
Behavioral/Cognitive

Cholinergic Interneurons Use Orbitofrontal Input to Track
Beliefs about Current State
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When conditions change, organisms need to learn about the changed conditions without interfering with what they already know. To do
so, they can assign the new learning to a new “state” and the old learning to a previous state. This state assignment is fundamental to
behavioral flexibility. Cholinergic interneurons (CINs) in the dorsomedial striatum (DMS) are necessary for associative information to be
compartmentalized in this way, but the mechanism by which they do so is unknown. Here we addressed this question by recording
putative CINs from the DMS in rats performing a task consisting of a series of trial blocks, or states, that required the recall and application
of contradictory associative information. We found that individual CINs in the DMS represented the current state throughout each trial.
These state correlates were not observed in dorsolateral striatal CINs recorded in the same rats. Notably, DMS CIN ensembles tracked rats’
beliefs about the current state such that, when states were miscoded, rats tended to make suboptimal choices reflecting the miscoding.
State information held by the DMS CINs also depended completely on the orbitofrontal cortex, an area that has been proposed to signal
environmental states. These results suggest that CINs set the stage for recalling associative information relevant to the current environ-
ment by maintaining a real-time representation of the current state. Such a role has novel implications for understanding the neural basis
of a variety of psychiatric diseases, such as addiction or anxiety disorders, in which patients generalize inappropriately (or fail to
generalize) between different environments.
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Introduction
Cholinergic interneurons (CINs) in the dorsal striatum, thought
to be identical to tonically active neurons (TANs; Inokawa et al.,

2010), comprise a small population (�1% of all striatal neurons;
Graveland and DiFiglia, 1985; Oorschot, 2013) that has a wide
influence on striatal processing (Kawaguchi et al., 1995). CINs
have long been known to respond with a transient pause in activ-
ity to stimuli that predict reward or other motivationally relevant
outcomes (Kimura et al., 1984; Aosaki et al., 1994; Apicella, 2002;
Benhamou et al., 2014). More recent evidence has suggested that
outcome-related CIN activity may be modulated by context
(Apicella, 2007). For example, CIN activity varies with reward
schedule (Shimo and Hikosaka, 2001), action requirements of
the current block of trials (Lee et al., 2006), motivational context
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Significance Statement

Striatal cholinergic interneurons (CINs) are thought to be identical to tonically active neurons. These neurons have long been
thought to have an important influence on striatal processing during reward-related learning. Recently, a more specific function
for striatal CINs has been suggested, which is that they are necessary for striatal learning to be compartmentalized into different
states as the state of the environment changes. Here we report that putative CINs appear to track rats’ beliefs about which
environmental state is current. We further show that this property of CINs depends on orbitofrontal cortex input and is correlated
with choices made by rats. These findings could provide new insight into neuropsychiatric diseases that involve improper gener-
alization between different contexts.
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(Yamada et al., 2004), or spatial location of expected reward
and/or required movement (Shimo and Hikosaka, 2001; Ravel et
al., 2006). Based on these findings, it has been hypothesized that
CINs (or TANs) signal the “motivational contexts of actions”
(Yamada et al., 2004) and may participate in the initiation of
actions appropriate for the context (Apicella, 2007).

At the same time, acetylcholine has been hypothesized to
modulate plasticity (Calabresi et al., 2000; Wang et al., 2006) and
gate corticostriatal inputs (Ding et al., 2010) to reduce interfer-
ence between old learning and new (Hasselmo and Bower, 1993;
Ashby and Crossley, 2011). Consistent with this proposal, inter-
ference with cholinergic function in the striatum often causes
problems with flexible behavior (Tzavos et al., 2004; Ragozzino et
al., 2009; Okada et al., 2014; Aoki et al., 2015). In one such study,
Bradfield et al., 2013 used a series of well controlled behavioral
tasks to demonstrate that interfering with CIN activity in the
posterior dorsomedial striatum (DMS) specifically results in con-
fusion between old learning and new after response-outcome
contingencies have been changed. These results suggest that dor-
somedial striatal CINs contribute to compartmentalizing asso-
ciative information related to different states of the environment.
However, nothing is known about how CIN firing properties
confer this function (e.g., by signaling changes in state, state pre-
diction errors, or by some other mechanism) or how CINs gain
access to information about the current state of the environment.
Recently, the orbitofrontal cortex (OFC), a prefrontal area, has
been proposed to provide a readout of the current location within
state space, a function that becomes critical when external stimuli
do not define states (Wilson et al., 2014). Thus, one possibility is
that state information used by CINs would depend on direct or
indirect input from the OFC. Here we addressed this question by
recording putative CINs from the DMS in sham and OFC-
lesioned rats performing a task consisting of a series of trial
blocks, or states, that required the recall and application of con-
tradictory associative information.

Materials and Methods
Subjects. Nine male Long–Evans rats, weighing 175–200 g, were obtained
from Charles River Laboratories. Rats were tested at the National Insti-
tute on Drug Abuse Intramural Research Program in accordance with
School of Medicine and National Institutes of Health guidelines. During
testing, rats were given ad libitum access to water for 10 min/d after
testing. All testing was performed during the light phase.

Behavioral task. Training and recording was conducted in aluminum
chambers equipped with a custom-made odor port with two fluid wells
beneath it, as described previously (Stalnaker et al., 2010). The fluid wells
were connected to fluid delivery lines containing flavored milk (Nesquik
brand chocolate or vanilla) diluted 50% with water. Photobeam breaks at
the port and wells were monitored and recorded with strobes sent to the
recording system.

Rats were trained extensively before electrodes were implanted (see
below) and then briefly retrained after implantation to acclimate them to
the recording cable. Pre-recording training sessions generally continued
until the rat failed to perform a trial for at least 5 min. This resulted in
sessions ranging from 150 to 250 trials. This initial shaping phase grad-
ually introduced all elements of the task (described below). Recording
was begun when rats could complete five blocks of trials (at least 260
trials) with the recording cable attached.

