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Abstract

 Purpose—Statistical shape analysis of anatomical structures plays an important role in many 

medical image analysis applications such as understanding the structural changes in anatomy in 

various stages of growth or disease. Establishing accurate correspondence across object 

populations is essential for such statistical shape analysis studies.

 Methods—In this paper, we present an entropy-based correspondence framework for 

computing point-based correspondence among populations of surfaces in a groupwise manner. 

This robust framework is parameterization-free and computationally efficient. We review the core 

principles of this method as well as various extensions to deal effectively with surfaces of complex 

geometry and application-driven correspondence metrics.

 Results—We apply our method to synthetic and biological datasets to illustrate the concepts 

proposed and compare the performance of our framework to existing techniques.

 Conclusions—Through the numerous extensions and variations presented here, we create a 

very flexible framework that can effectively handle objects of various topologies, multi-object 

complexes, open surfaces, and objects of complex geometry such as high-curvature regions or 

extremely thin features.
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 Introduction

The variability of anatomical structures among individuals is large within populations. This 

variability makes it necessary to use statistical modeling techniques to study shape 

similarities and to assess deviations from the healthy range of variation. For instance, 

studying the local cortical thickness measurements is a common tool in neuroimaging. 

Similarly, morphological phenotyping is of great value in gene-targeting studies. Variability 

captured by statistical shape models is often used by segmentation algorithms. These 

examples demonstrate the importance of statistical modeling of anatomical objects for 

medical image analysis.

The construction of such statistical models requires the ability to compute local shape 

differences among similar objects, which introduces the problem of finding corresponding 

points across the population, which can be interpreted as a form of registration between the 

surfaces.

Consistent computation of corresponding points on 3D anatomical surfaces is a difficult 

task, since manually choosing landmark points not only is cumbersome, but also does not 

yield a satisfyingly dense correspondence map. It should also be noted that no generic 

“ground truth” definition of dense correspondence exists across different anatomical 

surfaces. The choice of particular correspondence metric must, therefore, be flexible and 

application-driven. The lack of a “ground truth” also makes it difficult to evaluate 

correspondence algorithms. While expert-placed manual landmarks can be created for each 

new application, a more generic evaluation strategy relies on assessing characteristics of the 

shape model implied by the correspondence method. For instance, principal components 

analysis (PCA) can be used for assessing the number of major modes of variation discovered 

in the shape space, and the “leak” into smaller modes. Similarly, Davies [1] proposes using 

the compactness, generalization, and specificity properties of the shape model.

In this manuscript, we present a review of the entropy-based particle correspondence 

methods previously only shown in conference proceedings [2–12]. This is a very flexible 

framework for finding corresponding points on populations of surfaces. This method, based 

on the concept of entropy on sets of dynamic particles moving freely on surfaces, allows for 

efficient and robust computation of correspondence across ensembles of shapes. This 

framework can be extended in many ways to deal with challenging geometries and the 

particular needs of a given application.

We begin by providing a summary of existing correspondence algorithms. These techniques 

fall in two main categories: Pairwise correspondence methods establish the correspondence 

between each object and an atlas; given a population of objects, the correspondence follows 

by transitivity. Groupwise methods, on the other hand, consider the entire population at once 

to capture the variability in the population. Pairwise methods, unlike groupwise approaches, 

fail to incorporate information from the entire population and treat each surface separately, 

which can lead to suboptimal correspondence results for the purposes of population-based 

shape analysis [2,13]. In both approaches, the correspondence computation is typically 

formulated as an optimization problem with an objective function, which involves a 
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similarity measure between the objects and often incorporates regularization terms. Some 

methods, such as FreeSurfer [14] and BrainVoyager [15], are particularly tailored to the 

human cortex and are not applicable to other domains.

We note that shape analysis can be done on a global scale, e.g., by comparing a shape index 

computed per object. Correspondence methods allow moving from such a global scale to the 

local scale.

 Pairwise correspondence

Pairwise correspondence methods aim to optimize the correspondence between each object 

in a population and either an atlas or one of the objects in the population chosen as template. 

