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Neurons Driven by Fixational Eye Movements

X James M. McFarland,1 Bruce G. Cumming,2 and X Daniel A. Butts1

1Department of Biology and Program in Neuroscience and Cognitive Science, University of Maryland, College Park, Maryland 20815, and 2Laboratory of
Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892

The ability to distinguish between elements of a sensory neuron’s activity that are stimulus independent versus driven by the stimulus is
critical for addressing many questions in systems neuroscience. This is typically accomplished by measuring neural responses to re-
peated presentations of identical stimuli and identifying the trial-variable components of the response as noise. In awake primates,
however, small “fixational” eye movements (FEMs) introduce uncontrolled trial-to-trial differences in the visual stimulus itself, poten-
tially confounding this distinction. Here, we describe novel analytical methods that directly quantify the stimulus-driven and stimulus-
independent components of visual neuron responses in the presence of FEMs. We apply this approach, combined with precise
model-based eye tracking, to recordings from primary visual cortex (V1), finding that standard approaches that ignore FEMs typically
miss more than half of the stimulus-driven neural response variance, creating substantial biases in measures of response reliability. We
show that these effects are likely not isolated to the particular experimental conditions used here, such as the choice of visual stimulus or
spike measurement time window, and thus will be a more general problem for V1 recordings in awake primates. We also demonstrate that
measurements of the stimulus-driven and stimulus-independent correlations among pairs of V1 neurons can be greatly biased by FEMs.
These results thus illustrate the potentially dramatic impact of FEMs on measures of signal and noise in visual neuron activity and also
demonstrate a novel approach for controlling for these eye-movement-induced effects.
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Introduction
Understanding which aspects of a sensory neuron’s activity rep-
resent features of the stimulus and which constitute “noise” with
respect to the stimulus is central to many fundamental questions

in systems neuroscience. In particular, measures of neuronal
variability are required for determining how reliably sensory neu-
rons encode stimuli, and understanding how such variability is
correlated across populations of neurons has important implica-
tions for theories of neural coding (Tolhurst et al., 1983; Shadlen
and Newsome, 1998; Abbott and Dayan, 1999; Averbeck et al.,
2006). Furthermore, determining how experimental manipula-
tions, as well as changes in internal state (e.g., attention, arousal),
affect sensory coding generally depends on the ability to accu-
rately measure the components of neural activity that are reliably
driven by the stimulus.

Measurements of the “signal” and “noise” components of a
neuron’s response typically rely on making repeated presenta-
tions of a set of stimuli. The across-trial average response (peri-
stimulus time histogram, PSTH) captures the component of the
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Significance Statement

Distinguishing between the signal and noise in a sensory neuron’s activity is typically accomplished by measuring neural re-
sponses to repeated presentations of an identical stimulus. For recordings from the visual cortex of awake animals, small “fixa-
tional” eye movements (FEMs) inevitably introduce trial-to-trial variability in the visual stimulus, potentially confounding such
measures. Here, we show that FEMs often have a dramatic impact on several important measures of response variability for
neurons in primary visual cortex. We also present an analytical approach for quantifying signal and noise in visual neuron activity
in the presence of FEMs. These results thus highlight the importance of controlling for FEMs in studies of visual neuron function,
and demonstrate novel methods for doing so.
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neuron’s activity driven by the stimulus, whereas across-trial
variability reflects the stimulus-independent component, typi-
cally treated as noise. In the visual cortex of awake animals, how-
ever, such measurements can be confounded by the presence of
fixational eye movements (FEMs), which are composed of rapid
jumps known as microsaccades and slower fixational drift
(Martinez-Conde et al., 2004). Therefore, even for animals that
are well trained to maintain precise fixation, FEMs will generate
uncontrolled trial-to-trial variability in the visual stimulus on the
retina. Because the receptive fields (RFs) of neurons in primary
visual cortex (V1) are fixed in retinotopic coordinates (Gur and
Snodderly, 1987, 1997), the responses of V1 neurons will exhibit
additional trial-to-trial variability reflecting variation in the po-
sition of the stimulus on the retina. Indeed, previous studies have
shown that measurements of V1 response reliability in awake
animals can be greatly biased by FEMs (Gur and Snodderly, 1987,
1997, 2006).

In general, however, few studies have attempted to address
this issue, largely because of technical limitations in measuring an
animal’s eye position with sufficient accuracy to track FEMs dur-
ing electrophysiological recordings. In particular, standard eye-
tracking hardware (such as scleral search coils and video trackers)
typically have accuracies of �0.1° (Read and Cumming, 2003;
Kimmel et al., 2012; McFarland et al., 2014), which is approxi-
mately the magnitude of the FEMs themselves. Furthermore,
even with accurate measurements of eye position, without the
ability to present the same stimulus over many trials, distinguish-
ing between stimulus-driven and stimulus-independent re-
sponse variability remains a challenging problem. Therefore, for
the most part, the effects of FEMs remain overlooked, presum-
ably under the assumption that they are small, at least for neurons
with RFs outside of the high-resolution central portion of the
visual field (the fovea).

Here, we address this issue using several analytical innova-
tions. First, we overcome the limited accuracy of conventional
eye-tracking approaches by using a recently developed method
for inferring an animal’s eye position from the recorded activity
of populations of V1 neurons (McFarland et al., 2014). Second,
we develop general analytical methods for quantifying stimulus-
driven and stimulus-independent components of V1 activity in
the presence of measured FEMs. Importantly, our approach
makes minimal assumptions about the stimulus tuning of V1
neurons or the structure of noise in their spiking activity (Ama-
rasingham et al., 2015).

Applying this combination of analytical methods, we find that
FEMs typically have large, and in many cases quite dramatic, effects.
On average, about half of the stimulus-driven response variance of
parafoveal V1 neurons (i.e., those recorded in typical experiments) is
missed by the across-trial averages (PSTHs). This stimulus-driven
component is misattributed to “noise,” inflating measures of re-
sponse variability such as the Fano factor (FF). We also describe a
simple theoretical framework demonstrating that the effects we ob-
serve are not specific to the visual stimulus used in our study and are
likely to remain substantial across a wide range of commonly used
visual stimuli, as well as when measuring spiking responses over
much larger time windows. Finally, we apply our method to quantify
the effects of FEMs on estimates of correlations between pairs of
simultaneously recorded V1 neurons. We find that FEM-induced
biases lead to overestimates of the magnitude of stimulus-
independent correlations and thus will distort typical measurements
of “signal” and “noise” correlations.

Materials and Methods
Electrophysiology. Multielectrode recordings were made from V1 of two
awake, head-restrained male rhesus macaques (Macaca mulatta; 13–15
years old) trained to fixate for fluid reward. A head-restraining post,
recording chamber, and scleral search coils were implanted under gen-
eral anesthesia and sterile conditions (Read and Cumming, 2003).
A custom microdrive was used to introduce linear electrode arrays
(U-probe or V-probe; Plexon; 24 contacts, 50 �m spacing) on each re-
cording day. Eye position was monitored continuously using scleral
search coils and sampled at 600 Hz. Stimuli were displayed on cathode
ray tube monitors (100 Hz refresh rate; 1280 � 1024 resolution) subten-
ding 24.3° � 19.3° of visual angle and viewed through a mirror haplo-
scope. All protocols were approved by the Institutional Animal Care and
Use Committee and complied with Public Health Service policy on the
humane care and use of laboratory animals.

Broadband extracellular signals were sampled continuously at 40 kHz
and stored to disk. Spikes were detected using a voltage threshold applied
to the high-pass-filtered signals (low cutoff frequency of 100 Hz).
Thresholds were initially set to yield an event rate of 50 Hz and were
subsequently lowered if needed to capture any putative single-unit spik-
ing. Spike sorting was performed offline using custom software. Briefly,
spike clusters were modeled using Gaussian mixture distributions that
were based on several different spike features, including principal com-
ponents, voltage samples, and template scores. The features providing
the best cluster separation were used to cluster single units. Cluster
quality was quantified using a variety of measures including “L-ratio,”
“isolation distance” (Schmitzer-Torbert et al., 2005), and a variant of
“D-prime.” Only spike clusters that were well isolated using these mea-
sures— confirmed by visual inspection—were used for analysis. We ver-
ified that our results were not sensitive to cluster isolation criteria.

Behavioral task and visual stimuli. During recordings, the animals per-
formed a simple fixation task in which they were required to maintain
gaze within a small window (between 1° and 1.4° wide) around a fixation
target to obtain a liquid reward after each completed 4 s trial. A “ternary
bar noise” stimulus consisting of random patterns of black, white, and
gray bars (gray matching the mean luminance of the screen) was used.
Bars stretched the length of the monitor and spanned a region from 1.2°
to 6° wide, centered on the neurons’ RFs. The width of individual bars
ranged from 0.038° to 0.1°, depending on the RF sizes of the recorded
neurons. Bar patterns were displayed at 100 Hz and were uncorrelated in
space and time. The probability of a given bar being nongray (i.e., black
or white) was set to provide either a sparse luminance distribution (88%
gray) or a dense distribution (33% gray), yielding similar results in both
cases. The orientation of the bars was chosen to correspond to the pre-
ferred orientation of the majority of units recorded in a given session. In
cases in which the neurons did not have a consistent preferred orienta-
tion, we performed recordings using two orthogonal bar orientations.

For most trials, the stimulus consisted of a unique sequence of bar
patterns. A subset of “repeat” trials in which identical “frozen noise”
sequences were presented was interleaved randomly. Either one or two
unique frozen noise sequences (each spanning the entire 4 s trial) were
presented between 26 and 414 total repeat trials (average, 233 trials; n �
22 recording sessions) in each experiment.