Each recording session consisted of a series of self-paced trials orga-
nized into five blocks. Each trial consisted of the following sequence. The
rat initiated a trial by poking into the odor port while the house light was
illuminated. Beginning 500 ms after the odor poke, an odor would be
delivered for 500 ms. At the end of the odor, the rat could withdraw from
the odor port and respond by poking at either the left or right fluid well
within 3000 ms. After responding at a fluid well, the rat was required to

wait at the well for 500 ms before fluid delivery began. Fluid was delivered
in �0.05 ml boluses, with delivery times separated by 500 ms when
multiple boli were delivered (see below). When the rat finished drinking
and withdrew from the fluid port, the house light turned off and the trial
terminated. If a rat withdrew early at any point in the trial before reward
delivery, the house light turned off and the trial terminated.

The identity of the odor delivered on a particular trial specified
whether the rat could receive reward at the left well (forced-choice left),
the right well (forced-choice right), or either well (free choice). If it
responded at the un-rewarded well on forced-choice trials, the house
light turned off, the trial terminated, and the subsequent trial delivered
the same odor. The identity of the three instructional odors and the
response required after each odor remained the same across the entire
experiment (training and recording). Odors were presented in a pseudo-
random sequence such that the free-choice odor was presented on 35%
of trials and the left/right odors were presented in equal numbers on the
remaining 65% of trials (�1 over 250 trials). In addition, the same odor
could be presented on no more than three consecutive trials.

Rewards consisted of either one or three boli of chocolate or vanilla
milk. Response–reward contingencies were consistent within each block
of trials, such that the same reward would be delivered for every correct
right response, either free- or forced-choice, and a different reward
would be delivered for every correct left response, free- or forced-choice.
The reward schedule was arranged so that, in each block, reward features
available on one side were always paired with the opposite reward fea-
tures on the other side; thus, when one drop of chocolate milk was
available on the left, three drops of vanilla was available on the right, etc.,
resulting in a total of four different reward combinations. On the first
block, which was shorter and used to establish baseline behavior, one of
these combinations was chosen randomly. The subsequent four block
transitions then followed, in order: (1) a drop-number transition, in
which the side with one drop changed to three drops and vice versa, but
the side-flavor contingencies remained the same; (2) a flavor transition,
in which the side with chocolate changed to vanilla and vice versa, but the
side-number contingencies remained the same; (3) another drop-
number transition; and (4) another flavor transition. These block tran-
sitions were not explicitly signaled; in the last three transitions, they
occurred after a minimum of a randomly chosen number of correct trials
between 54 and 66, with the additional proviso that rats had to be choos-
ing the larger side at least 6 of the last 10 trials before the switch (rats were
choosing the larger side at the end of the designated number of trials
anyway on �90% of blocks). The first transition occurred after at least 20
correct trials with the same proviso as above.

Surgical procedures and histology. Surgical procedures followed guide-
lines for aseptic technique as described previously (Stalnaker et al., 2010).
Neurotoxic lesions of left OFC were made using intracerebral infusions
of NMDA (12 �g/�l in sterile saline; Sigma) with a glass micropipette
and a picospritzer at four sites: 100 nl at �4.0 mm anteroposterior (AP),
3.7 mm mediolateral (ML), and 3.8 mm ventral (V); 100 nl at �4.0 mm
AP, 2.2 mm ML, and 3.8 mm V; 100 nl at �3.0 mm AP, 4.2 mm ML, and
5.2 mm V; and 50 nl at �3.0 mm AP, 3.2 mm ML, and 5.2 mm V
(coordinates are relative to bregma and the skull surface). In the same
surgery, electrodes consisting of drivable bundles of eight 25-�m-
diameter NiCr wires (Stablohm 675; California Fine Wire) electroplated
with platinum to an impedance of �300 k�, were implanted in the left
DMS (�0.4 mm AP, 2.6 mm ML, and 3.5– 4.0 mm V to start; coordinates
are relative to bregma and the surface of the dura). Electrodes were also
implanted in the dorsolateral striatum (DLS) in the same hemisphere of
these rats (�0.7 mm AP, 3.6 mm ML, and 3.5 to 4.0 mm V to start). At the
end of the study, the final electrode position was marked by passing
current through electrodes, the rats were killed with an overdose of iso-
flurane and perfused with saline, and the brains were removed and pro-
cessed using standard techniques.

Single-unit recording. Procedures were the same as described previ-
ously (Stalnaker et al., 2010). Wires were screened for activity daily; if no
activity was detected, the rat was removed and the electrode assembly was
advanced 80 �m. Otherwise, a session was conducted, and the electrode
was advanced by at least 80 �m at the end of the session. Neural activity
was recorded using Plexon Multichannel Acquisition Processor systems,

Stalnaker et al. • DMS CINs Use OFC Input to Signal Task State J. Neurosci., June 8, 2016 • 36(23):6242– 6257 • 6243



interfaced with odor discrimination training chambers. Signals from the
electrode wires were amplified 20� by an operational amplifier head
stage (HST/8o50-G20-GR; Plexon), located on the electrode array. Im-
mediately outside the training chamber, the signals were passed through
a differential preamplifier (PBX2/16sp-r-G50/16fp-G50; Plexon), in
which the single-unit signals were amplified 50� and filtered at 150 –
9000 Hz. The single-unit signals were then sent to the multichannel
acquisition processor box, in which they were further filtered at 250 –
8000 Hz, digitized at 40 kHz, and amplified at 1–32�. Waveforms
(�2.5:1 signal-to-noise ratio) were extracted from active channels and
recorded with event timestamps sent by the behavioral program.

Data analysis. Units were sorted using Offline Sorter software from
Plexon), using a template matching algorithm. Sorted files were then
processed in Neuroexplorer to extract unit timestamps and relevant
event markers. These data were subsequently analyzed in MATLAB
(MathWorks).

For behavioral analyses, we examined choice rates toward the three-
drop side on free-choice trials occurring within the last 20 correct trials
before block transitions versus those occurring within the first 20 correct
trials after block transitions. To make plots of trial-by-trial choice rates
(line plots), we first aligned rewarded trials before and after block tran-
sitions in all sessions. Then for each trial position relative to the transition
(first, second, third, etc., before and after the block transition), we took
the proportion of free choices toward the side that delivered the three-
drop reward after the transition, ignoring sessions in which a forced-
choice trial occurred at that position. The resulting average trial-by-trial
choice proportion was smoothed using a three-bin boxcar separately
before and after the block switch.

