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Abstract In this age of intensive industrialization and
urbanization, mankind’s highest concern should be to
analyze the effect of all metals accumulating in the envi-
ronment, both those considered toxic and trace elements.
With this aim in mind, a unique study was conducted to
determine the potentially negative impact of Sn**, Co*",
and Mo”" in optimal and increased doses on soil biolog-
ical properties. These metals were applied in the form of
aqueous solutions of Sn?" (SnCl,"2H,0), Co**
(CoCl, - 6H,0), and Mo™>* (MoCls), each in the doses
of 0, 25, 50, 100, 200, 400, and 800 mg kgf1 soil DM.
The activity of dehydrogenases, urease, acid phospha-
tase, alkaline phosphatase, arylsulfatase, and catalase and
the counts of twelve microorganism groups were deter-
mined on the 25th and 50th day of experiment duration.
Moreover, to present the studied problem comprehen-
sively, changes in the biochemical activity and yield of
spring barley were shown using soil and plant resistance
indices—RS. The study shows that Sn*", Co®", and
Mo”" disturb the state of soil homeostasis. Co>" and
Mo”" proved the greatest soil biological activity inhibi-
tors. The residence of these metals in soil, particularly
Co*", also generated a drastic decrease in the value of
spring barley resistance. Only Sn** did not disrupt its
yielding. The studied enzymes can be arranged as fol-
lows for their sensitivity to Sn**, Co**, Mo>":
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Introduction

In recent years, the attention of researchers has been
focused mainly on heavy metals considered most harm-
ful to the environment. These include, among others,
Cd, Hg, Cr, Pb, and Cu (Wyszkowska et al. 2013;
Zaborowska et al. 2015a). However, researchers have
also increasingly focused on the contamination of soils
with trace elements (Islam et al. 2015). This has its
justification in that a common feature of all metals,
regardless of their negative impact, is the fact that none
of them biodegrade; they are characterized by a long
biological half-life and show the potential to accumulate
inside living organisms (Behbahaninia et al. 2009;
Madrid et al. 2008). The side effects of their accumula-
tion in the soil environment are therefore a problem
which should be taken up and brought up for discussion,
particularly in this age of dramatic industrialization and
urbanization to meet the growing requirements of the
human population.

Co*" belongs to a group of transition metals. It most
often assumes the +2, +3, and less often a +1 oxidation
state. Only the *°Co isotope, representing 100 % of the
isotopic composition of natural Co?", is stable. It is a
component of the following minerals: erythrite
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[Co3(As0,4), 8H,0], glaucodot [(Co, Fe)AsS], and
skutterudite (CoAs;) (Albanese et al. 2015; Shedd
2013). In Europe, the Mediterranean Basin countries
are characterized by a higher Co®" content than
Northern Europe. This phenomenon is closely related
to ophiolitic rocks (mafic and ultramafic) (Albanese
et al. 2015). Contamination of soils with Co”" is mainly
caused by mining and smelting activity, fertilizer use,
and sewage sludge spreading (Hamilton 2000). The
production of liquid catalysts used in refineries is
a source of environmental pollution with both
Co** and Mo>" (Lewis et al. 2012). In soil, this
metal is closely correlated with Mn, Fe, and Al
(Sterckeman et al. 2006). The bioavailability of
Co®" and, thus, its toxicity is also affected by the
physicochemical properties of the soil environment
such as structure, organic matter, pH, and
complexing compounds (Luo 2010). Exposure to
increased amounts of Co®' in soil causes side
effects both among soil microorganisms (Lock
et al. 2006) and plants (Chatterjee and Chatterjee
2003). The response to an excess of Co®" in a
plant is heightened activity of superoxide dismut-
ase (SOD), an enzyme responsible for O,
dismutation and an increase in iron sequestration
and ferritin synthesis (Tewari et al. 2002). Co*"
plays a quite important role in the human body
because it is the central atom of cobalamin, a
coenzyme precursor, whose deficiency causes ane-
mia (Paustenbach et al. 2013). Nevertheless, its
genotoxic properties were also discovered, which
should be taken into account in the overall Co*"
assessment (Kirkland et al. 2015).