In some experiments (for purposes of a separate study), the fixation
target made periodic jumps (3– 4° amplitude) parallel to the orientation
of the bar stimuli, requiring the animal to make “guided saccades” to
maintain fixation on the target (McFarland et al., 2015). Furthermore, in
some trials, histogram-equalized natural images (van Hateren and van
der Schaaf, 1998) were displayed in the background. The animals’ overall
fixation accuracy was slightly higher in the “guided saccade” trials (me-
dian difference in eye position SD: 3%; p � 0.055; Wilcoxon signed-rank
test; n � 8 experiments), as well as when there was an image background
(median difference: 15%; p � 0.0078; n � 8). Because these differences
were small, we pooled together these conditions for all analyses. Note
that, in both cases, fixation accuracy tended to be lower during the basic
“fixation with gray background” condition so our reported effects of
FEMs would be larger if we isolated our analyses to only those trials.
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Criteria for data selection. The first 200 ms and last 50 ms of each trial
were excluded from analysis to minimize the impact of onset transients
and fixation breaks. Only single units that had an average firing rate of at
least 5 spikes/s during repeat trials, and for which the neuron was isolated
for at least 25 repeat trials, were used. Similarly, for analysis of covariance,
only pairs of neurons that were simultaneously isolated for at least 25
repeat trials were included. For neurons that were recorded with multiple
stimulus orientations, the stimulus orientation that provided the better
stimulus-processing model (larger log-likelihood improvement relative
to the null model) was used. The results were verified as being robust to
the precise choices of these selection criteria.

Estimation of stimulus-processing models. A recently developed model-
ing framework was used to describe each neuron’s stimulus processing as
a second-order linear-nonlinear cascade (LNLN) (Butts et al., 2011; Park
and Pillow, 2011; Vintch et al., 2012; McFarland et al., 2013) following
the approach described in detail previously (McFarland et al., 2013).
Specifically, a neuron’s predicted spike rate r(t) is given by a sum over LN
subunits, followed by a spiking nonlinearity function:

r�t� � F� �
j

wj fj�kjs�t��� � F �g�t�� (M1)

where g(t) is the “generating signal,” s(t) is the retinal stimulus at time t
(with relevant history “time-delay-embedded”), the kj are a set of stim-
ulus filters, with corresponding static nonlinearities fj(.), the wj are coef-
ficients that determine whether each input is excitatory or inhibitory
(constrained to be 	 1), and F[.] is the spiking nonlinearity function. A
spiking nonlinearity of the following form was used:

F� x; �,�,�� � �log�1 � e�� x
� �� (M2)

Assuming that the neuron’s spike counts Robs(t) are described by a con-
ditionally inhomogeneous Poisson count process, the log-likelihood LL
of the model is given by:

LL � �
t

�Robs�t�log�r�t�� � r�t�� � C (M3)

where C is independent of the predicted rate r(t) and is thus unaffected by
changes in model parameters. Estimation of model parameters is accom-
plished by direct maximization of the LL (McFarland et al., 2013).

Although the set of functions fj(.) can be inferred from the data
(McFarland et al., 2013), in this case, the fj(.) were limited to linear and
squared functions, which represent a quadratic approximation of the
neuron’s stimulus–response function that provides a robust description
of the stimulus processing of V1 simple and complex cells (Park and
Pillow, 2011; McFarland et al., 2013).

To determine the number of excitatory and inhibitory quadratic sub-
units, a sequence of such models was fitted with increasing numbers of
subunits. We stopped adding subunits when the cross-validated model
LL (using a randomly selected subset of 20% of trials for cross-validation)
no longer improved, allowing up to a maximum of four excitatory and
four inhibitory “squared” subunits in addition to the linear filter. Note
that the repeat trials were not used for estimating parameters of the
stimulus-processing models.

To mitigate the possibility of overfitting, spatiotemporal smoothness
and sparseness regularization were incorporated when estimating the
stimulus filters. The magnitude of the smoothness regularization penalty
for each unit was selected automatically by searching a grid spanning four
orders of magnitude and selecting the value that provided the largest
cross-validated LL (using the same 20% of cross-validation trials). In
addition, a separate sparseness regularization parameter, which was set
by hand, was also used. Details regarding stimulus filter regularization, as
well as methods for finding maximum likelihood parameter estimates,
were described previously (McFarland et al., 2013).

Estimation of RF tuning properties. The estimated stimulus-processing
models were used to derive several measures of stimulus tuning for each
neuron. The spatial location of each neuron’s RF, as well as its width,
were estimated as follows. First, the “spatial profile” of each stimulus
filter was obtained by computing the SD of its coefficients across time
lags at each spatial position. The average of these spatial profiles across a

neuron’s stimulus filters (weighted by the relative contribution of each
filter to the overall predicted firing rate) was then computed. Finally, a
Gaussian function was fitted to the average spatial profile (minimizing
squared error) given by the following:

f� x; �, �, 	, c� � c � �e
� x
��2/ 2	2
(M4)

The RF location and RF width were then defined to be � and 2	,
respectively.

Each neuron’s sensitivity to the spatial phase of the stimulus was mea-
sured according to the following:

�
t

�r�s�t�� � r��s�t���2

�
t

�r�s�t�� � r��2
(M5)

where r(s(t)) is the neuron’s predicted firing rate in response to the
stimulus at time t, and r(
s(t)) is the predicted firing rate in response to
the polarity-reversed stimulus. This quantity thus measures a neuron’s
average firing rate modulation under polarity reversal of the stimulus
relative to its firing rate modulation across the ensemble of stimuli.

Model-based eye tracking. To overcome the limitations of hardware-
based eye-trackers, a recently developed model-based eye-tracking
method capable of accurately tracking FEMs was used. Details of this
procedure have been described previously (McFarland et al., 2014) and
are summarized here. This method uses probabilistic models of each
neuron’s stimulus processing to infer the most likely sequence of eye
positions given the spiking activity recorded from a population of V1
neurons (using multi-unit and single-unit activity). Although there is
typically only a small amount of information about eye position provided
by a single neuron’s activity at a given time, such information can be
integrated across a population of neurons over time, resulting in accurate
estimates of the animal’s eye position with good spatial and temporal
resolution. Although the accuracy of eye position estimates depends on
the size and composition of the recorded neural population, we previ-
ously showed that reliable estimates can be obtained even when using
only multi-unit signals from a 24-channel laminar probe (McFarland et
al., 2014).

Eye movements were modeled as consisting of slow drifts by putting a
zero-mean Gaussian prior on the instantaneous eye velocity except dur-
ing saccades, when the eye position was allowed to change rapidly
(McFarland et al., 2014). Saccades were detected using the scleral search
coils by finding times when the instantaneous eye velocity exceeded 10°/s,
with the onset/termination of saccades defined as the time when eye
velocity first/last exceeded 3°/s. Microsaccades were defined as saccades
with an amplitude of �1°. Additional information from the eye-coil
signals can also be incorporated into the eye position inference procedure
to further improve its accuracy. In particular, coil measurements of
short-timescale changes in eye position, such as displacements during
microsaccades and measured fixational drift velocities, avoid biases cre-
ated by slow drifts in the eye coil signals (McFarland et al., 2014). These
additional coil signals were only used for one of the two animals, which
was found to have more reliable eye coil signals. For the other animal, the
eye coils were only used to detect saccade timing. Absolute position
information from the coils was not used from either animal.

For purposes of eye tracking, quadratic models were used to describe
each neuron’s stimulus processing, consisting of a linear filter and two
excitatory squared filters, such that each neuron’s firing rate at time t was
given by:

r�t� � F� �
i

fi�kis�t�� � �



c
I
�t� � �p�t� � �
b

�bIb�t��
(M6)

In addition to modeling the dependence of each neuron’s firing rate on
the stimulus (left-most terms, matching those in Eq. M1 above), several
additional covariates were incorporated into the models to improve eye-
tracking performance (McFarland et al., 2014). Specifically, a set of pa-
rameters (�b) were included to capture slow variations in average spike

McFarland et al. • Effects of Eye Movements on V1 Variability J. Neurosci., June 8, 2016 • 36(23):6225– 6241 • 6227



rates across separate 60 –90 trial-recording “blocks,” coefficients c
 to
capture “extra-retinal” perisaccadic firing rate modulation (McFarland
et al., 2015), and a term � to describe each neuron’s coupling to the
population average firing rate p(t). The I
(t) here are indicator functions
that take a value of 1 if a saccade/microsaccade occurred with latency 
 at
time t and are 0 otherwise, such that the c
 coefficients describe the time
course of perisaccadic modulation. Similarly, the Ib(t) are indicator func-
tions encoding the recording block. The population rate p(t) was esti-
mated by smoothing the binned spike counts of each multi-unit signal
with a Gaussian kernel (	 � 50 ms), z-scoring the smoothed firing rate
functions, and then averaging them across all multi-units. This addi-
tional covariate helped to prevent overfitting of eye position variability to
shared noise in some recordings. Incorporating these additional compo-
nents into the models can help to improve the performance of the eye
tracking, although it is not necessary for achieving accurate eye position
estimates. Note that multi-unit activity was only used for the purposes of
eye tracking, not for the analysis of responses presented in the Results.

Learning of the model parameters and inference of the posterior dis-
tribution over eye position at each time was achieved by iterative optimi-
zation. Eye position was treated as a discrete variable, with the final
inference performed over a grid of possible positions with spacing that
was between 4 and 8 times finer than the size of the individual bar stimuli
(i.e., 0.01– 0.02° spacing). Although our inference procedure provided
estimates of the full posterior distribution of eye positions at each time,
point estimates (the posterior mean) of eye position were used for all
analysis.

