of covariates, and i = 1,..., n indexes subjects. We 

denote the k distinct event and censoring times by 0 < t(1) < · · · < t(k) < ∞ thus taking t(j) to 

be the jth order statistic among distinct observation times and, for convenience, t(0) = 0. Now 

consider event indicators yij for each subject i at each distinct time t(j) up to and including 

the subject’s observation time ti = t(ni) with ni = #{j : t(j) ≤ ti}. This means yij = 0 if j < ni and 

yini = δi. We then denote by pij the probability of an event at time t(j) conditional on no 

previous event. We now write the model for yij as a nonparametric probit regression of yij on 

the time t(j) and the covariates xi, and then utilize the Albert-Chib [39] truncated normal 

latent variables zij to reduce it to the continuous outcome BART model of Equations (1–2) 

applied to z’s. Specifically, with data converted from (t, δ) pairs to

(3)

we have

(4)

This model in display (4) views the data vector y as made up of n independent sequences of 

0’s and 1’s given p (the entire collection of pij’s). Consequently, we have the distribution
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(5)

We note here that the product over j is a result of the definition of pij’s as conditional 

probabilities, and not a consequence of an assumption of independence.

Remark on choice of μ0: For the continuous outcome model of Equations (1–2), typically the 

outcome is centered and μ0 is taken to be 0. In most cases with moderate or larger sample 

size centering, while helpful in computation, is not necessary because of the flexibility of f. 
For binary data, μ0 = Φ−1(p̂) can be used for centering the latent z’s. For the examples and 

simulations in this article, comparisons of results with and without centering found no 

meaningful differences. Reported results in Sections 4.1 and 4.2 are with centering, all 

others without.

The model just described can be readily estimated using existing software for binary BART. 

It allows one to estimate the functions f(t, x) or p(t, x) = Φ(μ0 + f(t, x)). We now need to 

relate these back to the objectives of survival analysis. The next subsections address this 

issue, and give a simple example of data construction for use in binary BART.

2.1. Data construction

Survival data contained in pairs (t, δ) must be translated to data suitable for the BART model 

in Display (4). While the description of this is contained in Equation (3) and the definitions 

preceding it, for additional clarification we give here a very simple example of a data set 

with three observations:

In the t and y vectors, t1 = 2.5 generates n1 = 2 elements each since it is the 2nd order statistic 

among distinct observation times. These elements are (t11, t12) = (1.5, 2.5), corresponding to 

distinct times up to and including t1 = 2.5, and (y11, y12) = (0, 1) indicating the event status 

of this subject at each of these times. Similarly, t2 = 1.5 generates n2 = 1 element each: (t21) 

= (1.5), (y21) = (1); and t3 = 3.0 generates n3 = 3 elements (t31, t32, t33) = (1.5, 2.5, 3.0) and 

(y31, y32, y33) = (0, 0, 0). Putting these together leads to

where y is the binary response vector and t makes up the first column of the matrix of 

covariates. The remaining columns contain the individual level covariates with rows 

repeated to match the repetition pattern of the first subscript on y.
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2.2. Targets for inference

With the data prepared as described above, the BART model for binary data treats the 

conditional probability of the event in an interval, given no events in preceding intervals, as a 

nonparametric function of the time t and the covariates x. Conditioned on the data, the 

algorithm in the available software [40] generates samples, each containing m trees, from the 

posterior distribution of f. For any t and x then, we can obtain the posterior distribution of

For the purposes of survival analysis, we are typically interested in estimating the survival 

and hazard functions. Noting the discretized likelihood in equation (5) and the conditional 

nature of the probabilities pij, we write the following expressions to compute these functions 

at event/censoring times t(j), j = 1,..., k:

With these functions in hand, one can easily accomplish inference for other quantities of 

interest such as median or other percentiles of time to event, comparative hazards at various 

time points, etc.