The average Sn>" content of the Earth’s crust is
estimated at 2.5 mg kg '. This metal is a component
of cassiterite (SnO,), stannite (Cu,FeSnS,), teallite
(PbSnS,), and montesite (PbSnySs) (Pendias and
Pendias 2001). In 2012, the world Sn*" production
amounted to 230 Mg (metric tons). The main leaders
were China, Indonesia, Peru, and Bolivia (USDI 2013).
Because Sn*" is a component of nuclear waste, includ-
ing #*°U fission products, where the half-life of '*°Sn is
10° years and of '*'Sn 55.5 years (National Research
Council 1983), the effects of soil Sn**" mobility
should be examined. Organotin compounds (OTC)
which are part of fungicides, insecticides, bacteri-
cides, wood preservatives, and PVC stabilizers
pose a potential threat to the environment (Hoch
2001). The inorganic tin forms are less toxic, but
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the effects of their soil presence are also less
known (Marcic et al. 2006). Tendencies have been
observed for the affinity of Sn®" mobility to the
soil size fraction and its organic matter content
(Sterckeman et al. 2006). Due to its low soil
solubility, Sn*" translocation and uptake by plants
is minimal, but increases with decreasing pH
(Nakamaru and Uchida 2008).

Mo’", as a trace element, is necessary in the environ-
ment in small amounts. The sources of excessive Mo”"
emission to the environment are mining; biosolids; fer-
tilizers; the production of alloys, catalysts, and coal; and
petroleum combustion (Mcgrath et al. 2010; Buekers
et al. 2010). It occurs in the soil in the form of an
oxyanion, in aluminosilicates and organic matter
(Pyrzyfska 2007). In the soil environment, the Mo"
amount is correlated with the presence of Fe, Al, and
organic carbon content (Sterckemann et al. 2006), while
with Cu®", they are antagonists (Pyrzynska 2007). In
acidic soils, the dominant, soluble Mo>" form is the
anion MoO,4>". In neutral and alkaline medium, Mo>"
forms mobile anionic complex compounds (Buekers
et al. 2010). The biological role of Mo®" is based on
co-forming the pterin complex (a Mo cofactor), binding
with enzymes participating in nitrogen (nitrate re-
ductase) and sulfur (sulfite oxidase) metabolism,
purine catabolism, and hormone biosynthesis.
Over 50 enzymes of bacterial origin containing
Mo’" have been identified (Mendel and Bittner
2006). Nevertheless, both a deficiency and exces-
sive exposure to this metal can cause abnormalities
in the functioning of living organisms and, thus,
ecosystems (Mcgrath et al. 2010), although accord-
ing to Das et al. (2007), its direct effect on the
metabolic processes of microorganisms is relatively
low. An increased content of this element can
possibly reduce nitrogen fixation.

Soil condition is closely related to microorgan-
ism activity and is considered a reliable indicator
of the impact of environmental stress on soil
(Epelde et al. 2008). Since the effects and range
caused by contamination of soils with Sn**, Co®",
and Mo have not yet been widely studied, de-
termining the biological activity of a soil environ-
ment subjected to the pressure of this group of
metals seems a necessary step in a strategy to
assess the scale of the problem related to Sn*",
Co**, and Mo>" accumulation or question the jus-
tifiability of the formulated hypothesis.
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Materials and Methods
Experimental. Soil sampling and samples preparation

The study object was soil material from the Didactic and
Experimental Center in Tomaszkowo. The area desig-
nated for research purposes, including protective belts,
occupies around 4.5 ha. Soil with a granulometric com-
position of loamy sand (fraction of sand is 75 %, silt—
17 %, clay—8 %) determined according to the US
Department of Agriculture’s particle size distribution
classification was collected from the arable-humus ho-
rizon of typical brown soils (Eutric Cambisol). The
studied soil is characterized by the following properties:
pH w 1 mol KCI dm*—6.3, Coe kg ' dm of soil—6.4,
hydrolytic acidity (HAC)—8.4 mmol ™ per kilogram of
soil, sum of exchangeable bases (TEB) Ca*", Mg2+, K,
and Na"™—84 mmol™ per kilogram of soil, cation ex-
change capacity (CEC)—92.40 mmol™ per kilogram of
soil, and base saturation (BS)—90.91 %. The next stage
of the experiment was conducted in the greenhouse of
the University of Warmia and Mazury in Olsztyn (NE
Poland) based on a pot test, replicated five times.