As with the subsequent characterization of each neuron’s stimulus-
processing models (described above), the stimulus repeat trials were not
used to estimate model parameters during the eye position inference
procedure. Furthermore, a leave-one-out cross-validation procedure
was used so that, when the activity of a given neuron was analyzed, eye
positions inferred from the population excluding that unit were used
(McFarland et al., 2014). When analyzing the covariance between pairs of
neurons (see Fig. 9), the average of covariances estimated using each
neuron’s leave-one-out eye position estimate was used. This greatly re-
duced the computational load compared with estimating separate eye
position sequences for each possible pair of neurons. Any effects of over-
fitting of eye position variability were verified to be minimal (e.g., esti-
mates of firing rate variance without using leave-one-out eye position
signals were typically only slightly higher than estimates obtained with
leave-one-out eye position signals; median difference � 1.6%, interquar-
tile range 0 –7.8%).

Estimating firing rate variance in the presence of FEMs. The core ele-
ments of the methods used for estimating stimulus-driven firing rate
variance (with and without correcting for FEMs) are presented in the
Results section (“Estimating stimulus-driven and stimulus-independent
response variance in the presence of FEMs”). Here, we describe addi-
tional details, and provide a derivation for the FEM-corrected stimulus-
driven variance Vari,t�r

i�t�� (Eq. 8).
First, to estimate the “PSTH variance” Vart�Ei�r

i�t��� while avoiding
biases due to sampling noise with finite trials (Sahani and Linden, 2003),
the average product of spiking responses to the frozen noise stimulus
across all pairs of unequal trials at each time was measured and then
averaged across time (Eq. 6).

Our approach for estimating the FEM-corrected stimulus-driven vari-
ance Vari,t�r

i�t�� (Eq. 8) is analogous. Let r�e, t� � Et�Y�t��e� be the
expectation (average) of the spike count Y at time t given a particular
sequence of eye positions, where the vector e represents the eye position
at time t, as well as L previous time samples: e � �e�t�, e�t�1�, …,
e�t�L��. If it is assumed that the distribution of eye positions p(e) is
independent of the stimulus (and thus the same across time points), then
the stimulus-driven response variance can be written as follows:

Vari,t�r
i�t�� � Et�Ep�e��r

2�e, t��� � r�2 (M7)

This quantity can be estimated by computing the product of spiking
responses at time t across all pairs of unequal trials where the difference in
eye positions �eij between trials i and j was less than some (sufficiently
small) threshold �, and then averaging across time points:

Vari,t�r
i�t�� � 

Y i�t�Y j�t���eij 
 ��i�j�t � Y� 2 (M8)

Estimation of �eij is described further below. To show that Equation M8
provides an unbiased estimate of the stimulus-driven response variance,
note that the spiking response at time t on the i th trial can be written as
follows: Y i�t� � r�ei, t� � �i�t�, where �i�t� is the “noise term.” Assum-
ing that the noise terms on trials i and j are independent, Equation M8
then becomes:

Vari,t�r
i�t�� � 

r�ei, t�r�ej, t���eij 
 ��i�j�t � Y� 2 (M9)

In the limit as � ¡ 0, this then gives the average of r2�e, t� over eye
positions and time minus the square of the average rate, which is equal to
the rate variance, as desired.

One subtle point about the above derivation is that, by restricting
analysis to trial pairs where �eij � 0, Equation M9 gives an estimate of
E�r2�e, t�� under the conditional eye position distribution p�e��e � 0�
rather than p(e). However, for a stimulus that is statistically invariant to
spatial translations (such as used in our study), the expectation of r 2(e, t)
with respect to any distribution over e will be the same when averaged
over a sufficiently large sample of the stimulus ensemble (i.e., averaged
over a sufficient length of time). Therefore, in this case, sampling r 2(e, t)
across eye positions at a given time point is equivalent, on average, to
sampling r 2(e, t) across time points at a given eye position.

To measure the difference �eij�t� between the eye position trajectories
at time t on trials i and j, the sequences of eye positions on each trial were
compared over the range of times relevant for generating the neuron’s
response to the stimulus in time bin t. Specifically, the sequence of eye
positions within the current time bin plus the preceding 50 ms was used
and then this window was shifted backward in time by 30 ms to account
for V1 response delays. Therefore, eye position sequences spanning from
the 80 ms before the start of the spike count window until 30 ms before
the end of the window were used. The L2 norm of the vector difference of
these eye position sequences (normalized by the number of time dimen-
sions T in each vector e(t)) was then used to compute �eij�t�:

�eij�t� � �1

T �

�
1


2

�ei�t � 
� � ej�t � 
��2 (M10)

Several methods were tested for estimating the limit of 
Y iY j��eij�i�j as
�eij goes to zero, including fitting spline regression models. A simple
procedure of computing 
Y iY j� across all trial pairs where �eij was below
a fixed threshold � produced reliable results without the need for data-
dependent parameter selection (such as a choice of spline basis).
� � 0.01° was used for all analysis, although results were largely insensi-
tive to precise selection of this threshold. Although our models of neural
stimulus processing (McFarland et al., 2013) and model-based eye-
tracking method (McFarland et al., 2014) involve more sophisticated
parameter estimation procedures, our primary analysis of eye-
movement-related response variability primarily depends on selection of
this single parameter.

To measure uncertainty in our estimates of the stimulus-driven rate
variance (using Eq. 8), a bootstrap resampling procedure was used. Spe-
cifically, the set of trial pairs with �eij 
 � was resampled (with replace-
ment) using 5000 bootstrap samples. The bootstrap distribution was
then used to estimate the CV of the stimulus-driven rate variance for each
neuron to generate the data shown in Figure 8B. When computing rate
variance as a function of �eij (see Fig. 2E), 100 equipopulated bins of �eij

were used.
Model-based estimates of response variability. To validate our nonpara-

metric estimates of � (see Fig. 4A), the stimulus-processing models esti-
mated for each neuron were used to compute predicted firing rates on
each trial using the same set of stimulus repeat trials used for nonpara-
metric estimates. � was then computed simply as the fraction of the
overall (model-predicted) firing rate variance arising from trial-to-trial
variability, which was necessarily due to fluctuations in eye position.

When using the stimulus-processing models to estimate � under dif-
ferent conditions (e.g., as a function of time bin size; see Fig. 8), a slightly
different approach was used that provided a better approximation of
neural response statistics with respect to the entire stimulus ensemble
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(rather than the particular stimulus sequences used for repeat trials).
Specifically, the predicted firing rate of each model neuron in response to
the full set of nonrepeating stimulus trials given the estimated eye posi-
tions was computed. The neuron’s firing rate in response to the same
sequence of stimuli was then computed, but the trial labels of the eye
position data were randomly shuffled. An unbiased estimate of the model
neurons’ “PSTH variance” is then given by the covariance of the shuffled
and unshuffled responses:

Vart�Ei�r
i�t��� � Covt�r�t�, rshuff�t�� (M11)

where rshuff(t) is the model-predicted firing rate after trial shuffling of eye
position data. This method provided very similar results to computing �
directly from model-predicted firing rates on the set of repeat trials, but
has the advantage of not being limited to the repeat trials.

Analytical approximation for �. For the simulations shown in Figures 5
and 6, illustrating the analytical approximation of �, simple model neu-
rons with Gabor spatial filters (preferred spatial frequency: 1/� � 2
cycles/° unless otherwise stated, and RF width 	 � 0.5�) were used. The
model complex cell consisted of a quadrature pair of Gabor filters with
outputs that were squared and summed together. For both the simple
and complex cell models, the filter outputs were then passed through a
rectifying spiking nonlinearity (Eq. M2) to generate simulated firing
rates. For Figures 5, A–E, and 6, these model neurons were presented with
a one-dimensional “ternary” white noise stimulus similar to the stimulus
used in our experimental recordings. For Figure 5F, colored Gaussian
noise was used. For simplicity, in these simulations, a Gaussian eye po-
sition distribution was used, setting the SD to the median value measured
in our experiments (0.11°) unless otherwise stated.

The stimulus-processing models for each neuron were also used to
estimate � using the analytical approximation of Equation 9. In this case,
the same random bar stimulus used experimentally for each recorded
neuron, as well as the measured distribution of eye positions, were used.
These “analytical” estimates of � were then compared with “direct” esti-
mates using Equation M11.

Estimation of cross-correlograms. To compute cross-correlograms be-
tween pairs of neurons, the array of spike counts across neurons and trials
were time-shifted by an amount 
 using padding with NaNs to handle the
trial boundaries. The stimulus-driven component of the cross-
correlogram between neurons m and n was estimated according to the
following:

Covi,t�rm
i �t�, rn

i �t � 
�� � 

Ym
i �t�Yn

j �t � 
� � �eij�t� 
 ��i�j�t � Y� mY� n

(M12)

When estimating this function at nonzero time lags 
, eye position tra-
jectories were simply compared between pairs of trials at time t (ignoring
the changes in eye position between t and t �
). Similar results were
found, however, when comparing eye position trajectories over larger
time windows.

Cross-correlograms were normalized based on the measured total re-
sponse variances of each neuron:

�Vari,t�Ym
i �t��Vari,t�Yn

i �t�� (M13)

Such normalization produces numbers bounded between 
1 and 1 that
are more comparable across pairs of neurons. This same normalization
was applied when estimating both the stimulus-driven and stimulus-
independent components of the cross-correlogram.