Surface-based methods typically lend more weight to geometrical properties of the objects, 

whereas volume-based methods focus on image intensities.

 Surface-based pairwise correspondence

 Parameter space optimization: In most surface-based schemes, correspondence is 

defined through a parameterization of both objects, such that points in each object with the 

same parameter space coordinates correspond (e.g., [14–16]). Thus, it is necessary to map 

each object to a standard parameter space. The parameter spaces of different objects are then 

aligned based on the minimization of an objective function that reflects the mismatch.

The spherical harmonics (SPHARM) description [17] is commonly used as a 

parameterization-based correspondence scheme (e.g., [18]). A continuous one-to-one 

mapping from each surface to the unit sphere is computed. The correspondence is 

established by rotating the parameter meshes such that the axes of their first-order spherical 

harmonics, which are ellipsoidal, coincide with the coordinate axes in the parameter space. 

Comparisons between objects with significant shape variability become problematic, 

because the SPHARM method does not have a proper means of optimizing shape similarity 

but rather focuses on parameterization quality. An additional limitation of such 

parameterization-based methods is that they are restricted to objects of a given topology 

(e.g., spherical in this case).

Meier and Fisher [16] extend the original SPHARM correspondence by proposing to warp 

the parameter space to optimize the correspondence between the two objects instead of 

relying on the first-order ellipsoid alignment. The objective function is a similarity metric 

based on Euclidean distances, normal directions, and shape index. Other examples include 

software packages such as FreeSurfer [14] and BrainVoyager [15], which define similarity 

metrics based on the similarity of sulcal depth and curvature, respectively.

 Other surface-based pairwise correspondence methods: Many other methods were 

proposed to address the correspondence problem. Tosun and Prince [19] propose to use a 

partially inflated cortical surface in order to capture only the geometry of the most 

prominent anatomical features to allow meaningful comparison among different individuals. 

The alignment is based on two curvature-related measures; a multi-spectral optical flow 

algorithm is used to warp the subject cortical surface into the atlas. Wang et al. [20] propose 

using geodesic interpolation of a sparse set of corresponding points.
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 Volume-based pairwise correspondence—A fundamentally different approach to 

shape analysis that does not rely on explicit correspondences exists, via the registration of an 

image volume to an atlas. Talairach [21] registration procedure is a classical volume-based 

correspondence method for the human brain. Many popular software packages such as SPM 

and FSL adopt more sophisticated volumetric registration approaches. A full discussion of 

volumetric registration is beyond the current scope; we refer interested readers to an 

excellent evaluation by Klein et al. [22].

 Groupwise correspondence

Several lines of research [23–25] in the early 1990s have investigated shape from the point 

of view of correspondence.

 Determinant of the covariance matrix—Kotcheff and Taylor [26] propose to 

automatically find correspondence points by optimizing an objective function that leads to 

compact and specific models. They optimize via a genetic algorithm the determinant of the 

covariance matrix of the landmark locations, specifically:

(1)

where K′ is given by , W is the centered data matrix, δ is the variance of the 

Gaussian noise model, n is the number of objects in the population, and I is the identity 

matrix. This method leads to better correspondence than some of the earlier pairwise 

algorithms. However, as Davies et al. [27] later pointed out, the choice of the objective 

function is not clearly justified and solely based on intuition.

 Minimum description length—The MDL method [1] is an information theoretic 

approach. The main idea is that the simplest description of a population is the best; 

simplicity is measured in terms of the length of the code to transmit the data and the model 

parameters. This leads to an objective function comprised of two terms, description length of 

model parameters, which aims to minimize the model complexity, and encoded data, which 

aims to ensure the quality of the fit between the model and the data. Several extensions have 

been proposed, e.g., regarding gradient descent optimization [28], shape images for efficient 

optimization [29], extension to medial object representations [30], inclusion of arbitrary 

local features [31] or only geometrical features [32], use of manual landmarks [33], and 

optimal landmark distributions [34].