The effect of the following variable factors was
assessed: (1) the type of the heavy metals used: Sn*"
(SnCl, - 2H,0), Co*" (CoCl, - 6H,0), and Mo>"
(MoCls); (2) the degree of soil contamination with
Sn**, Co*", and Mo®" in milligrams per kilogram soil
DM: 0, 25, 50, 100, 200, 400, and 800; and (3) test
duration: 25 and 50 days. An analysis of the impact of
the three metals on the yield of spring barley cv. Rabel
was also performed.

Before conducting the experiment, the soil material
was prepared by contaminating it with the individual
heavy metals and adding NPKMg fertilizers. After
mixing the soil in a polyethylene vessel and packing it
in pots (3.5 dm®), in the amount of 3.2 kg per pot, the
soil moisture in all the objects was brought to the level
of 60 % of capillary water capacity. One level of

Table 1 Determined soil enzymes

fertilization with macro- and microelements was used
and was expressed on an elemental basis in milligrams
per kilogram soil: N—250 [CO(NH,),], P—50
(KH,PO,4), K—90 (KH,PO,), Mg—20 (MgSO, -
7H,0), Cu—>5 (CuSOy - 5H,0), Zn—>5 (ZnCl,), Mo—
5 (NaMoOy, - 2H,0), Mn—5 (MnCl, - 4H,0), and oraz
B—0.33 (H3BO;).

The vegetation of spring barley cv. Rabel was con-
ducted for 50 days. Fifteen plants were left in each pot
after seedling. The plant dry matter yield was deter-
mined after spring barley harvest at stage (according to
the BBCH scale) 52—heading (20 % of inflorescence
emerged).

Microbiological and biochemical analysis

In each soil sample, the activity of the enzymes
dehydrogenases, catalase, urease, acid phosphatase,
and alkaline phosphatase were determined in three
replications, according to the methods given in
Tables 1 and 2. Soil biochemical activity, except
for catalase, was established using a Perkin-Elmer
Lambda 25 spectrophotometer (MA, USA). The
analyses of soil were performed after 25 and 50 days
of the experiment.

On days 25 and 50 of the experiment, the soil sam-
ples were tested for the number of twelve microorgan-
ism groups: cellulolytic bacteria, ammonification bacte-
ria, nitrogen-immobilizing bacteria, Arthrobacter sp.,
Azotobacter sp., and Pseudomonas sp. on a medium
described by Wyszkowska et. al. (2008),
Actinobacteria—on the medium developed by Kiister
and Williams with the addition of nystatin and actidione
(Parkinson et al. 1971), fungi—on Martin medium
(1950), and copiotrophic bacteria, copiotrophic spore-
forming bacteria, oligotrophic bacteria, and oligotrophic
spore-forming bacteria on Onta and Hattori (1983) me-
dium. The number of microorganisms was determined
with a colony counter.

No. Enzyme Substrate

Unit References

B oW =

Dehydrogenases (EC 1.1)

Catalase (EC 1.11.1.6)

Urease (EC 3.5.1.5)

Acid phosphatase (EC 3.1.3.2)
alkaline phosphatase (EC 3.1.3.1)

Arylsulphatase (EC 3.1.6.1)

2,3,5-triphenyl tetrazolium chloride
H,0,—aqueous solution
Urea—aqueous solution
Disodium—4-nitrophenylphosphate
hexahydrate
Potassium-4-nitrophenyl-sulfate

Ohlinger (1996)
Alef and Nannpieri (1998)

Triphenyl formazan (umol kg ' dm of soil h™")