To obtain single estimates of the strengths of stimulus-driven and
stimulus-independent correlations between each pair of neurons, the
time lag in which the magnitude of the cross-correlogram was maximal
(searching over the central 	 30 ms) was calculated and then the nor-
malized values of each component of the cross-correlogram at that time
lag were found. For analysis of the timescale of stimulus-independent
correlations (see Fig. 9D), the set of neuron pairs with strong positive
correlations was identified by dividing neuron pairs into two groups
using a median split applied to the peak value of the normalized cross-
correlograms. This set of neuron pairs were then further divided into two
groups based on the magnitude of FEM-corrected stimulus-independent

correlations (again using a median split). The timescale of stimulus-
independent correlations was measured using the full peak width at one-
quarter of the maximal correlation value.

Statistical methods. Because the distribution of eye positions was heavy
tailed, the SD of eye positions was measured using a robust estimator
based on the median absolute deviation, given by the following:

	̂ � 1.48 median��xi � medianj�xj��� (M14)

where the scaling factor of 1.48 provides an estimate of variability that
converges to the SD for a normal distribution.

Correlations and associated p-values were computed using the non-
parametric Spearman’s rank correlation (using Matlab’s corr function).

Additional analysis details. Unless otherwise specified, spikes were
binned at 10 ms resolution. Blinks were identified by finding instances in
which any component of the instantaneous eye velocity exceeded a
threshold (three times the median speed) for at least 100 ms and where
the overall change in eye position was small. Data occurring from 30 ms
after the onset of a blink to 100 ms after the termination of the blink were
excluded from all analysis of trial-to-trial variability (though such exclu-
sion had little impact on the results). Exclusion of data after detected
microsaccades also had little impact on the results (and this was not done
for the analysis presented).

During some experiments, problems with the stimulus display caused
individual stimulus patterns to occasionally be presented for multiple video
frames. On stimulus repeat trials, such repeated frames caused a misalign-
ment of the stimulus sequence for the remainder of the trial. In these cases,
the data were time shifted to realign neural responses to the displayed stimuli
across repeat trials and 100 ms of data following any repeated stimulus frame
were excluded. These video frame repeats were relatively rare (occurring in,
on average, 2% of repeat trials) and similar results were obtained when
excluding trials with any repeat frames from analysis.

Results
Effects of fixational eye movements on estimates of trial-to-
trial variability
The standard approach for segregating the stimulus-driven and
stimulus-independent components of a sensory neuron’s activity is
to measure the neuron’s response to repeated presentations of a set
of stimuli {sj}. If we define Yi(sj) as the spike count over some
time interval in response to the j th stimulus on the i th trial,
then the stimulus-driven component is typically measured
by the across-trial average response, or firing rate:
r(sj) � Ei[Yi(sj)]. Conversely, the across-trial variability, mea-
sured by Vari[Yi(sj)], is assumed to represent the stimulus-
independent component of the neuron’s activity. The “law of
total variance” provides a general means of decomposing a
neuron’s total response variance into a sum of this stimulus-
driven component (the variance of the firing rate across stim-
uli) and the stimulus-independent component (the average
variance of the response to a fixed stimulus):

Vari, j�Y
i�sj�� � Varj�r�sj�� � Ej�Vari�Y

i�sj��� (1)

where Vari,j[.] indicates the total variance computed across both
trials and stimuli. In the context of a time-varying stimulus pre-
sented over multiple trials, we can replace the stimulus index j
with an index running over time:

Vari,t�Y
i�t�� � Vart�r�t�� � Et�Vari�Y

i�t��� (2)

where the time-varying firing rate r(t) � Ei[Yi(t)] is estimated by
the PSTH.

In the presence of fixational eye movements (FEMs), however,
Equation 2 no longer provides a segregation of stimulus-driven
and stimulus-independent response variance because the stimu-
lus on the retina will itself vary from trial to trial (Fig. 1A). In this
case, the variance of the PSTH will underestimate the neuron’s
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true stimulus-driven response variance because it does not take
into account FEM-induced trial-to-trial variability in the firing
rate ri(t) (Fig. 1B–D). We can quantify this bias by again using the
law of total variance to write the total firing rate variance as a sum
of FEM-induced across-trial variability and variability in the
PSTH over time:

Vari,t�r
i�t�� � Vart�Ei�r

i�t��� � Et�Vari�r
i�t��� (3)

Given that Ei[ri(t)] � Ei[Yi(t)], the measured PSTH variance is
only the first term on the right side of Equation 3, thus underes-
timating the true stimulus-driven response variance by an
amount equal to Et[Vari[ri(t)]]. Furthermore, this FEM-induced
across-trial firing rate variability will increase the measured
across-trial response variability, inflating estimates of the
stimulus-independent response variance. In fact, because these
two sources of variance must sum to equal the total response

variance (Eq. 2), FEMs will produce equal and opposite biases in
estimates of each (Fig. 1E).

To measure the magnitude of these effects in V1 recordings,
we used the fraction of the true stimulus-driven response vari-
ance that is captured by the measured PSTH variance as follows:

� �
Vart�Ei�r

i�t���

Vari,t�r
i�t��

(4)

Therefore, � is a measure of a neuron’s sensitivity to FEMs that
ranges between 0 and 1, with a value of 1 indicating that FEMs
have no effect on measures of the stimulus-driven variance and a
value of 0 indicating that all of the neuron’s stimulus-driven re-
sponse appears as trial-to-trial variability (with the measured
PSTH showing no stimulus-driven response variability as a
result).
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Figure 1. Decomposing sources of neural response variability. A, Schematic illustration of a single frame of the visual stimulus, presented across multiple trials (different rows). The spatial profile
of an example neuron’s RF (red trace) is shown below. Without FEMs (left), the stimulus in the RF is identical across trials, whereas FEMs serve to “jitter” the position of the visual stimulus relative
to the RF across trials. Example eye position trajectories across three trials are shown at right. B, Simulated spike rasters of a model neuron in response to repeated presentations of a “frozen noise”
stimulus showing that FEMs produce increased trial-to-trial variability (right) compared with the neuron’s response in the absence of eye movements (left). Inset at right shows the across-trial
distribution of spike counts over the time window indicated by the red rectangle. C, Stimulus-driven firing rate on each trial from which the spiking data in B were generated (as a rate-modulated
Poisson process). Note that this is by definition constant across trials in which FEMs are absent (left), although it exhibits substantial across-trial variability in the presence of eye movements (right).
Inset at right shows the across-trial distribution of firing rates at the example time point (red rectangle). D, The across-trial average response (“PSTH”) is less variable across different time points of
the stimulus in the presence of FEMs (right) because it averages together responses to different retinal stimuli in the neuron’s RF. E, Schematic illustrating the decomposition of total spike count
variance into its constituent components: stimulus-driven (blue region) and stimulus-independent (red) variance. The stimulus-driven variance is then further decomposed into FEM-induced
across-trial variability (green) and across-time variability in the PSTH (magenta).
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Estimating stimulus-driven and stimulus-independent
response variance in the presence of FEMs
Given that we only ever observe a neuron’s spiking activity and
never have direct access to its underlying firing rate on single
trials ri(t), the question remains how we can estimate the
stimulus-driven response variance given measurements of the
spike count Yi(t) and the sequence of eye positions ei(t) on each
trial. In principle, one could construct estimates of the neuron’s
average response as a function of both time and the animal’s eye
position r(t, e). Given this “joint” response function, one could
then compute the stimulus-driven variance directly:

Vari,t�r
i�t�� � Varp�e��r�t, e�� (5)

where p(e) is the distribution of eye positions over the experi-
ment. However, while r(t, e) can in principle be estimated using
nonparametric regression methods (Rad and Paninski, 2010;
Park et al., 2011), such methods generally require a large number
of trials to produce reliable results, depending on how sensitive
r(t, e) is to eye position. Furthermore, any variance in the estima-
tion of r(t, e) will produce systematic biases in estimates of the
firing rate variance (Eq. 5), making this approach highly sensitive
to the binning/regularization procedures used.

We thus developed a procedure for directly estimating a neu-
ron’s stimulus-driven and stimulus-independent response vari-
ance in the presence of FEMs that circumvents the above
limitations. Our approach is analogous to estimating the PSTH
variance using the covariance of spiking responses on unequal
trials (Perkel et al., 1967; Brody, 1999):

Vart�Ei�r
i�t��� � 

Y i�t�Y j�t��i�j�t � Y� 2 (6)

where 
 � �t indicates the empirical average over time and Y� is the
overall average response. We extend this method to compute the

true stimulus-driven response variance in the presence of FEMs
by using only data from when the sequences of eye positions on
trials i and j at time t were sufficiently similar (Fig. 2A–E). The key
advantage of this approach is that it allows us to estimate the
stimulus-driven variance directly from the data without having
to construct data-intensive (and potentially biased) estimates of
the firing rate function r(t, e) explicitly.

Specifically, we first define a measure of the similarity of eye position
trajectories on a pair of trials at time t as�eij�t� � �ei�t� � ej�t�� (i.e., the
magnitude of the difference in eye position trajectories over a chosen
time window; Fig. 2D; see Materials and Methods). We can then obtain
an unbiased estimate of Vari,t[ri(t)] (derived in the Materials and
Methods), given by:

Vari,t�r
i�t�� � 

Y i�t�Y j�t� � �eij � 0�i�j�t � Y� 2 (7)

Given that e(t) is a continuous variable, we will not observe pre-
cisely the same sequence of eye positions on different trials. How-
ever, assuming that r(t, e) is a smoothly varying function of e, we
can estimate the firing rate variance by taking the limit of the
conditional average in Equation 7 as �e approaches zero (Fig.
2E). We approximate this limit by using a sufficiently small
threshold � on the similarity of eye position trajectories between
pairs of trials (see Materials and Methods), giving:

Vari,t�r
i�t�� � 

Y i�t�Y j�t� � �eij 
 ��i�j�t � Y� 2 (8)

We can then directly estimate the fraction of the stimulus-driven
variance captured by the PSTH variance (�) as the ratio of Equa-
tions 6 and 8.