Remark—The above expressions for hazard and survival functions are applicable only at 

the distinct observation times. Interpolation between these times can be accomplished via 

the usual assumption of constant hazard. In particular, h(t|x) = h(t(j)|x) for all t ∈ (t(j−1), t(j)] 
and

2.3. Marginal Effects

The model in Display (4) does not directly provide a summary of the effect of a single 

covariate or a subset of covariates. In general, this is true in the case of nonparametric 

regression models, in contrast to semi-parametric models. See, for example, the ANOVA 

dependent Dirichlet process model in [22]. Here we follow [35] and use Friedman’s partial 

dependence function [33] to summarize the marginal effect due to the covariates of interest 

by averaging over the others. To be explicit, partition the covariates as . Then 

the marginal dependence function is defined as
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This leads to

(6)

Other marginal functions can be obtained in a similar fashion. Estimates then can be taken as 

means or medians over the samples from the posterior.

3. Performance of proposed methods: one and two samples

In this section we study, via repeated-data simulations, the performance of the BART 

survival model of display (4). The one-sample scenario is considered mainly to establish the 

face validity of the method by comparison with the long established Kaplan-Meier (KM) 

estimate of the survival function. Next the two-sample scenario is considered by fitting a 

single BART model and comparing it to a difference of two separate KM estimates.

3.1. One-sample scenario

We generated event times from a Weibull survival curve, S(t) = e−(t/λ)α, with parameters α = 

0.8 and λ = 2.5. Censoring times were generated independently from an exponential 

distribution with parameters selected to induce 20% or 50% censoring. We examined sample 

sizes of N = 50, 100, and 200. For each simulation scenario, 400 data sets were generated. 

For each data set, the survival curve was estimated using the mean of the BART posterior 

distribution of the survival curve at 10th,25th, 50th, 75th and 90th percentiles of the true 

distribution, leading to 30 simulation scenarios. In addition, 95% posterior intervals were 

obtained from the 0.025 and 0.975 quantiles of the posterior survival distribution. For 

comparison, we also obtained estimates and 95% confidence intervals based on the Kaplan-

Meier estimate (using log transformation for the confidence intervals). For each sample size 

and censoring percentage, we summarized the results in terms of coverage probability, bias, 

and root mean squared error at the 5 selected percentiles of the survival distribution. These 

results are summarized in the left panel of Figure 2. Detailed comparisons by sample sizes, 

censoring percentages and the selected percentiles are included in the Supplement. In 

general, the posterior intervals from the BART model have very good coverage probabilities, 

comparable to the usual KM estimates. The bias of the BART model estimate is close to 0 

across all the time points and comparable to but somewhat larger than that of the KM 

estimate. Finally, the BART model’s root mean square error across all included time points 

is comparable to but slightly smaller than that of the KM estimate. Overall, the BART model 

formulation is very effective in fitting a survival function.
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3.2. Two-sample scenario

Next we studied the ability of the BART model to accurately fit two survival curves for two 

different populations in a single regression model. A group indicator xi, i = 1,..., N for 

individual i was independently generated from a Bernoulli distribution with probability 0.5. 

Based on this indicator, event times were generated from one of two Weibull distributions, 

with α = 0.8, λ = 2.5 when x = 0 and α = 1.3, λ = 3.55 when x = 1. We selected these 

parameters to obtain crossing survival curves for the two populations. Such a scenario is 

typically more difficult to estimate in a single regression model. As in the one-sample 

simulation, independent exponential censoring times were generated with parameters chosen 

to induce either 20% or 50% censoring proportions overall. Total sample sizes of N = 100, 

200, and 400 were studied. For each scenario, 400 data sets were simulated. We focused on 

the difference in survival between these two groups, S (t |x = 1) - S (t |x = 0), evaluated at the 

quartiles of the overall survival distribution. We compared the BART model, which fits a 

single nonparametric regression model to the data, with an analysis using the difference in 

Kaplan-Meier estimates between the two groups. Again, we evaluated the performance of 

each strategy in terms of coverage probability, bias, and root mean squared error. The results 

are shown in the right panel of Figure 2. Detailed tables are included in the Supplement.