0, (mol kg™ dm of soil h™")
N-NH, (mmol kg™" dm of soil h™")

p-nitrophenol (mmol kg™ dm of soil h™")
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Table 2 Activity enzymes in soil contaminated of Sn**, Co®*, and Mo>" (for average values of the research time) (kg' DM soil h™ ')

Dose heavy metals (mg kg ") Deh Ure Pac Pal Cat Aryl
pumol TFF mmol N-NHy mmol PNP mmol PNP mol O, mmol PNP
Sn2+
0 9.254+0.063 1.050 +0.020 2.245+0.066 2.195+0.017 0.275+0.008 0.236+0.008
25 8.572+0.070 0.954+0.024 2.116 +0.060 2.161+0.009 0.274+0.013 0.215+0.000
50 8.442+0.083 0.911£0.016 2.088+0.017 2.118+0.017 0.273 +0.008 0.204 £ 0.000
100 8.011+0.044 0.923+£0.024 2.032+0.024 2.095+0.026 0.271+£0.010 0.204 +0.000
200 7.405+0.125 0.882+0.026 2.008 +£0.023 1.970+0.017 0.266+0.013 0.174+0.000
400 6.549+0.081 0.800+0.022 2.042+0.032 1.912+0.017 0.259+0.012 0.177+0.000
800 5.579+0.072 0.648+0.038 1.991 £0.000 1.803 +£0.009 0.249+0.010 0.166 +0.000
Average 7.687 0.881 2.074 2.036 0.267 0.194
r —0.938 —0.872 —0.584 —0.850 —0.854 —0.868
Co?t
0 8.551+0.128 1.040+0.037 2.263+0.087 2.202+0.009 0.276 £0.007 0.235+0.000
25 6.714+0.158 0.911£0.019 2.061+0.079 1.964+0.032 0.266+0.011 0.207 £0.000
50 4.836+0.078 0.832+0.033 2.032+0.023 1.755+0.000 0.251+0.011 0.191+0.000
100 2.971+0.167 0.765+0.019 1.941+£0.036 1.769+0.018 0.239+£0.007 0.183+£0.000
200 2.102+£0.042 0.628 +0.021 1.921£0.067 1.573+£0.033 0.200+0.009 0.169 +0.000
400 2.138+0.014 0.649+£0.014 1.799 +£0.027 1.476+£0.027 0.200+0.009 0.168 +£0.000
800 1.940+0.023 0.309+0.019 1.760+0.018 1.370+0.027 0.194+0.011 0.155+0.000
Average 4.179 0.733 1.968 1.730 0.232 0.187
r -0.677 -0.902 -0.752 =-0.791 -0.797 —-0.735
MoS*
0 8.720+0.187 1.016+£0.023 2.218+0.065 2.208+0.026 0.272+£0.008 0.252+£0.008
25 7.708 £0.059 0.885+0.009 2.126+0.025 2.189+0.039 0.243 £0.009 0.239+£0.000
50 6.599+0.034 0.640+0.025 2.025 +0.040 2.090+0.018 0.241+0.008 0.206 +0.000
100 6.170£0.082 0.654+0.012 1.894 +0.024 2.078+£0.018 0.226+£0.012 0.170£0.000
200 5.075+0.054 0.605+0.012 1.778 £0.015 2.004+0.018 0.223+£0.013 0.167+0.000
400 3.467+0.084 0.527+0.016 1.540+0.039 1.707 £0.009 0.211+0.009 0.141 £0.000
800 1.681+0.081 0.152+0.010 1.463+0.033 1.386+0.028 0.195+0.010 0.087+0.000
Average 5.631 0.640 1.863 1.952 0.230 0.180
r -0.929 —0.888 —0.892 —0.988 —0.811 -0.915
LSDy 05 a—0.654 a—0.016 a—0.032 a—0.015 a—0.007 a—0.161
b—0.043 b—0.010 b—0.021 b—0.010 b—0.005 b—0.105
a,b—0.113 a, b—0.028 a, b—0.055 a, b—0.026 a,b—0.013 a, b—0.279

a dose of heavy metal, b kind of heavy metal, Deh dehydrogenases, Ure urease, Pac acid phosphatase, Pal alkaline phosphatase, Cat

catalase, Aryl arylsuphatase

Calculations and statistical analysis

The activity of soil enzymes and spring barley yield
were used to determine soil and plants resistance (RS)
to Sn", Co*", and Mo>" contamination. Calculations
were made with a formula proposed by Orwin and
Wardle (2004):