Critically, this method does not make any assumptions about
the form of the noise distribution (e.g., Poisson) nor its indepen-
dence across time bins (Amarasingham et al., 2015); it only
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Figure 2. Nonparametric estimation of eye-movement induced variability. A, Spike counts for an example neuron (in 10 ms time bins) across trials in response to repeated
presentations of a frozen noise stimulus. B, Corresponding eye position data for each trial. C, Spiking responses are compared at each time point across all pairs of trials (shown for the example trial
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requires that the noise is independent on different trials. Further-
more, it does not assume a particular functional form of the
neurons’ response to different stimuli, only that the firing rate is
a smooth function of eye position [i.e., slowly varying relative to
the sampling of the eye position distribution p(e)].

Large fraction of V1 response variability driven by FEMs
To evaluate the effects of FEMs on estimates of V1 response vari-
ability, we recorded the activity of V1 neurons in two monkeys
using linear multielectrode arrays. The animals performed a
simple fixation task while they were presented with a “one-
dimensional” dynamic noise stimulus, with stimulus frames
drawn independently at 100 Hz. Each stimulus frame consisted of
a random pattern of black, white, and gray bars, with the bar
orientation selected to match the preferred orientations of the
recorded neurons (see Materials and Methods; McFarland et al.,
2014; McFarland et al., 2015). Trial-to-trial variability was then
evaluated using repeated presentations of 4-s-long “frozen noise”
sequences (randomly selected from the same stimulus ensemble).

We measured the animals’ eye position directly using stan-
dard methods (scleral search coils); however, the accuracy of such
measurements is not sufficient for tracking FEMs (Read and
Cumming, 2003; Kimmel et al., 2012; McFarland et al., 2014).
Therefore, we used a recently developed model-based eye-
tracking method that allowed us to infer the animals’ eye position
offline with approximately arc-minute accuracy using the activity
of recorded V1 neurons (McFarland et al., 2014). This method
uses models of each neuron’s response to the stimulus to infer the
most likely eye position as a function of time. To avoid any biases
due to overfitting of eye position variability to the observed neu-
ral activity, we always used eye position signals inferred from the
population excluding the particular neuron under study (see Ma-
terials and Methods). Note that, because the stimulus only varied
along one spatial dimension, neural responses were only sensitive
to one dimension of eye position, simplifying both the eye posi-
tion inference and subsequent analysis.

We thus used this precise eye-tracking method to compare eye
trajectories between different trials, allowing for application of
the nonparametric approach described above. We found that
estimated values of � varied widely across the population of re-
corded neurons (n � 97), with a median value of 0.48 (Fig. 2F).
This means that standard methods for quantifying stimulus-
driven and stimulus-independent response variance (i.e., com-
puting the across-trial mean and variance) would typically miss
about half of the true stimulus-driven response variance, mistak-
enly attributing that FEM-induced variability to stimulus-
independent “noise.” Furthermore, we found that, for many
neurons the effects of FEMs were even more dramatic, with the
across-trial average response (PSTH) almost completely failing to
capture the neurons’ true stimulus-driven response (e.g., 24% of
neurons had � values �0.25).

Dependence of � on V1 neuron stimulus tuning
Intuitively, we would expect the biases created by FEMs to de-
pend largely on how sensitive a given neuron is to fine spatial
features of the stimulus. For example, neurons with smaller RFs
and/or those that are more sensitive to the spatial phase of the
stimulus (i.e., more “simple-cell like”) should have smaller values
of �. We tested this intuition directly by estimating detailed
stimulus-processing models for each neuron (Fig. 3A; Butts et al.,
2011; Park and Pillow, 2011; McFarland et al., 2013), using these
models to derive a number of measures of stimulus tuning, in-
cluding RF width and spatial phase sensitivity (see Materials and

Methods). As expected, neurons with smaller RFs (Fig. 3B) and
those that were more sensitive to spatial phase (Fig. 3C) tended to
have smaller values of �. In addition, we found that both � (p �
0.014) and spatial phase (p � 7.3 � 10
3) were bimodally dis-
tributed (using Hartigan’s dip statistic with the Monte Carlo
method of Mechler and Ringach, 2002; N � 10 5 samples), poten-
tially reflecting a division between “simple” and “complex” cells.

One might expect that such small values of � would be limited
to more central RFs, where V1 RFs tend to be smaller. However,
there was substantial variability across neurons at a given eccen-
tricity in both the RF size (Fig. 3D), as well as � (Fig. 3E). This
large variability in RF width at a given eccentricity is consistent
with previous work using similar methods to map V1 RFs (Pack
et al., 2006). Therefore, the effects of FEMs on measures of re-
sponse variability were not isolated to neurons representing the
center of gaze (i.e., in and immediately surrounding the fovea),
but were often quite large at parafoveal eccentricities, where V1
neurons are most often recorded. Sensitivity to FEMs remained
substantial even for neurons with RFs at an eccentricity of about
10° (recorded from the calcarine sulcus), with 3/12 such neurons
having � values �0.25 (Fig. 3E).

These stimulus-processing models could also be used to pro-
duce a second, independent measurement of �. Specifically, we
used the models to predict the neurons’ firing rate on each trial
ri(t) given the measured eye positions (and resulting stimulus on
the retina), and then computed � directly from the model-
predicted ri(t). We found that model-based estimates were in
very good agreement with our nonparametric estimates (Fig. 4A;
Spearman’s � � 0.92; p � 7.5 � 10
40). This model-based ap-
proach to estimating � also has the advantage that it does not
require stimulus-repeat trials and can also be applied with simu-
lated data to explore the effects of FEMs under a variety of
conditions.

The close agreement between model-based and nonparamet-
ric estimates of � is perhaps surprising given that even the most
sophisticated stimulus-processing models are known to provide
substantial underestimates of the stimulus-driven response vari-
ance of V1 neurons (David et al., 2004). Indeed, our models
generally captured only about half of the firing rate variance iden-
tified using the nonparametric estimates (median � 55%; Fig.
4B). However, because � is based on a ratio of firing rate vari-
ances, it is much less sensitive to the overall proportion of rate
variance captured by the models. As discussed further below,
accurate estimates of � in fact depend on how well a given model
describes a neuron’s relative sensitivity to spatial translations of
the stimulus.

Analytical approximation for FEM-induced biases
To better understand the factors determining FEM-induced bi-
ases, we derived an analytic approximation for �, the proportion
of stimulus-driven variance captured by the measured PSTH
variance. This approximation is based on taking a neuron’s
stimulus-driven firing rate, typically measured as a function of
time, and representing it as a function of the animal’s gaze posi-
tion x, allowing us to express � in terms of two relatively simple
components: the neuron’s sensitivity to spatial translations of the
stimulus (such as those induced by FEMs) and the distribution of
eye positions p(e) sampled over an experiment.

We illustrate this method in Figure 5, A–C, using idealized
model simple and complex cells presented with a random bar
stimulus (see Materials and Methods). For a time-varying stim-
ulus that is statistically invariant to spatial translations (such as
noise stimuli and drifting gratings), we can represent the entire
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stimulus ensemble as a single function of space (with infinite
spatial extent) such that the stimulus displayed at any time is
located at some spatial position x (Fig. 5A). We can then com-
pute a neuron’s stimulus-driven response variance as the vari-
ance of this firing rate function r(x) over all spatial positions x
(Fig. 5B). Similarly, at each position x, we can compute the
neuron’s across-trial average response, measured under the
distribution of eye positions p(e) centered at x, as the follow-
ing convolution: Ep�e��r� x�� � 	r� x� p�e � x�de (Fig. 5C),

assuming the distribution p(e) is independent of the stimulus.
Therefore, if we define r̃ as the mean-subtracted firing rate, we
can compute � as follows:

� �
Vart�Ei�r

i�t���

Vari,t�r
i�t��

�
���p � r̃��x��2dx

�r̃2�x�dx
�

��R�k�P�k��2 dk

��R�k��2 dk

(9)

where, in the last step, we have used Parseval’s theorem to repre-
sent these quantities in Fourier space so that the convolution of
r(x) and p(e) can be written as a product of their spatial frequency
spectra. Therefore, � is approximately determined by a weighted
average of R(k), the spatial frequency spectrum of r(x), with the
spectrum of the eye position distribution serving as the weighting
function (Fig. 5D). Note that R(k) is distinct from (although
related to) a neuron’s spatial frequency tuning and characterizes
its sensitivity to spatial translations of the stimulus.

For the model simple cell, the firing rate changes rapidly as a
function of gaze position (Fig. 5B), so its spectrum R(k) is largely
concentrated at high spatial frequencies (Fig. 5D). The effect of
FEMs [as determined by the spectrum of the eye position distri-
bution P(k)] is to attenuate these high spatial frequencies in the
PSTH, resulting in a high sensitivity to FEMs and a correspond-
ingly small value of � (0.23). By comparison, the complex cell is
much less sensitive to stimulus translations [i.e., the spectrum
R(k) is concentrated at lower spatial frequencies], resulting in a
much higher value of � (0.85) despite the cell having the same
preferred spatial frequency.
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Although these are highly simplified models, they serve to
illustrate the range of FEM sensitivity likely to be exhibited by
real V1 neurons having RFs of a given size, with the idealized
simple/complex cells being most/least sensitive to FEMs, and
most V1 neurons falling somewhere in between these ex-
tremes. Using this approach to analyze the dependence of � on
RF properties, we find that � values can be very large even for
neurons with relatively low preferred spatial frequencies (Fig.
5E), highlighting the potential impact of FEMs even for neu-
rons with large RFs.