To categorize putative medium spiny neurons (MSNs), we examined,
for each single unit, valley-to-peak width, half-valley width, and average
baseline firing rate during the intertrial intervals of all trials. We used the
MATLAB k-means function with the “city” parameter for “distance” to
define three clusters, which separated a cluster with low firing rate and
wide waveforms (putative MSNs) and another with high firing rates and
narrow waveforms (putative fast-spiking interneurons) and a third in
between (undefined). There is no widely accepted method for distin-
guishing putative CINs from MSNs in rodents. To perform this separa-
tion, we examined, for each single unit, mean “CV2,” which is a variation
on the conventional coefficient of variation (Holt et al., 1996) that has
been found to distinguish striatal CINs from other neurons in a juxtacel-
lular recording study in which neurons were immunohistochemically
identified (Sharott et al., 2012). The conventional coefficient of variation
is defined as the SD divided by the mean of all the interspike intervals
across a spike train. The mean CV2 instead calculates the variance be-
tween each pair of succeeding interspike intervals and then averages this
value across all such pairs across the spike train. Thus slow changes in
firing rate across a session have less influence on mean CV2 than on the
standard coefficient of variation:

CV2 � mean	2 � abs	ISIi � 1 � ISIi)/(ISIi � 1 � ISIi)),

for i 
 1 to n, with n indicating the number of interspike intervals across
the spike train. We then assigned a unit as a putative CIN if its mean CV2
value was �0.8 and its mean baseline firing rate was �8.0 spikes/s.

For the bin-by-bin block-selectivity indices shown in Figures 3, a and
b, and 9, a and b: These analyses used all forced-choice trials occurring
after the first 20 correct trials (of any kind) in each of the last four blocks
of sessions. Forced-choice trials were used because these trials are equally
balanced between choices toward each side, and the latter parts of block
were used because that was when behavior was stable. Activity on each
trial was binned (100 ms) and baseline subtracted (baseline firing rate is
the average firing rate across the entire intertrial interval before that
trial). The activity of each neuron was peak normalized by dividing all
binned firing rates by the firing rate in the 500 ms bin with the highest
average firing rate among the following 16 conditions: first 10 or last 10
trials of each of the eight block/direction conditions. For each neuron, we
then identified a preferred direction and block based on which condition
(4 blocks � 2 directions) had the highest average firing rate during the
choice movement epoch (from odor port exit to fluid port entry) across

the last 10 trials of that condition. We chose this epoch because it was the
first time in the trial at which behavior differed between blocks and
because we have observed strong movement-related activity in striatal
neurons in previous studies using a similar task (Stalnaker et al., 2010).
Then we averaged the binned normalized firing rates of the three non-
preferred blocks, bin-by-bin, in each direction and subtracted these val-
ues from the binned normalized firing rates on the preferred block in
each direction. This yielded a bin-by-bin index of how many more neu-
rons fired on the preferred block compared with all other blocks. We
tested for significance compared with zero by running a t test on this
index, using a sliding five-bin average across all neurons in the popula-
tion and requiring five consecutive sliding five-bin averages to be signif-
icant at the designated p value (see below). To correct for multiple
comparisons, we re-ran the analysis with the condition of all trials shuf-
fled, 1000 times, and then calculated the p value at which 5% of the 1000
replicates found at least one instance of significance. That p value served
as the designated p value for that population of neurons ( p 
 0.014 for
DMS sham CINs, and p 
 0.021 for DMS lesion CINs, p 
 0.020 for DLS
sham CINs, and p 
 0.031 for DLS lesion CINs). In the figures, the
bin-by-bin average indices are shown aligned to different events in the
trial. The events in the figures are separated by the average time that
separated them across the sessions in which those neurons were
recorded.

For the block-selectivity indices across particular trial epochs, we cal-
culated the indices as above but across trial epochs instead of 100 ms bins.
The trial epochs were as follows: 1500 ms immediately before odor start,
1500 ms immediately after odor start (which encompasses movement),
1500 ms immediately after reward start, and 1500 ms after reward start
to 1000 ms after trial end. Indices were calculated for each neuron at each
epoch, and then Pearson’s correlation coefficients were derived for each
pair of epochs across neurons.

For the neural decoding analysis, we used MATLAB code from the
Neural Decoding Toolbox (www.readout.info; Meyers, 2013), in some
cases modified. For all analyses, we used the zscore_normalize_FP
function to preprocess the neural data and the max_correlation_
coefficient_CL as the classifier, and we used pseudo-ensembles (meaning
that neurons were not recorded in the same sessions). For each resample
run, the cross validator selected Z neurons from the entire population
being tested, with Z being the ensemble size. The cross validator then split
the data into n splits, which means it took n trials from each of the
conditions to be decoded, for each neuron. It then trained the classifier
using n � 1 of them and tested the remaining one trial from each condi-
tion. Each test trial was classified according to the training condition with
which it had the highest correlation across the ensemble of neurons. This
process was repeated n times such that each trial served once in the test
set. Then the ensemble was reselected and the entire process was repeated
for Y resample runs. Y was 50 for the basic block decoder described below
and 500 for the suboptimal choice analysis described subsequently. n was
selected to be as large as possible but still include �90% of sessions.

For each analysis, we performed a bin-by-bin decoding analysis using
25-neuron ensembles (or the maximum possible number of neurons for
analyses in which there were �25 neurons from usable sessions) and an
epoch analysis using a range of ensemble sizes from 2 to 25 (or from two
to the maximum possible) on three epochs at different points in the trial.
To determine significance of the bin-by-bin analysis compared with
chance, we repeated the decoding analysis 100 times with shuffled con-
ditions to derive a null distribution of decoding percentages at each bin.
Decoding percentage in bins had to meet p � 0.05 (one-tailed) and be a
part of five consecutive significant bins for the block decoding analysis
and 10 consecutive significant bins for the choice-direction decoding
analysis. To determine significant differences between decoding in dif-
ferent neural populations in the epoch analysis, we fit a log function (see
below) to each observed function of ensemble size, using the MATLAB
function nlinfit:

y � (B1 � ln(x)) � B2,

where y is the decoding percentage, x is the ensemble size, and B1 and B2

were parameters. We then used the MATLAB function nlparci to obtain
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confidence intervals for the B1 parameter, which controlled the rise of the
function. We found the smallest � level that resulted in non-overlapping
confidence intervals between fitted parameters from different popula-
tions and then took � 2 as the p value for the comparison between the two.
The criterion for significance was set at p � 0.01 to correct for the three
comparisons (three epochs) for each pair of populations.