2| Do|

RS = 1-— 1 —_
CO + |DO|

where: Dy—difference between control soil (Cy) and
contaminated soil after 25 days of incubation (o). The
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values of RS remain in the range of 0 to 1, where 1
indicates strong soil resistance, i.e., negligible effects of
external factors. The lower the resistance, the stronger
the impact of a given factor on the soil environment.
The results were processed statistically using
Statistica 10.0 software (StatSoft, Inc. 2012).
Homogeneous groups were calculated by Tukey’s test,
at p=0.01. Pearson’s simple correlation coefficients
between increasing Sn*', Co*", and Mo’" doses and
the activity of individual enzymes were also determined.
The effect of the time of soil residence of the tested
metals on its biochemical activity was illustrated using
principal component analysis (PCA). The reaction of
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microorganisms to soil contamination with Sn2+, C02+,
and Mo " was analyzed using a clustering method
(Ward’s method dendrogram). The percentage of varia-
tion for all analyzed variables (1) was determined with
the analysis of variance (ANOVA).

Results and discussion

A significant inhibitory impact of all the used metals on
soil biological properties was noted in the conducted
study. This thesis can be substantiated by high values of
the n? coefficient. The major factor modifying the con-
dition of the soil subjected to the pressure of Sn**, Co*",
and Mo>" to the highest degree was the dose (54.25 %)
and, to a lower degree, the xenobiotic type (11.7 %). The
reaction of microorganisms to individual metals was
similar (Fig. 1a—c). This was illustrated in cluster anal-
ysis diagrams by Ward’s method. Two separate clusters
consisting of several subclusters with homogeneous
variances were formed by the following: ammonifying,
nitrogen-immobilizing, copiotrophic bacteria and
Actinobacteria (the first cluster) and Arthrobacter sp.,
Azotobacter sp., Pseudomonas sp., oligotrophic bacte-
ria, oligotrophic spore-forming bacteria, cellulolytic
bacteria, fungi, and copiotrophic spore-forming bacteria
(the second cluster). The obtained tendencies are puz-
zling because Pseudomonas sp., due to its ability to
produce exopolysaccharide (EPS) responsible for
biosorption or bioaccumulation, acquires features of
resistance to heavy metals (Kilic and Donmez 2008).
On the other hand, genus Azotobacter bacteria, which
were located within the same cluster, are considered
some of most sensitive to this group of xenobiotics
(Borowik et al. 2014). Wang et al. (2010) suggest that
gram-positive bacteria are more susceptible to contam-
ination with heavy metals than gram-negative bacteria.
In their toxicity ranking, Co®" took the place:
Cr>Pb> As>Co>Zn>Cd> Cu. Root exudates accu-
mulating in the barley rhizosphere, including: glucose,
glutamic acid, citric acid, and oxalic acid (Renella et al.
2006), which are not neutral for microbiological activity
and diversity, could also prove a factor moderating the
reactions of individual microorganism groups.