We also examined the dependence of � on the spatial fre-
quency content of the stimulus using temporally uncorrelated
stimuli with power-law spatial frequency spectra of the form
S( f) � Cf 
�, where the exponent � controls the rate of increase/
decrease in power with frequency. This analysis shows that a
neuron’s sensitivity to FEMs was similar over a range of relevant

spatial frequency spectra, including white noise (such as used in
our experiments) and naturalistic spectra (� � 2; Fig. 5F), being
largely determined instead by the neuron’s RF properties.

For the special case of a spatially periodic stimulus (such as a
drifting grating), r(x) is a periodic function of x and R(k) can be
approximated by a single delta function centered at the spatial
frequency of the grating k0, ignoring contributions from higher
spatial frequency harmonics which will be strongly attenuated by
the spectrum of the eye position distribution P(k) (Fig. 5G). The
equation for � is then determined by a single value of the eye
position spectrum: � � � P�k0��2. For realistic eye position distri-
butions (with SD � 0.1°), � is � 0.2 even at grating frequencies as
low as 2 cycles/° (Fig. 5H) because FEMs will alter the spatial
phase of the retinal stimulus across trials. Note that for a grating
stimulus, this approximation for � is independent of a neuron’s
RF properties including its spatial phase sensitivity, although in
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the case of a perfect complex cell [where r(x) is constant], the
response variance itself will approach zero.

In the above derivation, we have ignored the temporal dynam-
ics of eye movements, relying only on the marginal distribution of
eye positions p(e) to estimate FEM-induced biases. This is equiv-
alent to assuming that the animal’s eye position is approximately
constant over the timescale relevant for determining a neuron’s
response (e.g., the �50 ms integration time). For rapidly flashed,
temporally uncorrelated stimuli (such as used in our experi-
ments), the temporal dynamics of FEMs will inevitably have a
negligible effect on measures of trial-to-trial variability because
they do not significantly alter the spatiotemporal statistics of the
retinal stimulus (McFarland et al., 2015). To illustrate this point,
we compared estimates of � using Equation 9 with those based on
direct calculation (see Materials and Methods), using the esti-
mated stimulus-processing models applied to the same random
bar stimulus and eye position trajectories as in our recordings.
These two estimates of � were in close agreement (median abso-
lute deviation � 3%), illustrating the accuracy of this approxi-
mation for rapidly flashed stimuli. When using slowly varying or
static stimuli, the temporal dynamics of eye movements will in-
troduce an additional source of trial-to-trial variability (Gur et
al., 1997; Gur and Snodderly, 2006) that will only increase FEM-
related biases.

Using this analytical framework, we can also evaluate how FEM-
induced biases depend on the animal’s fixation accuracy via the dis-
tribution of eye positions p(e). For both grating stimuli (Fig. 6A) and

white noise stimuli (Fig. 6B), � decreases sharply as a function of the
SD of eye positions. Indeed, increasing the scale of the eye position
distribution is equivalent to proportionately decreasing the spatial
scale of the stimulus and RFs, such that the dependence of � on eye
position SD is essentially the same as its dependence on a neuron’s
RF size/preferred SF. These results highlight the fact that any exper-
imental or “internal” factors that influence an animal’s fixation
accuracy could produce significant changes in measures of stimulus-
driven and stimulus-independent responses by altering the magni-
tude of FEM-induced biases.

Effects of FEMs on Fano factor (FF) estimates
Neural response reliability is most commonly measured using the
FF, which is defined as the variance-to-mean ratio of the spike
count Y in response to a stimulus s as follows:

FF�s� �
Vari�Y

i�s��

r�s�
(10)

As defined above, this quantity depends on the stimulus s, but a
single FF is usually reported for a given neuron, representing the
average value of this ratio over an ensemble of stimuli (Tolhurst
et al., 1983; Carandini, 2004; Churchland et al., 2010), which we
will refer to as the “average FF.”

As described above, using the variance of Y across repeated
presentations of a stimulus to estimate the stimulus-independent
response variance (the numerator in Eq. 10) will be systematically
biased upward by the presence of FEM-induced trial-to-trial fir-
ing rate variability. Our nonparametric approach, however, can
be used to obtain an unbiased estimate of the average stimulus-
independent variance across an ensemble of stimuli by simply
subtracting the estimated stimulus-driven variance (Eq. 8) from
the measured total response variance (i.e., using the law of total
variance):

Ej�Vari�Y
i�sj��� � Vari, j�Y

i�sj�� � Varj�r�sj�� (11)

The average FF can then be approximated by the ratio of the
average stimulus-independent variance to the average firing rate:

Ej�FF�sj�� � Ej�Vari�Y
i�sj��

r�sj�
� �

Ej�Vari�Y
i�sj���

Ej�r�sj��
(12)

This approximation depends on the stimulus-independent vari-
ance being proportional to the mean rate, which will be true for
any rate-modulated renewal process (Nawrot et al., 2008;
Churchland et al., 2011) and approximately holds in many cor-
tical recordings (Tolhurst et al., 1983; Britten et al., 1993; McAd-
ams and Maunsell, 1999).

Using our previously derived measure of the stimulus-driven
rate variance (Eq. 8) to estimate the stimulus-independent vari-
ance for each neuron (Eq. 11), we calculated FEM-corrected FFs
and compared them with uncorrected estimates in which we sim-
ply took the PSTH variance to represent the stimulus-driven
component. We first analyzed these effects using the same time
bin size (10 ms) as above, but consider the case of the larger time
bins typically used to calculate FFs in the next section (below).
For 10 ms time bins, we found that the effects of FEMs on FF
estimates were typically fairly modest (median overestimate of
1.15-fold when ignoring FEMs). However, this bias varied widely
across neurons and, in some cases, uncorrected estimates were
�2-fold larger than their FEM-corrected values (Fig. 7). Correct-
ing for FEMs also altered the statistical comparison of our popu-
lation data to the null hypothesis of Poisson variability (FF � 1).
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a function of the SD of the eye position distribution (assuming a Gaussian distribution) under
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Namely, whereas PSTH-based estimates resulted in FFs that were
not significantly different from 1 (p � 0.84; Wilcoxon signed-
rank test), correcting for FEMs resulted in FFs that were signifi-
cantly �1 (“sub-Poisson variability”; p � 1.3 � 10
7),
emphasizing the importance of accounting for FEMs when mak-
ing quantitative statements about response reliability (Gur et al.,
1997; Gur and Snodderly, 2006).

Effects of spike-counting window on FEM-induced biases
Thus far, we have used a time window of 10 ms for binning spikes,
corresponding to the frame duration of our dynamic noise stim-
ulus. This choice of time resolution is useful because it adequately
captures changes in the firing rate over time (driven by the
stimulus). However, measures of V1 response variability are typ-
ically made using larger spike count windows of hundreds of
milliseconds to several seconds (Tolhurst et al., 1983; Britten et
al., 1993; Softky and Koch, 1993; Teich et al., 1996; Gur et al.,
1997; Buracas et al., 1998; Kara et al., 2000; Gur and Snodderly,
2006; Schölvinck et al., 2015).

To understand how the effects of FEMs manifest with longer
counting windows, we applied our nonparametric analysis (Eq.
8) to estimate � for a range of different time bin sizes (Fig. 8A).
Surprisingly, this analysis revealed that � remains largely un-
changed across a wide range of time bins, from 5 ms to several
seconds. Nonparametric estimates of � became unreliable for bin
sizes �100 –200 ms (Fig. 8B), because there were too few pairs of
response windows [Yi(t),Yj(t)] with sufficiently similar eye
trajectories over the course of the time window. Therefore, we
estimated the effects of FEMs for larger bin sizes using our
stimulus-processing models (as in Fig. 4).

We also examined the effects of time bin size on FF estimates.
Consistent with most previous reports (Teich et al., 1996; Buracas
et al., 1998; Schölvinck et al., 2015), we found that FF estimates
(uncorrected for FEMs) increased systematically with larger time
bins, particularly for bin sizes �1 s (Fig. 8C). Conversely, FEM-
corrected FF estimates remained largely unchanged, at least over

the range of time bins where they could be reliably estimated
(Fig. 8C). Indeed, the relative FEM-induced bias in FF estimates
(which we define as the normalized difference between corrected
and uncorrected estimates) increased substantially with bin size,
reaching its maximal value for �40 ms bins (Fig. 8D).

To better understand these FEM-induced biases in FF esti-
mates, recall that, in the presence of FEMs, the across-trial re-
sponse variance will overestimate the true stimulus-independent
variance by an amount Et�Vari�r

i�t���. Therefore, estimates of the
average FF will be biased upward by an amount equal to:

FFbias �
Et�Vari�r

i�t���

Y�
� �1 � ��

Vari,t�r
i�t��

Y�
(13)

where, in the second step, we have used Equations 3 and 4 to write
the FEM-induced bias in terms of �. In other words, FEMs will
produce a bias given by the variance-to-mean ratio of the firing
rate multiplied by the factor 1 
 �.