In general, the posterior intervals from the BART model have good coverage probabilities 

which are comparable to that of the difference in KM estimates. Bias from both methods is 

low, although in some cases the BART model tends to have higher bias compared to the 

difference in KM estimates. Despite the higher bias of the BART method, its root MSE is 

comparable to and usually lower than that of the difference in KM estimates. This is likely 

because BART borrows some information across the two samples, reducing the variability of 

the estimates.

4. Regression

While the BART method compares quite favorably with KM in the one and two sample 

cases, its usefulness in practice lies in more complex regression scenarios. Survival analysis 

literature offers many different semiparametric models for regression such as Cox 

proportional hazards, proportional odds, accelerated failure times, additive hazards etc. Each 

of these relies on a particular functional relationship of the covariates to some aspect of the 

survival distribution. BART offers a flexible approach allowing nonparametric functional 

relationships. In this section we demonstrate such ability of this method via two simulation 

studies, and in a medical study.

4.1. Performance in regression scenarios, with and without proportional hazards

We designed two simulation settings, one following the commonly used Cox proportional 

hazards model (PH) and another (nPH) that would pose significant challenges, especially to 

traditional methods. We considered 9 independent binary covariates, x = [x1,...,x9]′, each 

with Bernoulli probability of 0.5, which then were related to the Weibull event time t with 

survival function S (t|α, λ) = e−(t/λ)α through the rate/scale parameter alone (PH) and through 

both parameters (nPH) as follows:
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Note that x8 and x9 were excluded from outcome generation but retained in the covariates 

used in model estimation.

There are 29 = 512 potential covariate configurations not all of which will be observed in 

any given data set, and these covariate configurations result in 14 distinct survival curves, as 

shown in Figure 3. We generated data sets of size N = 400, and used independent 

exponential censoring as before, yielding an overall censoring percentage of 20%. For each 

model, we generated 400 data sets and used them to evaluate bias for prediction of survival 

under each of the 512 potential covariate configurations. Using the survival R package, on 

each data set we also carried out Cox regression analysis with the covariates. Figure 4 shows 

box plots of bias and root mean squared error (RMSE) for the 512 configurations, measured 

at the 10th,25th,50th,75th and 90th percentiles of the overall survival distribution. In the PH 

model, as expected, Cox regression analysis performs very well with respect to bias as well 

as RMSE. It is worth noting that the BART method is reasonably close to this in its 

performance. On the other hand, in the nPH scenario the BART method continues to 

perform well while, unsurprisingly, Cox regression performance degrades considerably.

4.2. Regression scenario with highly nonlinear relationship with covariates

Here we explore whether BART’s well-known ability – in continuous outcome regression – 

to fit complex relationships continues to hold in survival data modeling. To this end, we used 

Friedman’s five dimensional test function [41] to specify the rate parameter for Weibull 

survival times with shape parameter α = 2. In particular, we stipulated

where x1,...,x5 are continuous covariates, each taking values in the unit interval. Adding five 

noise variables to these covariates, we simulated three data sets, with N = 400, 2000 and 

4000. Each observation consisted of 10 independently generated covariates with uniform 

distributions on (0,1). Survival time was generated from the above Weibull distribution and 

right censored with an exponential variate to achieve an overall censoring rate of 20%. We 

applied the BART method to each data set and estimated the survival function at a grid of 

time points, made up of the 9 deciles of the overall survival function, for each 10-covariate 

combination in an independent sample of 400. Figure 5 shows estimated versus actual 

survival probabilities for the three data sets. Points are scattered nicely around the identity 

line in all cases with the larger sample sizes resulting in smaller variability. Together they 

indicate that BART fits well the complex functional relationship of covariates to survival 

probabilities.
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4.3. Application: hematopoietic stem cell transplantation data

In this section we apply the proposed BART survival method to a retrospective cohort study 

data set looking at survival after a reduced intensity hematopoietic cell transplant (HCT) 

from an unrelated donor [42] between the years 2000 to 2007. Patients with missing 

covariate data were removed to facilitate demonstration of the methods, so the results should 

be considered as an illustration of the methods rather than a clinical finding. A total of 592 

deaths occurred in the 845 patients in the cohort. Thirteen covariates were considered in the 

analysis, including age, ABO blood type matching, year of transplant, disease/stage, human 

leukocyte antigen (HLA) matching, graft type, Karnofsky Performance Score (KPS), 

cytomegalovirus (CMV) status of the recipient, conditioning regimen, use of in vivo T-cell 

depletion, graft-versus-host disease (GVHD) prophylaxis, donor-recipient sex matching, and 

donor age, resulting in a total of 21 predictors in the X matrix. More details on the variables 

are available in [42]. The time scale was coarsened to weeks rather than days to reduce the 

computational burden.