MDL implementations currently rely on parameterizations, which must be obtained through 

a preprocessing stage. This is a computationally expensive step at best and becomes further 

complicated for 3D surfaces of non-spherical topology (e.g., [35]). Furthermore, MDL 

optimization itself is a slow process due to the reparameterization step in the algorithm.

Styner et al. [36] describe an empirical study which shows that ensemble-based statistics 

improve correspondences relative to pure geometrical regularization and that MDL 

performance is virtually the same as that of min log |Σ +α I | (where Σ is the covariance 
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matrix of the sample positions and α I introduces a lower bound α to its eigenvalues). This 

last observation is consistent with the well-known result from information theory: MDL is, 

in general, equivalent to minimum entropy [37].

We proposed [4,6] a system exploring this property. This entropy-based algorithm provides a 

nonparameterized, topology-independent, and computationally efficient framework suitable 

for correspondence optimization on anatomical surfaces. It also is very flexible and can be 

extended in many ways to suit the application domain. The remainder of this paper will be 

focused on this groupwise surface-based correspondence approach and will review its 

variants.

 Methods

The entropy-based correspondence method uses a point-based surface sampling to optimize 

surface correspondence in a groupwise manner. Each sample, named particle, is assigned a 

number; particles that have the same number define the correspondence across the 

population. The optimization consists of moving the particles along the surfaces in the 

direction of the gradient of an energy functional that strikes a balance between an even 

sampling of each surface (characterized by surface entropy) and a high spatial similarity of 

the corresponding samples across the population (ensemble entropy).

 Surface entropy

In this work, as presented in [6], a surface  ⊂ ℝD is sampled using a discrete set of N 
surface points, Z = (X1, X2, …, XN). These points, called particles, are considered to be 

random variables drawn from a probability density function (PDF), p(X). A particle set is 

represented by z = (x1, x2, …, xN), where xi ∈ . The probability of a realization x is p(X = 

x), denoted p(x).

A nonparametric Parzen windowing method is used to estimate p(xi) such that

(2)

where G(d(xi, xj), σi) represents a D-dimensional isotropic Gaussian with standard deviation 

σi. The value for σi is computed using Newton–Raphson method such that ∂p(xi, σi)/∂σi = 0. 

d(xi, xj) is the distance between xi and xj ; Euclidean distance is used in the following.

The amount of information contained in such a random sampling is the differential entropy 

of the PDF in the limit, which is H [X ] = – ∫S p(x) log p(x)dx = – E {log p(X)}, where E {·} 

denotes expected value. The cost function C is the negative of this expected value, which can 

be approximated by the sample mean. The optimization problem is given by:

(3)
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(4)

This can be interpreted as the particles moving away from each other under a repulsive force 

while constrained to lie on the surface. The motion of each particle is away from all of the 

other particles, but the forces are weighted by a Gaussian function of interparticle distance. 

Therefore, interactions are local for sufficiently small σ.

We use an implicit representation of the surface via the zero-set of a signed distance function 

F (x). After each iteration, the particles are projected to the closest root of F [38].

 Ensemble entropy

An ensemble ℰ is a collection of M surfaces each with their own set of particles, i.e., ℰ = z1, 

…, zM. The ordering of the particles on each shape implies correspondence among shapes. 

The entire population can be represented in a matrix of particle positions  with particle 

positions along the rows and shapes across the columns. We model [4] zk ∈ ℝNd as an 

instance of a random variable Z, and we minimize the combined ensemble and shape cost 

function

(5)

which favors a compact ensemble representation balanced against a uniform (or adaptive) 

distribution of particles on each surface. Generalized Procrustes alignment without scaling is 

used for aligning the samples during the optimization.

Given the low number of examples relative to the dimensionality of the space (N > M), some 

conditions must be imposed to estimate the density. We assume a normal distribution and 

model the distribution of Z parametrically using a Gaussian with covariance Σ. The 

ensemble entropy can therefore be expressed as

(6)

where λj are the eigenvalues of Σ. Let Y = P – P̄, where P̄ is a matrix with all columns set to 

the mean shape μ. The covariance can then be estimated from the data, with Σ = (1/(M – 
1))YYT. Thus, the cost function G associated with the ensemble entropy is defined as:
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(7)

In practice, Σ will not have full rank, and the entropy is thus not finite. It is therefore 

necessary to regularize the problem with a diagonal matrix α I to introduce a lower bound on 

the eigenvalues. Starting with a large α and incrementally reducing it using an exponential 

decay model yield an annealing approach which improves computational efficiency; this has 

the effect of preventing the system from attempting to reduce the thinnest dimensions of the 

ensemble distribution too early in the process.