Equation 13 makes clear that the FEM-induced bias in FF
estimates is entirely a function of the neuron’s stimulus-driven
firing rate (rather than the properties of its stimulus-independent
“noise” distribution). Therefore, we can again use the stimulus-
processing models for each neuron to estimate the magnitude
of FEM-induced biases for time bin sizes �100 ms, where our
nonparametric estimates are unreliable. This model-predicted
dependence of FF bias on time bin size was consistent with our
nonparametric estimates at short bin sizes (Fig. 8D) and re-
mained largely stable (near its maximal value) for larger bin
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typically fairly modest (median overestimate of 1.15-fold when ignoring FEMs), but were in
some cases fairly dramatic. Overall, when ignoring FEMs, estimated FF values were not signifi-
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sizes. Comparison of these results with those shown in Figure
8C suggests that the large increase in uncorrected FFs at large
bin sizes reflects stimulus-independent variability occurring
at slower timescales (Ecker et al., 2014; Goris et al., 2014)
rather than effects of FEMs. Nevertheless, these results show
that FEM-induced biases in measures of both the stimulus-
driven and stimulus-independent response will remain signif-
icant even over substantially larger time windows.

Effects of FEMs on measures of correlation between neurons
Thus far, we have only considered the effects of FEMs on mea-
sures of trial-to-trial variability in single neurons; however, these
effects will also be present when measuring the trial-to-trial “co-
variability” between pairs of neurons. Analogously to the single-
neuron analysis, we can decompose the covariance between
neurons m and n into stimulus-driven and stimulus-independent
components:

Covi,t�Ym
i �t�, Yn

i �t�� � Covt�rm�t�, rn�t�� � Et�Covi�Ym
i �t�, Yn

i �t���

(14)

where Ym and rm represent the spike counts and firing rate of
neuron m, respectively. The stimulus-driven covariance (first
term on the right) is often estimated using a so-called “shuffle-
corrector” (Perkel et al., 1967; Brody, 1999), which is essentially
the covariance of the neurons’ PSTHs. The estimated stimulus-
driven covariance is then subtracted from the total covariance to
yield the stimulus-independent covariance (second term on the
right in Eq. 14). Because the PSTHs fail to capture a significant
portion of the stimulus-driven response in the presence of FEMs
(as demonstrated above), this standard approach will lead to bi-
ased estimates of the stimulus-independent response covariance.
Note that the stimulus-driven and stimulus-independent corre-
lation terms defined above are conceptually similar to the so-
called “signal” and “noise” correlations often studied in sensory
neurons (Cohen and Kohn, 2011), although they differ in several
important respects (see Discussion).

As with single-neuron variability, we can express the FEM-
induced bias by decomposing the firing rate covariance into a
sum of FEM-induced across-trial covariance, and the covariance
of the PSTHs:

Covi,t�rm
i �t�, rn

i �t�� � Covt�Ei�rm
i �t��, Ei�rn

i �t���

� Et�Covi�rm
i �t�, rn

i �t��� (15)

Therefore, the PSTH covariance (and equivalently, the “shuffle-
corrector”) will underestimate the true firing rate covariance by
an amount: Et�Covi�rm

i �t�, rn
i �t���, producing a corresponding

overestimate of the stimulus-independent covariance.
To estimate the FEM-corrected firing rate covariance between

a pair of neurons, we can use an approach analogous to Equation
8: computing the covariance of the two neurons’ spiking re-
sponses on pairs of unequal trials with sufficiently similar eye
position trajectories as follows:

Covi,t�rm
i �t�, rn

i �t�� � 

Ym
i �t� Yn

i �t� � �eij�t� 
 ��i�j�t � Y� mY� n

(16)

Furthermore, by introducing a variable time lag between the re-
sponses of neurons m and n into the equations above (see Mate-
rials and Methods), we obtain the cross-correlogram and its

constituent stimulus-driven and stimulus-independent compo-
nents (Brody, 1999).

Using this approach, we found that standard “PSTH-based”
methods often greatly underestimate the stimulus-driven covari-
ance (shown for four example pairs in Fig. 9A), producing biased
estimates of the stimulus-independent covariance on the
timescales of V1 stimulus processing (tens of milliseconds). To
quantify these effects, we extracted the stimulus-driven and
stimulus-independent components of the cross-correlation (at
the time lag where the cross-correlogram amplitude was maxi-
mal; see Materials and Methods) with and without correcting for
FEMs. Across all pairs of neurons (n � 256), correcting for FEMs
produced estimates of stimulus-driven correlations that were
substantially larger (�1.6-fold) than PSTH-based estimates
(Fig. 9B). As a result, FEM-corrected estimates of stimulus-
independent correlations were 0.4-fold smaller than PSTH-based
estimates (Fig. 9C). In a number of cases, FEM-induced across-
trial variability accounted for nearly all of the apparent stimulus-
independent correlation between a pair of neurons, such that
their responses were essentially independent when properly con-
ditioned on the stimulus (see first and third examples in Fig. 9A).

We found that, despite corrections for FEM, significant (gen-
erally positive) stimulus-independent correlations remained for
a substantial fraction of neuron pairs (see second example in Fig.
9A). Indeed, median values of the stimulus-independent correla-
tion were significantly positive both with (median � 0.0060; p �
1.1 � 10
16) and without (median � 0.013; p � 3.7 � 10
17)
correcting for FEMs. These residual correlations were not simply
due to a failure of our analysis to fully correct for FEM-induced
biases because they tended to occur on slower timescales then
stimulus-driven correlations (Fig. 9D). In fact, the width of the
cross-correlogram peak between a pair of neurons was signifi-
cantly correlated with the FEM-corrected magnitude of stimulus-
independent correlations (Spearman’s � � 0.33; p � 8.8 �
10
8), suggesting that the remaining correlations were driven by
slower processes than the neurons’ stimulus processing (Ecker et
al., 2014; Goris et al., 2014).

Because FEM-induced biases in estimates of stimulus-indepen-
dent correlations are fundamentally due to stimulus-driven trial-to-
trial covariability, such biases could systematically affect
measurements of the relationship between stimulus-driven and
stimulus-independent correlations (typically measured in terms of
the so-called “signal” and “noise” correlations; Averbeck et al., 2006;
Cohen and Kohn, 2011; Moreno-Bote et al., 2014). Indeed, we found
that FEM-induced biases in estimates of stimulus-independent cor-
relations were strongly dependent on the stimulus-driven correla-
tion between a pair of neurons (Fig. 9E) such that neurons with more
similar stimulus tuning were estimated to have larger stimulus-
independent correlations. Given that this bias, Et�Covi�rm

i �t�, rn
i �t���,

is entirely a function of the neurons’ stimulus-driven firing rates (Eq.
15), this may not seem surprising. However, such a relationship need
not be the case in general because the components of Equation 15
can each be positive or negative (unlike single-neuron variances; Eq.
3). For example, a pair of neurons with partially overlapping RFs
might have positively correlated firing rates overall yet exhibit nega-
tively correlated across-trial firing rate variability as a result of eye
movements shifting the stimulus between their RF peaks across trials
(Fig. 9F). Indeed, the last example pair in Figure 9A demonstrates a
case where the FEM-induced bias is not simply proportional to the
stimulus-driven rate covariance.

Together, these results highlight the importance of care-
fully controlling for the effects of FEMs when analyzing
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Figure 9. FEMs produce biased estimates of signal and noise correlations. A, Top, Raw cross-correlograms for four example neuron pairs (black), compared with FEM-corrected (blue)
and PSTH-based (red) estimates of the stimulus-driven rate correlation. Bottom, Estimates of the stimulus-independent correlation with (blue) and without (red) correcting for FEMs are
obtained by subtracting the stimulus-driven correlation from the total correlation (see Materials and Methods). In many cases, the uncorrected (PSTH-based) methods greatly
underestimated the true firing rate comodulation, attributing it instead to correlated noise. � values for each neuron in the pair are listed above. B, Across all pairs of neurons (n � 256),
FEM-corrected estimates of the stimulus-driven correlation (using the value at the time lag where the cross-correlogram amplitude was maximal) were approximately 1.6-fold larger
than PSTH-based estimates (based on the slope of a linear fit; red line). Black line shows the diagonal. C, Correcting for FEMs reduced the magnitude of measured stimulus-independent
correlations by more than half (slope of linear fit: 0.42). D, To illustrate the different timescales of stimulus-driven and stimulus-independent correlations, we performed a simple analysis
in which we took neuron pairs with positive overall correlation and split them into two groups: those in which stimulus-independent correlations were large (black) and those in which
they were small (red; see Materials and Methods). Both groups showed stimulus-driven correlations lasting several tens of ms (center), whereas stimulus-independent correlations
remaining after correcting for FEMs (bottom) tended to occur on slower timescales. E, FEM-induced bias in estimates of the stimulus-independent correlation between a pair of neurons
(i.e., the difference in corrected and uncorrected stimulus-independent correlation estimates) was strongly related to the (FEM-corrected) stimulus-driven correlation between the pair
(slope of linear fit: 1.6). F, Schematic illustrating a simple scenario in which FEMs can introduce negatively correlated trial-to-trial variability between a pair of neurons with positive
stimulus-driven correlation. The diagram shows the spatial profile of the RFs of two model neurons (red and blue curves). For a simple stimulus consisting of a single bar, FEMs will create
trial-to-trial variability in the bar position relative to the neurons’ RFs. Because the RFs are partially overlapping, this will produce negatively correlated variability, even though the
overall “RF overlap” (and thus the overall stimulus-driven correlation) is still positive.
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stimulus-independent “noise” correlations in V1, particularly
when studying their relationship with measures of stimulus-
driven correlations.

Discussion
Our results show that, in awake animals, FEMs generate trial-to-
trial variability in the position of the visual stimulus on the retina
that will tend to produce large biases in standard measures of
“signal” and “noise” in V1 neuron activity. In particular, we
found that the across-trial average response (i.e., the PSTH) typ-
ically captured less than half (and in many cases �20%) of the
true stimulus-driven response variance. The remaining stimulus-
driven activity necessarily appears as trial-to-trial variability in
the neurons’ response and would typically be treated as stimulus-
independent noise.