Based on an analysis of changes in soil bio-
chemical properties, it can be clearly stated that
regardless of the type of applied metal, dehydroge-
nases, and urease are the most sensitive enzymes
(Table 1). In the objects with 800 mg Sn**, Co*",
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Fig. 1 Similarity of microbial reaction to contamination of soil
with a Sn**, b Co**, and ¢ Mo>". Am ammonifying bacteria, Im
nitrogen-immobilizing bacteria, Act Actinobacteria, Cop
copiotrophic bacteria, Cop.s spore-forming copiotrophic bacteria,
Az Azotobacter sp., Art. Arthrobacter sp., Ps. Pseudomonas sp.,
Olig oligotrophic bacteria, Olig.s spore-forming oligotrophic bac-
teria, Cel cellulolytic bacteria, Fun fungi
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and Mo”" per kilogram soil, their activity de-
creased, respectively, by: 39.71 and 38.28 %,
77.37 and 70.28 %, and 80.72 and 85.04 % com-
pared to control samples. Taking into account the
sensitivity of individual enzymes to the tested
metals, they can be arranged as follows: for Sn*",
Deh > Ure > Aryl > Pal > Pac > Cat; for Co*",
Deh > Ure > Pal > Aryl > Cat > Pac; and for Mo,
Ure > Deh > Aryl > Pac > Cat > Pal. Each metal
showed varied toxicity. Based on own research,
Co®" can be considered the strongest inhibitor of
biochemical properties. Under its pressure, enzy-
matic activity was inhibited, on average, by
25.24 %. Mo ranked second (24.00 %) and Sn**
third (11.42 %).

A PCA analysis including the time of soil Sn*",
Co*", and Mo residence revealed detailed relation-
ships important in the study (Figs. 2 and 3). Both
after 25 and 50 days of the experiment, the distribu-
tion of vectors around the axis representing the first
principal component describing 70.83 and 87.72 %
of the total data variance, respectively, indicates that
regardless of heavy metal type, the activity of all the
enzymes was positively correlated with this variable.
Arylsulfatase activity was of the greatest importance
only in the objects incubated for 25 days, for the
second principal component defining 15.25 %. The
distances between cases and the values of their co-
ordinates indicate a negative effect of both Co®" and
Mo’" in doses above 200 mg metal per kilogram soil
DM (Fig. 2). After 50 days of study duration, a

Fig. 2 Enzyme activity in soil -

higher toxic impact of Co®>" was manifested—from
the dose of 100 mg Co*" per kilogram soil DM, and
for Mo " after the application of 400 and 800 mg
Mo’" per kilogram soil DM (Fig. 3). Soil contami-
nation with Sn®" did not significantly disturb its
biochemical properties in either of these objects.

The problem of soil stability, besides microbio-
logical and biochemical indicators, defines its qual-
ity in a broader spectrum (Griffiths and Phillipot
2013). Therefore, the soil resistance index (RS)
dealing with this phenomenon was calculated in
the study (Table 3). After the application of 25 mg
Sn**, Co**, and Mo’" per kilogram soil DM, the
lowest resistance values were noted in the case of
Sn*" and Mo”" for urease and Co”" for dehydroge-
nases. The RS index also highlighted the interrela-
tionship between deepening soil homeostasis distur-
bance and increasing the inhibition power of the
tested heavy metals. The soil balance was disturbed
most severely by Co”", followed by Mo>" and Sn**,
reducing the resistance of all the enzymes, on aver-
age, by 32.35, 30.48, and 11.47 % compared to the
samples with the lowest dose of the metals.

Many researchers share the view that a decrease
in the enzymatic activity of soils is a manifestation
of abiotic stress caused by accumulated heavy
metals in excessive amounts (Kucharski et al.
2011; Wyszkowska et al. 2013; Zaborowska et al.
2015b; Xian et al. 2015). Dehydrogenases are con-
sidered the most sensitive parameters used to assess
the effects of soil environment contamination (Gil-

contaminated with Sn**, Co>",
and Mo’" after 25 days of
experiments—PCA method.
Vectors represent the analyzed
variables. Deh dehydrogenases, 1
Ure urease, Pal alkaline

phosphatase, Pac acid 21
phosphatase, Cat catalase. Dose
Sn**, Co**, and Mo®" mg kg '

DM soil: 0 (cases 1, 8, 15), 25 (2,
9, 16), 50 (3, 10, 17), 100 (4, 11,
18), 200 (5, 12, 19), 400 (6, 13,
20), and 800 (7, 14, 21). Cases 1—
7 with Sn*", 8-14 with Co®", and -1
15-21 with Mo®"

Factor 2: 15.25%

@ Springer

0 1
1
An
° 14
° 20 19 Pal
12 ® . v Cat
(] s —>__0
13 8 e ——
198 4 10Meh
L]
°e .e 8¢l Pac Ure
5 ®
s
1
5 -4 -3 -2 -1 0 1 2 3 4 5

Factor 1: 70.83%



Environ Monit Assess (2016) 188: 398 Page 7 0f 10 398

Fig. 3 Enzyme activity in soil 2'1 0 ! ;

contaminated with Sn**, Co>",

Mo’ after 50 days of

experiments—PCA method.