The block decoding analysis trained using an epoch at a different point
in the trial than the bins it tested. Therefore, this analysis tested for the
consistency of the block code across the trial. The testing bins were 500
ms that slid up by 100 ms at each step across the trial. Trial data were first
baseline subtracted and aligned at different trial events and were concat-
enated so that the time between events was equal to the average time
between those events in the sessions in which that population was re-
corded. The test epoch for the first half of the bins occurred at the end of
the trial, 1500 ms beginning 500 ms after the beginning of reward deliv-
ery. The test epoch for the second half of the bins occurred at the start of
the trial, 1500 ms immediately before odor port withdrawal (i.e., choice
initiation). For the decoding function of ensemble size, test epochs were
the 1000 ms immediately before the odor port withdrawal, the 1000 ms
immediately after odor port withdrawal, and 1000 ms immediately after
reward delivery.

The block decoding analysis of suboptimal choices followed the same
procedures as above, except that only free choices of the small reward
occurring after the first 10 correct trials after a number block transition
served as the test trials. Thus, only sessions that had at least one such trial
in each block could be used. The training set consisted of all correct
forced-choice trials excluding those within the first 10 correct trials after
number block transition. The control analysis tested only free choices of
the large reward occurring after the first 10 correct trials after a number
block transition but had the same training set. The rationale for using this
training set is that forced-choice trials were equally distributed between
choices of the big and small rewards, and hence the set was unbiased with
regard to outcome. Thus, we could compare how well this decoder per-
formed on free choices of the small reward with how well it performed
with free choices of the large reward, using the same training set.

The block decoding analysis of MSNs yoked to the decoding of CINs
followed the same procedures as above, except that, for each ensemble of
CINs, the corresponding ensemble of MSNs that was recorded in the
same sessions as the CINs was used. The training sets for these yoked
MSN ensembles was the same as above (i.e., all correct forced-choice
trials excluding those within the first 10 correct trials after a number
block transition), but the training epoch was always the same as the
testing epoch, which differed from the previous analyses. The rationale
for this change was that MSNs in the initial analysis did not appear to
show block selectivity that persisted across the trial. Thus, this analysis
tests whether they have block selectivity at any one epoch in the trial.

The choice-direction, odor identity, and drop-number decoding anal-
ysis trained on the same bins and epochs on which it tested. For the
bin-by-bin analysis, we used 200 ms bins advancing by 50 ms across the
trial. For the decoding function of ensemble size, test epochs were from
1000 ms before odor delivery to the end of odor delivery, the 1000 ms
immediately after odor port withdrawal, and 1000 ms immediately after
reward delivery.

Statistics were done using MATLAB, Excel, and Statistica. Planned
comparisons were used for testing specific effects of multi-way ANOVAs.

Results
We recorded single-units from the DMS and DLS as rats per-
formed an odor-guided choice task in which blocks of trials de-
fined states that required the recall and application of
contradictory associative information. The task, illustrated in
Figure 1a, consisted of a series of five trial blocks presented across
a single session. Each trial block was made up of choice trials in
which a particular milk reward (defined by the number of drops,
one or three, and the flavor, chocolate or vanilla) was delivered
for a correct left response and a different milk reward for a correct
right response. Unsignaled block switches resulted in changes to
either the number of drops or the flavor (but never both in a

particular switch) of the rewards available at each well. Block
switches were arranged such that each of the last four blocks of
sessions had a unique set of response– outcome contingencies,
defining a state. Trials were initiated with an odor that signaled
whether the trial would be free choice (35% of trials), meaning
that either well would yield reward, or forced choice (65% of
trials), meaning that only one of the two wells would yield re-
ward. After initial shaping on the task, rats received unilateral
sham (n 
 5) or neurotoxic (n 
 4; Fig. 1b) lesions of the lateral
OFC, and electrode bundles were implanted in the DMS and DLS
ipsilateral to the lesions. OFC lesions targeted the ventral and
lateral orbital areas and the dorsal and ventral agranular insular
regions. This target region includes areas on the dorsal bank of
the rhinal sulcus that receive olfactory input from the piriform
cortex (Cinelli et al., 1985; Price et al., 1991) and more laterally
located insular regions that have direct interactions with the ba-
solateral amygdala (Krettek and Price, 1977; Kita and Kitai, 1990;
Shi and Cassell, 1998), while avoiding gustatory regions located
in agranular insular cortex posterior to the genu of the corpus
callosum (Saper, 1982; Kosar et al., 1986; Krushel and van der
Kooy, 1988).

Behavior in the task
During recording, number switches resulted in a rapid and sus-
tained change in choice rate on free-choice trials, which was in-
dependent of flavor and lesion status (Fig. 1c,d). Changes in
behavior driven by reward number (and the lack thereof for fla-
vor) were similar for the two milk flavors for each individual rat
(see scatter plots in Fig. 1c,d). To test this, we performed a mixed
ANOVA on the difference in choice rates across block transitions
(from the last 20 trials of the previous block to the first 20 of the
new block), with transition type (drop number or flavor) as a
within-subjects factor and initial flavor (chocolate or vanilla) and
group (sham or OFC lesion) as between-subjects factors. This
ANOVA showed no effects of group (F(1,194) 
 1.8; p 
 0.18) or
initial flavor (F(1,194) 
 0.9; p 
 0.34). Planned comparisons
showed no interaction between group and either the number
(F(1,194) 
 2.8; p 
 0.10) or flavor transition effect (F(1,194) 

0.005; p 
 0.95).