Precise measurement of these effects required several innova-
tions. First, we developed a nonparametric procedure for esti-
mating stimulus-driven firing rate modulation in the presence of
FEMs based on computing the similarity of spiking responses on
trials with similar eye positions. This method makes minimal
assumptions about the nature of a neuron’s spiking “noise” or its
stimulus tuning, and thus might be used more broadly to quan-
tify variability associated with other experimentally uncontrolled
factors such as the state of the cortical network (Arieli et al., 1996;
Lakatos et al., 2005; Ecker et al., 2014; Schölvinck et al., 2015; Cui
et al., 2016), or the animal’s attentional, arousal, or behavioral
state (Saalmann et al., 2007; Cohen and Maunsell, 2009; Niell and
Stryker, 2010; Constantinople and Bruno, 2011). Second, to
overcome the limited accuracy of existing hardware-based eye-
tracking methods, we used a recently developed model-based
eye-tracking procedure, allowing us to infer the animal’s FEMs
accurately using the recorded activity of populations of V1 neu-
rons (McFarland et al., 2014). However, the analysis procedures
presented here do not depend on the particular method of track-
ing eye position and could be used with sufficiently accurate
hardware-based eye-tracking methods (Cornsweet and Crane,
1973; Roorda et al., 2002). We also obtained very similar esti-
mates of FEM-induced biases using separate analyses based on
detailed stimulus-processing models estimated for each neuron
(Fig. 4A), which simultaneously validates both our nonparamet-
ric analyses and the model-based eye tracking.

We further demonstrated that FEM-induced biases are not
particular to the experimental conditions studied here, and are
likely to be a large factor in most studies of V1 in the awake
animal. Critically, the effects of FEMs on measures of response
variability were not isolated to neurons in the fovea, and were
found across the full range of eccentricities we studied (out to
�10°), which spans the eccentricities of typical V1 neuron re-
cordings. Furthermore, the large biases created by FEMs are
not unique to the particular visual stimuli used here. Although
our model-based eye tracking is designed to work most effec-
tively with rapidly changing stimuli that strongly modulate V1
neuron activity, we presented a simple analytical framework to
illustrate that the biases created by FEMs are likely to remain
substantial for the range of stimuli typically used in V1 exper-
iments (i.e., drifting gratings, natural images, etc.). Further-
more, whereas most studies use larger time bins for measuring
neural responses (i.e., hundreds of milliseconds to seconds)
than the 10 ms bins used in most of our analyses, we showed
that FEM-induced biases remain substantial even when using
such larger spike-count windows.

The magnitude of FEM-induced biases was highly variable
across neurons and was strongly dependent on several features of

the neurons’ stimulus tuning. Consistent with intuitive expecta-
tions, the width of a neuron’s RF and its sensitivity to the spatial
phase of the stimulus were strongly predictive of the magnitude
of FEM-induced biases. This suggests that great care must be
made when comparing measures of response variability across
groups of neurons where such stimulus tuning properties differ
systematically (e.g., simple vs complex cells, comparisons across
cortical layers, etc.). Even comparisons between different visual
areas will potentially suffer from systematic biases related to the
differential effects of FEMs on measures of response variability.

In addition to the neurons’ tuning properties, FEM-induced
biases of course depend on the properties of the eye movements
themselves, in particular on the animals’ fixation accuracy. In-
deed, our analyses show that the effects of FEMs can be sensitive
to even relatively small changes in fixation accuracy (Fig. 6). This
suggests that any analysis relating V1 response properties (e.g.,
response amplitude, variability, and noise correlations) with ex-
perimental variables that are related systematically to an animal’s
fixation accuracy could be strongly biased by the effects of FEMs.
A number of factors often studied in relation to visual neuron
activity could be associated with changes in fixation accuracy,
including covert spatial attention (Hafed and Clark, 2002),
arousal (Honda et al., 2013), task demands (Ko et al., 2010),
behavioral training (Cherici et al., 2012), and even the properties
of the visual stimulus itself (Snodderly, 1987). Therefore, partic-
ular care should be taken to control for FEM-related effects when
studying how such factors relate to V1 activity.

Consistent with previous work (Gur et al., 1997; Gur and
Snodderly, 2006), we found that estimates of V1 neuron response
reliability (i.e., the Fano Factor) could be substantially biased by
FEMs (Fig. 7). However, the work by Snodderly and colleagues
examined a fundamentally different aspect of FEM-induced vari-
ability than what is shown here. Namely, by presenting a drifting
bar stimulus and counting spikes over the duration of the trial,
their results were largely insensitive to trial-to-trial variability in
absolute eye position. Instead, they showed that the subset of
trials in which the animals produced rapid eye movements con-
tributed a large amount of across-trial response variability by
altering the spatiotemporal statistics of the stimulus on the retina.
Such results are complementary to those presented here, where
the temporal dynamics of FEMs have virtually no effect on the
ensemble of stimuli on the retina because of our use of a rapidly
flashed white noise stimulus (McFarland et al., 2015). Therefore,
together with these earlier studies, our results show that FEMs
can contribute to trial-to-trial response variability in multiple
ways, and the relative contribution of each will depend on the
nature of the visual stimulus used. We also note that the FEM-
corrected FF estimates reported by Snodderly and colleagues
(�0.3) were substantially smaller than those reported here
(�0.85). This difference is likely due to their use of a transient,
“optimally tuned” stimulus given that the “onset transients” of
visual cortical neurons have been shown to exhibit lower
amounts of response variability (Müller et al., 2001; Churchland
et al., 2010).

FEMs necessarily produce a source of trial-to-trial variability
that is shared among neurons and thus could greatly affect mea-
sures of stimulus-independent “noise” correlation. Given that
noise correlations between V1 neurons are typically found to be
small in magnitude (Cohen and Kohn, 2011), precise measure-
ment of noise correlations could be particularly sensitivity to
FEM-induced biases. For example, we found that FEMs inflate
the magnitude of apparent stimulus-independent correlations by
�40% on average. In many cases, however, the effects were much
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more dramatic, with FEMs producing large, apparently stimulus-
independent correlations on the timescale of tens of milliseconds
that disappeared entirely after correcting for FEM-induced vari-
ability (Fig. 9A). However, most studies measure noise correla-
tions over the timescale of entire trials (hundreds of milliseconds
to seconds; Cohen and Kohn, 2011) and previous work suggests
that different mechanisms may generate noise correlations at
such slower timescales (Smith and Kohn, 2008). Consistently, we
found that significant positive stimulus-independent correla-
tions remained after correcting for FEMs (Fig. 9C) and that these
remaining correlations tended to have a slower timescale than
stimulus-driven correlations (Fig. 9D). An interesting possibility
is that these slower, stimulus-independent correlated fluctua-
tions reflect the dominant patterns of spontaneous dynamics in
the cortical network (Lakatos et al., 2005; Nauhaus et al., 2012;
Ecker et al., 2014; Pachitariu et al., 2015; Cui et al., 2016).

Perhaps more important than FEM-induced effects on the
overall magnitude of stimulus-independent correlations is the
fact that FEM-induced biases will alter their measured relation-
ship to stimulus-driven correlations. Indeed, we found that FEMs
tended to produce larger apparent stimulus-independent corre-
lations between neurons with more similar stimulus tuning (Fig.
9E). This raises the question of whether FEMs could alter the
apparent relationship between so-called “signal” and “noise”
correlations (Cohen and Kohn, 2011). There are several impor-
tant differences, however, in how we measured these components
of correlations compared with previous work. Most notably, al-
though we quantified stimulus-driven correlations by measuring
the similarity of firing rates driven by a one-dimensional noise
stimulus, “signal” correlations are typically defined based on the
similarity of tuning curves with respect to a set of parametric
stimuli such as gratings of different orientations (Cohen and
Kohn, 2011). The effects of FEMs on the measured relationship
between stimulus-independent noise correlations and these
more standard measures of “signal” correlation are expected to
be different in general (e.g., neurons tuned to similar grating
orientations need not have overlapping RFs). Furthermore, our
dataset contained mostly neuron pairs with strongly overlapping
RFs, resulting from our use of linear electrode arrays that sam-
pled neurons largely from within a cortical column. The effects of
FEMs on noise correlation measurements could be different
when recording from neurons with more spatially distributed
RFs. Nevertheless, our results clearly demonstrate that care must
be taken when making comparisons between measures of “sig-
nal” and “noise” correlations in awake animals.

Although studies of V1 neurons in awake animals typically
ignore the effects of FEMs, in many cases, control analyses are
used to argue that FEMs are unlikely to affect the results signifi-
cantly. Such analyses generally involve excluding a subset of the
data based on recorded eye positions (e.g. time bins or trials with
rapid eye movements; Roberts et al., 2007; Hansen et al., 2012;
Herrero et al., 2013) and determining the impact of such exclu-
sions on the results. Although excluding data with rapid eye
movements can reduce trial-to-trial variability in the spatiotem-
poral statistics of the retinal stimulus (Gur et al., 1997; Gur and
Snodderly, 2006), it will largely leave the overall distribution of
eye positions unchanged. As a result, the biases shown here,
which are generated by trial-to-trial variability in absolute eye
position, would be largely unaffected. In principle, excluding
data in which the measured eye position is far from the fixation
target (Roberts et al., 2007) could reduce the effects of FEM-
induced biases. However, the inability of standard eye-tracking
methods to measure absolute eye position accurately at the scale

of FEMs (Read and Cumming, 2003; Kimmel et al., 2012; McFar-
land et al., 2014) may provide a fundamental limitation to resolv-
ing FEM-induced biases with such analyses.
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