The BART survival model was fit to this data set with 200 trees and the default prior, using a 

burn-in of 100 draws and thinning by a factor of 10, resulting in 2000 draws from the 

posterior distributions for the survival function given covariates. Convergence diagnostics 

were carried out using generated values of p(t,x) = Φ(μ0 + f(t,x)) at selected values of t and 

all x covariates at zero. While multiple chains converged quickly, sizable auto-correlation 

was observed and mitigated via thinning of the chain. Partial dependence survival functions 

can be obtained as in equation (6) for a particular subset of covariates. These can be 

interpreted as a marginal or average survival function for that covariate level, averaged 

across the observed distribution of the remaining covariates. In the left panel of Figure 6 we 

show the partial dependence survival function for each of three conditioning regimens.

One of the major advantages of the BART model is the ability to draw inference on various 

aspects of the survival distribution directly from the posterior samples. In the right panel of 

Figure 6 we examined how the median of the partial dependence survival function varied 

with patient age and graft type. There is little evidence of interaction as the plots are nearly 

parallel, and the plot indicates a nonlinear relationship between median survival and age, in 

which the median survival drops rapidly after age 50.

As another illustration of how one can use the BART survival model to explore interactions 

on different survival outcome scales, we examined the difference in the partial dependence 

survival function at 3 years between patients receiving MMF vs. MTX as GVHD 

prophylaxis, separately by disease status and by graft type. These are shown as a forest plot 

in Figure 7. These indicate MMF consistently reduces 3 year survival across different 

diseases and graft types, although the magnitude of the effect may vary slightly.

Finally, we applied the variable selection methods discussed in [35] by examining the 

average use per splitting rule for all 22 variables (time post transplant plus 21 predictors), 

plotted for several values for the number of trees used in the BART model (m = 

200,100,50,40,30,20,15). Besides time post transplant, which is selected most consistently 

across the trees, the method identifies these 7 covariates impacting survival: patient age, 

disease/stage, HLA matching, KPS, conditioning regimen, and GVHD prophylaxis.
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Additional variable selection methods using the average use per splitting rule are also 

available in [43] and described in Bleich et al. [44]. These include using permutation 

sampling to determine an appropriate threshold for the average use per splitting rule based 

on a null distribution which would help identify which variables are truly important.

5. Discussion

We have shown in the simulations and the application that BART can be successfully 

implemented in the nonparametric survival setting with or without covariates. In particular, 

we do not make any distributional assumptions or any assumptions about proportional 

hazards, so that the proposed method can fit complex nonlinear and interaction relationships 

of covariates in predicting or explaining survival time.

Our proposed method has good performance with respect to prediction error, consistent with 

prior studies of BART. As is well known, it is often informative to partition the mean square 

error into squared bias and variance to illuminate the trade-off between them. There are 

methods on both ends of the spectrum: linear regression, which has high bias and low 

variance; and CART, with low bias and high variance. Ensembles such as BART are 

generally in the middle: medium bias and medium variance. This unique placement in the 

trade-off spectrum accounts for the strong performance of ensembles from the standpoint of 

prediction error [45, 46, 47].

Our formulation allows for the use of “off-the-shelf” BART software after restructuring the 

data as described. R [48, 49] is a Free, Open Source Software (FOSS) language for 

statistical computing and graphics. Currently, there are three R packages available for BART 

which are also FOSS [40, 50, 43].

When modeling regression data, whether in the context of survival analysis or otherwise, 

model-building is a laborious process requiring much effort on the part of the analyst. 

Deciding which nonlinear relationships and interactions to include is a challenging task. 