 Initialization

For initializing the particle positions, we propose a simple splitting scheme [6] (Fig. 1), 

which is adequate for most datasets.

The initialization may also be jump-started by providing a small set of particles. For 

example, the surfaces may be subdivided into anatomical regions and a particle may be 

created at the center of gravity of each subregion. For example, a 98-region lobar 

parcellation provides an adequate initialization for the cortex [39]. If a rough 

correspondence is already known, this may also be provided as an initialization. For 

example, to align cortical surfaces, we extract the sulcal curves and align these in a pairwise 

manner to initialize the entropy-based correspondence in [11].

 Extension to features: generalized ensemble entropy

As suggested by Styner et al. [31], incorporating local features into the similarity metric may 

better mimic the intuitive notion of correspondence and may improve correspondence 

quality as compared to approaches that only use spatial proximity. Candidates for features 

may range from the geometrical, such as curvature, to application-specific measurements 

such as white matter connectivity measures in the brain [7] or proximity to blood vessels and 

other neighboring organs.

The entropy-based particle framework lends itself nicely to this generalized correspondence 

definition [2,7]. The ensemble entropy term is modified to reflect the similarity of the local 

features instead of the spatial locations. The features are represented as a function of 

location, , with f: ℝd → ℝq. The function f is vector-valued (with vector dimension q) 

allowing multiple features to be used at once. The surface entropy term remains unchanged, 

since it is still desirable to sample the surfaces uniformly.

When computing the ensemble entropy of vector-valued functions of the correspondence 

positions P, the generalized case can be represented by . Ỹ becomes a matrix of the 

function values at the particle points minus the means of those functions at the points. We 

note that the particle positions can still be encoded in the Ỹ matrix, as position can be 

viewed as a function value. The general cost function becomes
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(8)

All feature channels may be forced to have a variance of 1, giving them equal weight in the 

optimization; alternatively, they may be scaled differently if the application warrants 

assigning a heavier weight to some of the features.

 Dealing with complex geometry

 Correspondence on open surfaces—To compute correspondence on open surfaces, 

we proposed [9] an extension to the sampling method by defining the boundary as the 

intersection of the surface S with a set of geometrical primitives, such as cutting planes and 

spheres (Fig. 2), and by introducing virtual particle distributions along these primitives near 

S. This allows minimizing the influence of the position of these constraints on the statistical 

shape model.

 Multi-object complexes—Joint analysis of complexes of multiple surfaces is often of 

interest. The particle-based correspondence method outlined above can be directly applied to 

multi-object complexes by treating all of the objects in the complex as one. However, if the 

objects themselves have distinct identities (i.e., object-level correspondence is known), we 

can assign each particle to a specific object [8], decouple the spatial interactions between 

particles on different shapes, and constrain each particle to its associated object. The shape-

space statistics remain coupled, and Σ includes all particle positions across the entire 

complex, so that optimization takes place on the joint model.

 Adaptive sampling—The original particle formulation computes Euclidean distances 

between particles rather than the geodesic distances on the surface. Thus, a sufficiently 

dense sampling is assumed so that nearby particles lie in the tangent planes of the zero sets 

of the implicit surface. In highly curved surfaces, the distribution of particles may be 

affected by neighbors that are outside of the true manifold neighborhood. Sampling high-

curvature regions more densely can be desirable to ensure the validity of the assumption that 

tangent planes vary smoothly between neighboring particles. Such an adaptive sampling 

strategy can be achieved by modifying Eq. 2 [6].

 Using geodesic distances for surface sampling—For highly curved surfaces such 

as the human cortex, even a strong degree of adaptivity does not produce a sampling dense 

enough that nearby particles can be assumed to lie on the local tangent planes, unless a very 

high number of particles are used, which would be undesirable due to computational cost. 