Vectors represent the analyzed

variables. Deh dehydrogenases, 1 R 19 2

Ure urease, Pal alkaline Pal s .

phosphatase, Pac acid .

phosphatase, Cat catalase. Dose é D 21

Sn**, Co*, and Mo®" mg kg ! M URNN o

DM soil: 0 (cases 1, 8, 15), 25 (2, P W 13 "

9,16), 50 (3, 10, 17), 100 (4, 11, 2 Ar/ ! : .

18), 200 (5, 12, 19), 400 (6, 13, 12

20), and 800 (7, 14, 21). Cases 1— Pac v

7 with Sn*, 8-14 with Co**, and -1 10

15-21 with Mo>* )

2 -1
-5 -3 -2 -1 0 1 2 3 4 5
Factor 1: 87.72%

Table 3 Indicators of enzymes resistance (RS) to soil contamination with Sn2+, C02+, and Mo>" after 50 days of the research

Dose heavy metals (mg kg ") Deh Ure Pac Pal Cat Aryl

Sn2+
25 0.863% 0.763* 0.905 0.952% 0.958% 0.772°
50 0.823° 0.752* 0.860%°4 0.8534¢ 0.992° 0.780°
100 0.811° 0.742° 0.756°% 0.865% 0.992° 0.784°
200 0.717° 0.762* 0.792%04 0.874 0.877° 0.631°
400 0.511f 0.758" 0.798%0 0.770f 0.832° 0.651°
800 0.406° 0.355° 0.783% 0.6248 0.827° 0.503¢
average 0.688 0.689 0.816 0.823 0.913 0.687
r -0.964" -0.883" -0.478 -0.959" -0.833" -0.933"

C02+
25 0.654¢ 0.753* 0.888% 0.800" 0.915%° 0.781°
50 0.353¢ 0.500¢ 0.8507¢d 0.556" 0.840° 0.610°
100 0.193" 0.536% 0.774¢ 0.576%" 0.706¢ 0.507¢
200 0.114! 0.526%¢ 0.743¢% 0.552" 0.593¢f 0.496¢
400 0.1111 0.469¢ 0.593°" 0.499' 0.601°" 0.491¢
800 0.1111 0.191" 0.588°" 0.435 0.554" 0.385°
average 0.256 0.496 0.739 0.570 0.702 0.545
r -0.618 —0.884" -0.895" -0.727" -0.781" -0.775"

M05+
25 0.893% 0.659™ 0.961° 0.989* 0.838° 0.920°
50 0.5974% 0.565°4 0.937% 0.924° 0.833¢ 0.619°
100 0.591° 0.617° 0.760°% 0.913b° 0.680% 0.504¢
200 0.487" 0.570°4 0.7059%f 0.813°f 0.660% 0.4849
400 0.202" 0.323° 0.543F 0.589¢" 0.556" 0.370°
800 0.150" 0.032¢ 0.548" 0.3941 0.534" 0.199¢
average 0.486 0.461 0.742 0.770 0.683 0.516
r —-0.870" -0.984" -0.839" -0.983" ~0.849" -0.842"

The same superscripted letters in the columns indicate homogeneous groups; n=17

r correlation coefficient, Deh dehydrogenases, Ure urease, Pac acid phosphatase, Pal alkaline phosphatase, Cat catalase, Aryl arylsuphatase