Neural recordings and cell-type separation
Recordings yielded a total of 1331 well-isolated single units in the
DMS, with 538 in shams and 793 with ipsilateral OFC lesions, and
1383 in the DLS, with 624 in sham rats and 759 with ipsilateral
OFC lesions (Fig. 1e for recording locations). We categorized
putative MSNs using an established cluster analysis that used
waveform and firing rate parameters (Thorn and Graybiel, 2014;
Fig. 2a, left). There is no widely accepted method for distinguish-
ing putative CINs from MSNs in rodents, and waveform criteria
are inadequate for making this distinction (Sharott et al., 2012;
Thorn and Graybiel, 2014). Although in theory optogenetic tools
could be used to identify CINs, in our hands the Chat–Cre rats
that have been produced to date (Witten et al., 2011) do not
express Cre in the medial dorsal striatum based on (1) in situ
hybridization analysis for Cre mRNA and (2) adeno-associated
virus-mediated, Cre-dependent GFP transgene expression anal-
ysis (data available on request). Therefore, we defined CINs in
our dataset based on published juxtacellular recording work in
which CINs were histochemically identified (Sharott et al., 2012),
as those with an average spike-to-spike CV2 (Holt et al., 1996) of
�0.8 and an average baseline firing rate of �8.0 spikes/s. These
criteria effectively distinguished CINs (n 
 109 across groups)
from separately defined MSNs, with only 4.6% of the MSN clus-
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ter falling below the CIN criteria (Fig. 2a,
right). CINs also tended to have wide
waveforms even though waveform char-
acteristics were not used to define them
(Fig. 2b). The prevalence of putative
CINs among all recorded neurons was
also not different in shams versus le-
sions in the DMS (5.2% in shams vs
4.5% in OFC-lesioned rats), but it was
slightly lower in the DLS (shams, 2.6%;
lesions, 3.8%). In addition, the mean
baseline firing rate, mean CV2 value,
and mean waveform duration of CINs
were unaffected by ipsilateral OFC le-
sions (t tests comparing these parame-
ters in the DMS: CV2, t(62) 
 �0.3, p 

0.76; average baseline firing rate, t(62) 

0.8, p 
 0.40; waveform duration,
t(62) 
 �1.7, p 
 0.09; in the DLS: CV2,
t(43) 
 �1.3, p 
 0.20; average baseline
firing rate, t(43) 
 �1.2, p 
 0.24; wave-
form duration, t(43) 
 �1.1, p 
 0.27).

CIN activity reflects the current block,
or state, in the task
To test the degree to which CINs were re-
sponsive to state, we first calculated a bin-
by-bin block-selectivity index across the
trial, separating the preferred direction of
each neuron from the anti-preferred di-
rection [see Materials and Methods; DMS
CINs were evenly split between those pre-
ferring the ipsilateral (n 
 14) and con-
tralateral (n 
 14) sides). This index was
based on the difference between normal-
ized activity on the preferred block of each
neuron and that on the nonpreferred
blocks in a given direction. The preferred
block and direction were defined by which
block and direction had maximum activ-
ity during the choice-movement epoch
(from odor port exit to fluid port entry).
This index used forced-choice trials oc-
curring after the first 20 correct trials in
each block. Averaged across the entire
population of CINs, the index in the pre-
ferred direction was significantly greater
than zero from near the beginning of the
trial to the end (Fig. 3a). To test whether
the current block was represented at the
level of individual single units, we tested
the correlations between block-selectivity
indices (in the preferred direction) calcu-
lated for four individual epochs across the
trial for each neuron. Single-unit indices
were significantly correlated between all
pairs of epochs (Fig. 3c, right; average
R 2 
 0.51, all p values �0.0001; Table 1),
including between the very first pre-odor
epoch and the very last post-reward epoch
(Fig. 3c, left). Sustained block selectivity
across individual single units could not
have resulted from particular units re-

Figure 1. The task, lesions, behavior, and recording locations. The task (a) had four different blocks, or states, defined by the set
of available response–reward contingencies. Trials began with an instructional odor, indicating a free-choice or forced-choice,
after which rats responded at one of the two fluid wells for 1 or 3 drops of chocolate or vanilla milk. Reward contingencies were
stable across blocks of �60 trials, but at unsignaled transitions the number of drops or flavor changed on both sides (only 1 of the
4 possible block sequences is shown). Unilateral neurotoxic lesions of orbitofrontal cortex (OFC) (b) were made in one group of rats
(numbers are millimeters from bregma). Groups with sham lesions or unilateral lesions of OFC were similarly sensitive to changes
in the number of drops (c), and similarly insensitive to changes in the flavor (d). Line figures show average trial-by-trial choice rates
across transitions; bar graphs summarize these data by showing average choice rates in the last 20 trials of the previous block versus
the first 20 of the new block; scatter plots show rat-by-rat difference scores (choice rate after minus choice rate before) with length
of lines showing SEs. e, The approximate locations of recordings and proportions of putative cell types in each of the four groups.
The width of each box represents 1 mm. FSI, Fast-spiking interneuron. *p � 0.001.
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sponding to particular trial events, because no individual event
defined a block. Thus, block selectivity encoded by individual
CINs represented information that was synthesized across trials,
i.e., information best described as the current state of the
environment.

Block selectivity appeared to be specific to CINs recorded in
the DMS. As shown in Figure 3b, in the 16 putative CINs recorded
in the DLS, we only observed significant block-selective activity
during the movement epoch, which is the epoch used to define
the preferred block and direction. Both before and after this
movement epoch, block selectivity was not significantly different
from zero in the DLS CIN population. Furthermore, as shown in
Figure 3d, block-selectivity indices of DLS CINs taken individu-
ally were weakly and mostly insignificantly correlated between
epochs occurring across the trial (average R 2 
 0.11; only one of
the six pairs, reward vs post-reward, had a p � 0.05; Table 2).