Additionally, there may be regions where even dense sampling may not be enough to prevent 

interaction between particles in geodesically distant regions due to the folding pattern (Fig. 

3).

One way to overcome this problem is to inflate the cortical surface prior to optimizing 

correspondence [2,7]. The particles therefore live in the tangent planes of the inflated 
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surface; they are only pulled back to the original cortical surface for correspondence 

evaluation purposes.

A more direct way to resolve the problem of highly curved surfaces is to use geodesic 

distances between particles rather than Euclidean distance. However, geodesic distances are 

not generally computable in closed form, and it would thus be extremely expensive to 

compute a very large number of inter-particle distances at every iteration of the 

correspondence optimization. However, as demonstrated in [3], it is possible to precompute 

all pairwise distances on a fine 3D mesh representation of the surface using GPU-based 

algorithms and interpolate to the particle locations during the optimization process. An 

interesting variation on this approach is using the geodesic distances to given landmarks as a 

feature in the generalized ensemble entropy formulation [12].

The notions of adaptive sampling and geodesic distances are closely intertwined when 

highly curved objects are considered. In Fig. 3, using only geodesic distances may result in 

no particles being placed in the fold containing C. Using adaptive sampling but not geodesic 

distances will clearly result in inappropriate neighborhood relations. Both techniques are 

needed for a satisfactory solution in this scenario.

 Normal consistency—In high-curvature regions, corresponding particles should 

typically have similar normal directions. A simple way to enforce this would be to use the 

generalized entropy described in “Extension to features: generalized ensemble entropy” 

section with a normal-related feature, such as the inner product of the normal direction with 

a given vector. A more general solution is to add an intershape normal-consistency term to 

the objective function defined in Eq. 5 to disambiguate correspondences near highly curved 

regions [3].

 Regression

Shape regression is an emerging tool with the goal of estimating the continuous shape 

evolution from a set of observed shapes and corresponding underlying variables, such as 

time of the observation. Clearly, it is useful to have shape models that can tease apart those 

aspects of shape variability that are explained by the underlying variables and those that are 

not. As we proposed in [9], this can be achieved in our framework by minimizing the 

entropy of the residual ∈̂ from a regression model rather than the residual ∈ from an average 

in the Gaussian distribution model.

 Results

In this section, we present a selection of applications demonstrating the strengths of the 

entropy-based particle system. We start by synthetic examples and present increasingly 

complex structures to illustrate how the various extensions discussed in this paper can be 

used together to tackle difficult correspondence problems. Specifically, we start with the 

standard application of the basic model to spherical and non-spherical surfaces and then add 

geodesic distances and normal consistency for highly curved objects. Next, we present a 

series of biological datasets where we show how multi-object complexes are handled, how a 

typical statistical shape analysis study can be conducted, and how the regression model is 
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applied. Finally, we show why the generalized entropy with user-defined features is 

necessary.

In the absence of a “gold standard” in the form of explicit, dense manual landmarks, we 

evaluate the correspondence quality indirectly via the quality of the implied shape model. In 

particular, for synthetic datasets, we use PCA for assessing the number of major modes of 

variation discovered in the shape space and the “leak” into smaller modes, and compare 

these to the “ground truth” based on the parameters used for generating the dataset. For real 

datasets, we use the variance of independent features (features independent from those used 

for correspondence optimization) with the underlying assumption that compact models are 

better representations of the shape population.

 Box with a bump

We begin with a simple experiment on closed curves in a 2D plane and a comparison with 

the 2D open-source MAT-LAB MDL implementation given by Thodberg [40]. For this 

experiment, we study a population of 24 box-bump shapes, each consisting of cubic b-

splines with the same rectangle of control points but with a bump added at a random location 

along the top edge. One hundred particles and the original formulation (i.e., Eq. 5) were 

used for the entropy algorithm [4]. Both MDL and the particle method successfully 

identified the single mode of variation, but with different degrees of leakage into orthogonal 

modes. In particular, MDL lost 0.34 % of the total variation from the single mode, while the 

particle method lost only 0.0015 %. Figure 4 illustrates the two different models. This 

experiment illustrates our indirect correspondence evaluation strategy, which is based on 

evaluating the quality of the shape model implied by the correspondence results. Shapes 

from the particle method remain more faithful to those described by the original training set, 

even out to three standard deviations where the Thodberg MDL description breaks down.