" significant for p=0.01
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Sotres et al. 2005). In the toxicity series (EDs) for
dehydrogenases, Co?" was placed as follows: Hg
(2 mg)>Cu (35 mg)>Cr®" (71 mg)>Cr*”*
(75 mg)>Cd*" (90 mg)>Ni*" (100 mg)>Zn*"
(115 mg)>As>" (168 mg)>Co*" (582 mg)>Pb*"
(652 mg kg™ ") (Welp 1999). Although catalase be-
longs to the same class of oxidoreductases, it reacted
extremely differently to the pressure caused by Sn*",
Co*", and Mo’. Wyszkowska et al. (2009) also ob-
served that this enzyme succumbed to the pressure
of heavy metals, but not as negatively as dehydro-
genases. Similar to the authors’ own research,
arylsulfatase sensitivity to this group of xenobiotics
was similar to acid phosphatase and alkaline phos-
phatase (Wyszkowska et al. 2010). It is supposed
that low arylsulfatase activity values were not nec-
essarily generated only by high doses of the metals.
Knauff et al. (2003) claim that this could be caused
by the release of H' protons from barley roots,
which reduces its activity, decreasing soil pH.
Tabatabai (1977) stresses that Sn?*, Co?*, and
Mo®" all have an inhibitory effect on urease activity.
The author proposed the following series of di-
valent ions as inhibitors of this enzyme:
Ag*" >Hg?" > Cu*" > Cd*" > Zn*" > Sn*" > Mn*".
An attempt to explain the relationship between the
time of soil residence of tested metals and decreas-
ing values of microbiological indicators was made
by Moreno et al. (2003). They claim that this may
be related to the narrowing of the pool of substrates
available to microorganisms.

The xenobiotics introduced into the soil, except for
Sn**, also contributed to a drastic growth inhibition of
the cultivated plant (Fig. 4). Characteristic symptoms
of the disturbances in the biological mechanisms of
spring barley, as the effects of stress related to soil
contamination with the discussed metals, were also
root system deformation and leaf chlorosis. Only
Sn*", regardless of the metal dose, generated high
spring barley RS values, oscillating between 0.908
and 0.983. Unquestionably, Co*" proved most toxic
which, even in the amount of 100 mg kg ' soil DM,
decreased this plant’s resistance sixfold compared to
the objects with 25 mg Co”" per kilogram soil DM,
reducing its value almost to zero (0.076). An inhibi-
tory effect was also observed for Mo>", particularly in
its higher doses, above 200 mg Mo>" per kilogram
soil DM. The response to Mo>" toxicity was also
observed by McGrath et al. (2010), who found that
Mo uptake by plants was closely correlated with
soil pH and the antidote consisted of the competition
between S** and Mo”". In the presence of S** in soil,
the absorption of this metal by a plant and, as a
consequence, its inhibitory effect decreases. The re-
sults of own research correspond to those obtained by
Li et al. (2009). Co®" in an amount from 53.6 mg to
91 mg kg ' soil DM, depending on soil type, caused
50 % spring barley growth inhibition. Mico et al.
(2008) indicate that after the application of 45 mg
Co*" per kilogram soil DM the barley yield disap-
pears. This metal mainly accumulates in plant roots
(Lotfy and Mostafa 2014).

Fig.4 Index ofresistance (RS) of
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Conclusions

The study results indicate that trace elements present in
excess in soil are able to disturb its homeostasis. They
verify both soil microbiological diversity and biochem-
ical activity. After optimal amounts are exceeded, inhi-
bition of its biological activity and, as a consequence,
reduced plant yields can be expected.

Co”" proved the most toxic. It generated not only
very low enzyme activity and resistance values but also
contributed to a drastic spring barley yield reduction.
Mo>", although it is an element participating in nitrogen
and sulfur metabolism and is part of bacterial enzymes
in increased amounts (similar to Co"), became an im-
portant inhibitor of the activity of dehydrogenases and
urease. Soil reaction to an excess of Sn*" was also
negative, but the scale of the problem was not as
alarming. The grown plant reacted exceptionally posi-
tively to its increased soil doses. Spring barley resistance
did not undergo significant changes.

To conclude, this experiment is an important link in a
series of studies on the awareness of the quality of the
environment in which we function. It reveals the exis-
tence of side effects to the contamination of soils with
trace elements caused by the growing push towards an
increased standard of living and consumerism.
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