To test whether DMS CIN block selectivity actually reflected
information about the current block and to examine state infor-
mation held by CINs more closely, we constructed a decoding
algorithm for current block and tested 25-neuron pseudo-
ensembles randomly selected from all CINs (see Materials and
Methods). The decoder used sets of training trials from each

block to predict from which block a differ-
ent set of unknown trials had come, based
on which training set was maximally cor-
related with each test trial. This training-
testing procedure was repeated across all
splits of the data. This analysis used all
correct trials, both free and forced
choice in either direction, excluding the
first 20 correct trials in each block to
avoid trials during the switch in behav-
ior. To test for the consistency of the
block code across the trial, the decoder
was trained using a different part of the
trial than that used for testing, with a
training epoch late in the trial used to
test sliding epochs early in the trial, and
a training epoch early in the trial used to
test sliding epochs late in the trial. Using
this approach, we found that block de-
coding in CINs became significant soon
after lights on and continued to be sig-
nificant through the end of the reward
period (Fig. 4). CIN decoding perfor-
mance was significantly better in the
early, pre-choice period of the trial than
the 25-neuron MSN ensembles, sug-
gesting that CINs were the leading
source of state information in the stria-
tum (for all decoding statistics, see Ta-
ble 3).

Miscoding of the current state is
associated with suboptimal choices
Goal-directed choices are in theory based
on knowledge of the current set of avail-
able response– outcome contingencies,
which are associated with the current
state. Thus, signaling the current state
might be useful in recalling current con-
tingencies and driving the appropriate
choice. If CIN state encoding were part of

this process, then miscoding of the current state by CINs should
predict inappropriate or suboptimal choices. We tested for this
by constructing a block decoder that tested only free choices of
the small reward, i.e., suboptimal choices, excluding those in the
first 10 trials after number switches. As the training set for this
decoder, we used all correct forced-choice trials (also excluding
the first 10 after number switches) because these trials were
evenly distributed between receipt of the big and small rewards
available in each block and hence would be unbiased with regard
to outcome.

The results of this analysis, shown in Figure 5a, demonstrate
that block decoding by CINs on suboptimal choices was not only
inaccurate, it was actually significantly below chance, even early
in the trial before the choice was made. This below-chance en-
coding was a function of ensemble size: the more neurons that
were included in the ensemble, the further below chance decod-
ing became. As shown in Figure 5b, the below-chance decoding
on suboptimal trials occurred because CINs tended to miscode
the block as if they had the opposite arrangement of drop num-
bers but the same flavors (e.g., if the correct block delivered one
drop vanilla left/three drops chocolate right, the opposite num-
ber block would be three drops vanilla left/one drop chocolate

Figure 2. Cell-type separation. a, MSNs were first separated from other neurons [including fast-spiking interneurons (FSIs)]
using a three-dimensional cluster analysis on all recorded units (left). Subsequently, putative CINs were selected by taking the
average spike-to-spike CV2 of every unit’s entire spike-train. The criteria for CINs was CV2 �0.85 and average firing rate �8
spikes/s, which were based on measurements from histochemically confirmed CINs reported in published juxtacellular recordings.
These criteria effectively discriminated CINs from separately defined MSNs (right; CV2 distribution, low-firing rate MSNs versus
putative CINs). The upper limit of the CIN criterion is outside of the 1-a confidence interval for low-firing rate MSNs with a 
 0.028.
b, Resulting average waveforms for each cell type in each recording group (the dotted line represents the 0 voltage level. Scale bar,
100 ms. Shading represents SE). Note that CINs were not selected based on waveform, whereas MSNs and FSIs were. FSIs were not
analyzed for this report.
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right). Accordingly, an analysis of reaction times on suboptimal
choice trials suggested that these choices reflected a mistaken,
perhaps optimistic, prediction that the large reward would be
delivered (Fig. 5c). Notably, this miscoding was specific to CINs
(MSNs coded and miscoded the block at chance levels across the
trial; Fig. 5a,b), and it was specific to suboptimal choices (free
choices of the big outcome showed no such miscoding in either
CINs or MSNs; Fig. 6). The strong association between coding of
state by CINs and the rats’ behavior, particularly on suboptimal
choices, suggests that CINs were not signaling external cues or

contexts but instead reflected the rats’ actual real-time beliefs
about the current task state.

Of course, for CIN state coding to influence choices, it must
do so by influencing MSNs (which provide the sole output of the
striatum). Although the MSNs did not independently represent
state like the CINs, we hypothesized that CIN activity might still
serve to bias or gate activity in particular groups of MSNs during

Figure 3. DMS CINs track the current state (i.e., block) across trials. Plots in a and b show a bin-by-bin average index of block-selectivity for the entire DMS (n 
 26) and DLS (n 
 16) CIN
populations, respectively, averaged by each neuron’s preferred direction (defined as direction with highest average firing rate during the choice movement; left) or anti-preferred direction (right).
Only correct forced-choice trials after the first 20 correct trials in blocks were included in these averages. Bins were aligned to multiple trial events separated by the average time between them.
Block-selectivity scores of individual DMS CINs were strongly correlated between different epochs across the trial (c), but this was not true of DLS CINs (d). c, d, Left, Scores for pre-odor epoch versus
post-reward epoch; other pairs of epochs are summarized on the right. All R 2 values for DMS CINs were significant at p � 0.001, average R 2 
 0.61. For DLS CINs, none of thx R 2 values were
significant at p � 0.05 ( p values � 0.13); average R 2 
 0.07.

Table 1. Correlations between block-selectivity indices in pairs of epochs in CINs
recorded in DMS sham rats (related to Fig. 3c)

Epochs Before odor Odor/choice Reward

Odor/choice R 2 
 0.45
p � 0.0001

Reward R 2 
 0.49 R 2 
 0.62
p � 0.0001 p � 0.0001

After reward R 2 
 0.47 R 2 
 0.46 R 2 
 0.54
p � 0.0001 p � 0.0001 p � 0.0001

Table 2. Correlations between block-selectivity indices in pairs of epochs in CINs
recorded in DLS in sham rats (related to Fig. 3d)

Epochs Before odor Odor/choice Reward

Odor/choice R 2 
 0.01
p 
 0.73

Reward R 2 
 0.00 R 2 
 0.08
p 
 0.81 p 
 0.29

After reward R 2 
 0.19 R 2 
 0.00 R 2 
 0.35
p 
 0.092 p 
 1.00 p � 0.05 Figure 4. DMS CIN pseudo-ensembles decode the current state (i.e., block) across the trials.