Two key features of the entropy-based particle system may explain its superior performance 

compared to MDL in this experiment, despite their similar objective functions. First, the 

particle formulation allows for a more effective optimization via gradient descent, which 

may result in the avoidance of certain local minima and better convergence. This argument is 

also supported by the findings of Ericsson and Lstrom [41]. Second, the addition of the 

surface entropy term forces a more thorough coverage of each surface in the population. 

Many correspondence algorithms, including MDL, often have the problem of avoiding 

“trouble zones,” meaning that the samples are placed away from regions of high curvature, 

or places where a surface may differ from others in the population. While this effectively 

leads to a smaller value of the objective function, it is not the desired behavior since such 

regions are particularly important for capturing the variability in the population. The surface 

entropy term in our proposed method alleviates this problem by favoring a thorough 

coverage of each surface.

 Tori

The next synthetic example illustrates the seamless application of the entropy-based particle 

system to surfaces of non-spherical topology. For this purpose, we have applied our method 

to a set of randomly generated tori from a 2D distribution, based on the small radius r and 
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the large radius R [4]. The sample tori were chosen from a distribution with mean r = 1, R = 

2 and variation σr = 0.15, σR = 0.3, and the constraint r < R was enforced. Figure 5 shows 

the particle system distribution across two samples from this population, using N = 250 

particles/surface. The PCA shows that the particle system successfully recovered the two 

modes of variation, with only 0.08 % leakage into smaller nodes. We note that while the 

explicit correspondences between the surfaces are only readily available via the individual 

particles sharing the same index across the population (the particle index is color-coded in 

Fig. 5), it is possible to obtain a continuous warp between surfaces by interpolating between 

the particles, using a method such as thin-plate splines.

 Coffee beans

To illustrate a high-curvature situation, we created a synthetic population of ten “coffee 

beans” [3], each consisting of a large ellipsoid with a smaller ellipsoid slot carved out. The 

slot’s position and scale were randomly chosen from a uniform distribution. When we apply 

the original formulation (Eq. 5) of the entropy-based algorithm (Fig. 6, right), we observe 

that the high-curvature regions near the slot are poorly recovered. When we add the normal-

consistency term and switch to using geodesic distances rather than Euclidean distances, the 

correspondence results are improved and the high-curvature area is effectively handled (Fig. 

6, left). For both scenarios, 1024 particles were used. Both methods identified two dominant 

modes of variation, but with significantly different amount of leakage into smaller modes (4 

vs. 16 %).

 Complex of ten subcortical structures

The first biological dataset consisted of ten subcortical brain structures (Fig. 7) semi-

automatically segmented from MRI scans of 15 autism subjects and ten controls (all male, 2 

years old) [8]. Multi-object correspondences were computed to produce a combined model 

of the groups. Euclidean distances (rather than geodesic) were used in this experiment, since 

the geometry of each structure was relatively simple. We sampled each complex of 

segmentations with 10,240 correspondence points, using 1024 particles per structure. For 

comparison, we also computed models for each of the ten structures separately and 

concatenated their correspondences together to form a marginally optimized joint model. 

While both methods lead to significant group differences (p = 0.0087 with eight PCA modes 

for joint model and p = 0.0480 with six PCA modes for marginal model), we note that the 

result is an order of magnitude higher in statistical power with the multi-object algorithm. 

This suggests that the implied shape model captures the underlying shape space better, 

making this approach more appropriate for shape analysis studies. To illustrate the 

morphological differences that are driving the global shape result, we visualize in Fig. 7 the 

linear discriminant vector between the two populations. This experiment suggests that the 

proposed algorithm can be used to effectively model group differences between clinical 

populations in multi-object complexes.