BART and similar methods offer an alternative, that of a flexible modeling and prediction/

estimation framework capable of discovering these complex relationships. One can obtain 

the posterior samples of ensembles of trees directly and then use these to understand the 

effect of various covariates on the outcome.

Many research studies suffer from missing data problems. While we did not address these 

directly in our study example, we point out that one of the BART implementations 

(bartMachine [43]) has a feature which allows the user to directly handle missing covariate 

data within the BART framework. This method incorporates missing data indicators into the 

training data set and allows for splits on the missing indicators, leading to improved 

performance under a pattern mixture model framework.

Beyond its many other advantages, BART is also an effective tool for causal inference of 

observational data with continuous outcomes as shown by Hill [51]. Specifically, BART has 

the advantage that only one model needs to be fit, as opposed to traditional propensity score 

analysis which requires separate models for treatment assignment and outcome. BART was 

more accurate than propensity score matching, weighting or regression adjustment when the 
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scenario was non-linear; and competitive with propensity scores when the scenario was 

linear [51]. We believe that BART’s causal inference advantage over propensity scores is 

likely to be found in dichotomous and survival outcomes as well.

BART can be computationally demanding. This situation is aggravated in our case by 

expanding the data at a grid of event times. Luckily, BART, and MCMC in general, are 

considered to be “embarrassingly” parallel [52] since the chains do not share information 

besides the data itself, i.e., you can simultaneously perform calculations on m chains for a 

roughly linear (in m) improvement of processing time.

The computational burden can also be mitigated by coarsening the time scale, effectively 

changing its resolution (say from days to weeks). This induces more ties, reducing the 

number of distinct times used in constructing the grid. This is helpful particularly for large 

data sets, where the number of distinct times would be otherwise unwieldy. We are currently 

investigating alternative models which will not require such coarsening of the time 

measurement.

Finally, in the supplementary material, we provide an introduction to an ancillary R package 

that we have developed called survbart which is freely available online at http://survbart.r-

forge.r-project.org. survbart includes R functions to prepare data (Section 2.1), to recover 

the survival function (Section 2.2) from the MCMC output produced by BayesTree [40] and 

to facilitate running BART in parallel on multiple cores. We also include R code illustrating 

an analysis of a publicly available data set.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
An example of a single tree with branch decision rules and terminal nodes
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Figure 2. 
Dot plots of coverage probability, bias and root mean squared error for all 30 simulation 

settings for one-sample (left panel) and two-sample (right panel) studies. Each dot 

constructed from 400 simulated data sets.
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Figure 3. 
Survival settings with proportional (PH) and non-proportional hazards (nPH) models
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Figure 4. 
Box plots of bias and RMSE for all 512 configurations averaged over 400 simulated data 

sets, for PH (left) and nPH (right) models. Horizontal axes markings indicate the percentile 

of the overall survival at which probabilities were estimated, followed by the estimation 

method: B for BART, C for Cox regression.
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Figure 5. 
Plots of BART estimated survival probabilities vs true probabilities for the model with 

highly nonlinear relationship with covariates.
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Figure 6. 
Left Panel: Partial Dependence Survival functions for 3 different conditioning regimens 

(Flu=Fludarabine, Bu=Busulfan, Cy=Cyclophosphamide, Mel=Melphalan); Right Panel: 

Median survival by age and graft type (BM= Bone Marrow, PB=Peripheral Blood)
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Figure 7. 
Forest plot of the difference in 3 year survival between MMF(Mycophenalate Mofitol) and 

MTX(Methotrexate), separately by disease/stage (AML=Acute Myelogenous Leukemia, 

MDS=Myelodysplastic Syndrome, NHL=Non-Hodgkin’s Lymphoma, CR=Complete 

Remission, PIF=Primary Induction Failure, REL=Relapse, RA=Refractory Anemia, 

RAR=RA with Ringed Sideroblasts, RAEB=RA with Excess Blasts, RAEBT=RAEB in 

Transmission) and graft type (PB=Peripheral Blood, BM=Bone Marrow). Negative values 

indicate MMF has worse outcomes.
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