The top plot shows block decoding accuracy of a pseudo-ensemble of 25 DMS CINs versus MSNs
across the trial. All rewarded trials after the first 20 correct trials in blocks were used in the
decoder, regardless of direction. Bottom plots show decoding accuracy as a function of ensem-
ble size for three 1 s epochs across the trial. **p � 0.01.
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particular parts of the trial. For example, we have previously
found in a task similar to that used here that dorsal striatal MSNs
are selective for particular response– outcome associations, i.e.,
the rules that govern appropriate responding in particular blocks.
This selectivity is strongest in the period leading up to and during
the choice (Stalnaker et al., 2010). It is possible that CIN state
coding might serve to select the set of MSNs encoding the asso-
ciations or rules appropriate for the current block, allowing exe-
cution of the appropriate choice. Such control over MSN activity
would be particularly apparent on suboptimal trials, because, in
these trials, the state represented by the CINs diverges from the
experimenter-defined state of the task. To test this idea, we con-
structed DMS MSN ensembles restricted to neurons that were
recorded in the same sessions as CINs (2.6 � 2.2 MSNs per CIN)
and then tested how block decoding by these ensembles related to
CIN block decoding. For the MSN decoder, we trained and tested
at the same trial epoch, as opposed to using a training epoch in a
different part of the trial from the test epoch, as before. This
change allowed us to ask whether MSNs signaled the state appro-
priately within individual trial epochs rather than across the trial,
as CINs appeared to do. The results of this analysis, illustrated in
Figure 7, show that, on suboptimal trials, MSN state decoding
was tightly coupled to CIN state decoding. Interestingly, this cou-
pling was present specifically surrounding the time of the choice,
precisely when the information about the rules signaled by the
MSNs in our previous study would be helpful to guide behavior.
On optimal choice trials, MSNs had a much smaller tendency to
be yoked to the CIN-encoded state in the period right before the
choice. These results suggest that CINs have a strong influence on

the activity of MSNs around the same time that MSNs best rep-
resent the associative rules in the different blocks. This effect was
primarily evident when the rat made a suboptimal choice, as if
that information were driving these choices. When choices were
consistent with the current state (i.e., optimal choices), the link-
age of CINs and MSNs was weaker, perhaps reflecting the parallel
involvement of other neural systems in such default behavior.

DMS CIN activity predicts the upcoming choice
We tested the idea suggested by the above analysis that CIN state
coding (and miscoding) might influence choices by constructing
a decoder that predicted the direction of the current choice on all
free-choice trials across sessions. Consistent with the idea, DMS
CIN ensembles were highly accurate in predicting the upcoming
choice well before choice movement began and earlier than
MSNs (Fig. 8). Note that this decoder included trials immediately
after number-block switches, when rats were still choosing the
side with the small reward most of the time. Thus, the high level of
accuracy of CIN ensembles (�95% immediately before choice
execution) could not be simply a “bias” signal based on which
side had the large reward in any given block (across all free-choice
trials, rats only chose the side with the large reward 77% of the
time). Information about the upcoming choice encoded by CINs
could not be based on any stimulus in the environment and in-
stead could only reflect an internal belief about what the state was.
This is additional evidence that CINs were involved in the process
by which current beliefs about task-state were translated into
choices.

Table 3. Parameter estimates for decoding accuracy functions

Condition CINs or MSNs Before choice During choice Reward

Block decoding accuracy all trials, shams (Fig. 4) CINs 3.0 � 1.1 2.4 � 1.0 2.1 � 0.4
MSNs 1.4 � 0.7 1.8 � 1.0 1.4 � 0.5

Accuracy on suboptimal choices, shams (Fig. 5a) CINs �10.6 � 4.1 �7.3 � 2.7 �5.4 � 3.9
MSNs 1.6 � 1.2 2.3 � 0.5 1.9 � 2.8

Miscoding on suboptimal choices, shams (Fig. 5b) CINs 11.2 � 8.2 17.3 � 10.0 9.5 � 4.8
MSNs �0.2 � 3.1 2.5 � 5.3 �1.3 � 2.9

Accuracy on optimal choices, shams (Fig. 6a) CINs 3.2 � 3.3 1.5 � 3.3 0.8 � 2.7
MSNs 1.0 � 5.1 2.2 � 1.8 2.2 � 1.8

Miscoding on optimal choices, shams (Fig. 6b) CINs �3.0 � 1.7 �1.9 � 0.8 �1.7 � 2.3
MSNs �1.2 � 3.2 �2.1 � 2.0 �1.8 � 2.9

% Yoked, suboptimal trials (Fig. 7a) MSNs �0.2 � 1.9 24.7 � 6.9 �3.3 � 1.9
Accuracy of yoked MSNs, suboptimal trials (Fig. 7b) MSNs 3.1 � 1.5 �11.9 � 0.8 �5.9 � 1.6
% Yoked, optimal trials (Fig. 7c) MSNs 4.0 � 2.8 2.9 � 2.2 2.1 � 2.4
Accuracy of yoked MSNs, optimal trials (Fig. 7d) MSNs 6.3 � 1.8 7.5 � 2.3 8.6 � 1.6
Choice-direction decoding accuracy, shams (Fig. 8) CINs 11.8 � 0.57 16.0 � 5.2 13.0 � 2.0

MSNs 5.8 � 1.7 11.6 � 3.3 7.6 � 2.5
Block decoding accuracy all trials, OFC lesions (Fig. 10) CINs 0.3 � 0.4 0.4 � 2.0 0.4 � 0.4
Accuracy on suboptimal choices, OFC lesions (Fig. 12a) CINs �1.2 � 3.0 0.14 � 1.1 2.5 � 2.7
Miscoding on suboptimal choices, OFC lesions (Fig. 12b) CINs �4.8 � 2.0 0.1 � 2.8 �1.0 � 3.5
Choice-direction decoding accuracy, OFC lesions (Fig. 12d) CINs 7.6 � 2.8 14.6 � 2.4 5.7 � 2.8