 Head shape regression

The next experiment illustrates the use of the regression model and provides further 

examples of open surfaces and multi-object complexes [9]. The dataset includes 40 T1w 

MRI scans (neonate to 5 years old) in a study of growth of head and brain shape; the head, 
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cerebellum, and left and right cerebral hemispheres were segmented. The particle 

correspondence algorithm is applied with regression against age. Figure 8 shows the changes 

in head shape with age.

 Human cortical surface

The final experiment illustrates employing features to improve correspondence using DTI 

and structural MRI scans of nine healthy adults. Cortical surfaces were reconstructed via 

FreeSurfer. We compare three methods of correspondence computation: FreeSurfer, the 

original entropy correspondence (Eq. 5), and the generalized entropy method (“Extension to 

features: generalized ensemble entropy” section). For the latter, we use probabilistic 

connectivity measurements [7] to the corpus callosum, the brainstem and the caudate, with 

seed segmentations provided by FreeSurfer. We use sulcal depth as an additional feature. 

These features as well as the inflation process are illustrated in Fig. 9.

The generalized method is expected to produce improved correspondence over regions 

strongly identifiable by features, and smaller improvement in other regions where no 

relevant additional local information is provided. The goal here is to illustrate how cortical 

correspondence can be locally improved by using relevant data. In particular, since we 

observed fiber connections to the temporal lobe from both the corpus callosum and the 

caudate, we expect improved correspondence in this region.

As summarized in Table 1, FreeSurfer yields a much tighter sulcal depth distribution than 

the entropy-based method, which is to be expected as this is a biased evaluation metric. 

However, entropy-based methods yield tighter cortical thickness distribution overall. We 

particularly note that the temporal lobe has above-average cortical thickness variability for 

the FreeSurfer and XYZ-entropy methods, identifying it as a potential “problem area.” The 

addition of local connectivity features brings down the temporal cortical thickness variability 

to below-average level, demonstrating the impact of the local features.

 Discussion and future work

This paper presents a review of the entropy-based particle correspondence methods 

previously only shown in conference proceedings. Through numerous extensions and 

variations, we create a very flexible, groupwise, parameterization-free, and computationally 

efficient framework that can effectively handle objects of various topologies and/or with 

complex geometry. Concurrently, this framework allows the correspondence definition to be 

based on sample positions, geometrical features such as normal direction or curvature, or 

any user-specified local feature.

Better correspondence identification is of paramount importance for shape analysis. The 

proposed groupwise algorithm allows the robust construction of statistical shape models by 

capturing the inherent variability in populations. Such statistical models are clinically 

relevant for both providing insight into the natural distribution of a given population, e.g., by 

enabling identification of subphenotypes, and for quantifying where a particular subject may 

fall within that distribution, making it possible to assess deviations from the healthy/

“normal” range. Variability captured by statistical shape models is often also used by 
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segmentation algorithms. The flexibility of our framework to handle a wide range of 

surfaces boosts its relevance for studies, as illustrated on head shapes, subcortical surfaces, 

and the cortical surface.

The idea of balancing a good sampling of the surfaces with a compact population 

description can be further extended in a multitude of ways. A weighting factor α can be 

introduced to Eq. 5:

Then, the trade-off between the similarity term and the regularization term can be explicitly 

manipulated, or the regularization term can be made into a hard constraint by choosing an 

arbitrarily large value for α.

Additionally, one can choose to optimize the correspondence to fixed locations on a given 

template (perhaps an atlas with expert annotations) or multiple objects with fixed particle 

configurations, which would be useful for comparing two sets of objects. Similarly, one may 

wish to keep a subset of fixed particles on each surface to allow for landmark selection. 

These as well as a more sophisticated approach to vector-valued features remain as future 

work.

A potential shortcoming of this method, as of all surface-based correspondence methods, is 

that the inside of the objects is not taken into consideration. For example, it could be argued 

that subcortical structures should play a role in determining cortical correspondence. In such 

applications, a volumetric approach may be more suitable. The proposed framework can also 

be extended [10] to allow the particles to navigate in full 3D space rather than being 

restricted to the 2D manifold of the surface.

Because our approach does not use a parameterization, there is no explicit control over the 

“ordering” of the particles. In other words, the particles may “flip” in theory. In practice, this 

is strongly discouraged by the surface entropy. To flip, two particles would have to move 

either toward each other, which is discouraged by the repelling forces from each other, or 

“around” each other, which is discouraged by the repelling forces from the neighboring 

particles. However, flipping may nevertheless occur, if the surface sampling is inadequate 

(no nearby neighbors to interfere), the timestep is too large, or if the attractiveness of the 

flipped configuration outweighs the surface entropy term.

An implicit assumption is that each particle location has a corresponding particle in every 

other object in the population. This assumption may fail if the variation in the population 

includes addition or removal of structural components, e.g., a tumor. Other correspondence 

methods typically deal with this issue implicitly, by not enforcing complete coverage of the 

surface such that “problem areas” can be avoided. However, this approach also leads to 

incomplete representation of the surfaces, allowing structures with high variability to be 

ignored (even if these structures are always present throughout the population). Additionally, 

it fails to capture the correspondence when it exists: If a structure exists in half of the 
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population, the correspondence in that half may be important to know. An alternative would 

be to relax the surface entropy by allowing particles to not have correspondences in each 

subject. This would lead to trivial minima of the objective function, where no particle has 

any corresponding particles; an additional regularization term would likely be necessary to 

prevent this.

An open-source implementation of the entropy-based particle correspondence algorithm and 

its various extensions discussed in the manuscript is publicly available through the NITRC 

website.1
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Fig. 1. 
Initialization scheme based on recursive splitting
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Fig. 2. 
Geometrical primitives such as the spheres and the plane define the open surface boundaries

Oguz et al. Page 18

Int J Comput Assist Radiol Surg. Author manuscript; available in PMC 2017 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Spatial proximity can be a false indicator of correspondence. Point A is closer to C than to 

. However, intuitively A should correspond to B rather than to C, as C is 

located on the opposite bank of the sulcus. A’s position is replicated on the right brain for 

ease of comparison
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Fig. 4. 
“Box with a bump” experiment. The original formulation of the particle correspondence 

algorithm, shown in top row, captures the shape variation
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Fig. 5. 
Particle correspondence between synthetically generated tori. Corresponding particles 

between the two shapes have matching colors
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Fig. 6. 
“Coffee bean” experiment. Top first PCA mode; bottom, second PCA mode. Using normal 

penalty and geodesic distances (left) significantly improves the results in the high-curvature 

areas that are troublesome for the original formulation of the particle correspondence 

algorithm (right)
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Fig. 7. 
Mean brain structure complexes with average pose as reconstructed from the Euclidean 

averages of the correspondence points. The length in the surface normal direction of each of 

the pointwise discriminant vector components for the autism data is given by the colormap. 

Yellow indicates a negative (inward) direction, and blue indicates a positive (outward) 

direction. Each structure is displayed in its mean orientation, position, and scale in the global 

coordinate frame
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Fig. 8. 
Changes in head shape as a function of log(age in months). Corresponding particles are 

shown

Oguz et al. Page 24

Int J Comput Assist Radiol Surg. Author manuscript; available in PMC 2017 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 9. 
The sulcal depth (SD) and connectivity features on a select subset of subjects. Sulcal depth 

is defined as the length of the path traveled by each vertex during the inflation process. The 

connectivity features are computed via a probabilistic connectivity algorithm and projected 

to the cortical surface
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Table 1

Average and standard deviation of cortical thickness and sulcal depth (SD) measurement variances across the 

whole cortical surface and across the temporal lobe, given different correspondence maps

Sulcal depth Cortical thickness Cortical thickness in temporal lobe

FreeSurfer 0.039 (0.003) 0.312 (0.010) 0.343 (0.04)

XYZ entropy 0.109 (0.003) 0.262 (0.006) 0.275 (0.01)

Connectivity + XYZ + SD entropy 0.108 (0.003) 0.260 (0.006) 0.259 (0.01)
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