Sham or lesion Before odor During odor After odor

Odor identity decoding accuracy (Fig. 11a) Sham 0.3 � 1.3 3.6 � 1.1 11.7 � 2.1
OFC lesion 4.7 � 2.2 10.5 � 2.8 11.1 � 2.2

Sham or lesion Before reward During reward After reward

Reward amount decoding accuracy (Fig. 11b) Sham 3.5 � 2.6 3.3 � 0.9 9.1 � 4.1
OFC lesion 6.5 � 1.8 13.5 � 2.6 13.0 � 2.0

Decoding accuracy as a function of ensemble size curves were fit to a log function with two parameters (see Materials and Methods). Shown are the estimates (� 95% confidence intervals) for the parameter, B1, which controls the rise of
the function and thus provides a measure of how much information about the decoded variable is on average contained in that population of neurons. Estimates and confidence intervals were estimated using the MATLAB function nlparci.
Significance was determined by finding the smallest � level that resulted in non-overlapping confidence intervals between fitted parameters from the two different populations, with p 
 (minimum non-overlapping �)2 and significance
criterion at p � 0.01. Significance is indicated by the bold font for the following comparisons: (1) for MSNs on all trials and on suboptimal choices versus CINs in the corresponding condition; (2) for MSNs and CINs on optimal choices versus
the corresponding population on suboptimal choices; and (3) for OFC lesion conditions versus corresponding sham conditions.
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DMS CIN state and choice information depends on the OFC
However, where does the state information encoded by CINs
come from? We tested whether OFC was critical to internally
cued state representations in DMS CINs by examining CINs in
rats with ipsilateral lesions of the OFC. Our analysis found that
indeed OFC lesions resulted in significantly weaker block selec-
tivity across the trial in the DMS CINs, without having the same
effect on DLS CINs. As illustrated in Figure 9a, block-selectivity
indices in the DMS in OFC-lesioned rats were not significantly
different from zero during early and late trial periods when DMS
CINs in shams maintained significant selectivity [DMS CINs in
lesioned rats were evenly split between those preferring the con-
tralateral side (n 
 18) and those preferring the ipsilateral side
(n 
 18)]. Accordingly, selectivity scores of individual DMS CINs
in lesioned rats were mostly uncorrelated between pairs of epochs
across the trial period (Fig. 9b; average R 2 
 0.09, only two of six
R 2 had p � 0.05; Table 4). DLS CINs in lesioned rats did not show
this pattern; if anything, they were more often correlated across
pairs of epochs than their counterparts in sham rats (Fig. 9d;
average R 2 
 0.20, four of six R 2 had p � 0.05; Table 5). The block
decoding analysis also showed the dependence of DMS CIN

block information on the OFC. OFC lesions resulted in block
decoding in DMS CINs that was at chance (and significantly less
than that in shams) both before and after the choice period (Fig.
10). Thus, information about the state was essentially eliminated
from the DMS CINs by ipsilateral OFC lesions. Notably, this
occurred although CINs in lesioned rats continued to respond to
many external events in each trial. Indeed, as shown in Figure 11,
DMS CINs in lesioned rats were actually significantly better than
CINs in sham rats at decoding the odor identity and the number
of reward drops during presentation of those stimuli compared
to DMS CINs in sham rats. This again suggests that information
about current state encoded by CINs in sham rats did not emerge
from responsivity to a variety of separate trial events; on the
contrary, to the extent that CINs carried information about indi-
vidual trial events, they would be impaired at tracking current
state (and vice versa). Indeed, the loss of OFC-derived state in-
formation may have left the CINs free to respond to more gener-
ally stable, state-spanning trial events.

Finally, OFC lesions also decoupled CIN activity from
choice behavior. As shown in Figure 12, a and b, decoding of
block in DMS CINs did not show the strong miscoding on

Figure 5. On suboptimal (i.e., inappropriate) choices, DMS CINs miscoded the block as the one that would have been appropriate for that choice. Top plots show percentage accurate block
decoding (a) and percentage miscoding as the opposite drop-number block (b), by a pseudo-ensemble of 12 CINs or MSNs on suboptimal choices. Twelve CINs were recorded in sessions with enough
such free-choices. Bottom plots show accurate decoding and miscoding as a function of ensemble size for three 1 s epochs across the trial. c, Bars show average (�SE) reaction time by trial type.
Reaction times were faster for big reward than small reward, showing that faster reaction times occurred when more valuable rewards were predicted. However, free-choices of the small reward,
suboptimal choices, were still significantly faster than forced-choices of the small reward, suggesting an inaccurate (and perhaps optimistic) prediction as to the number of drops to be received on
those trials. **p � 0.01.
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suboptimal choices; instead, decoding was at chance, although
reaction times on suboptimal choices were relatively fast, just
as they were in the sham group (Fig. 12c). Likewise, as shown
in Figure 12d, choice-direction decoding in CINs was also
significantly impaired by ipsilateral OFC lesions, both before
and after the choice period. The reason for this decoupling
may be that the intact OFC in the contralateral hemisphere
could drive both reaction times and choice behavior. This
implies that, when state information was needed to
determine what the choice would be (or had been), OFC le-
sions degraded the representation of this information in the
ipsilateral CINs. This is again consistent with the idea that the
OFC is needed to maintain a consistent representation of state
and choice, especially during time periods when this informa-
tion must be maintained internally. Retrospective choice in-
formation (i.e., information about which choice had led to a
particular outcome) might be especially important to promote

learning of associations between the choice and its conse-
quences (i.e., credit assignment). Thus, the loss of OFC-
derived state information could have effects not only on the
acute coding of state by DMS CINs but also on striatum-
mediated associative learning that depends on state and choice
information.

Discussion
These results have several major implications. First, they show
that DMS CINs have a special role in keeping track of the current
state. Individual DMS CINs represented state from the start to the
end of the trials within each block. The finding that CINs code
state is consistent with evidence that interference with cholinergic
function in the striatum often causes problems with flexible be-
havior (Tzavos et al., 2004; Ragozzino et al., 2009; Okada et al.,
2014; Aoki et al., 2015) and with very specific evidence that this
reflects a role for DMS CINs in integrating new learning with old

Figure 6. Decoder performance on free-choices of the big reward (i.e., optimal choices) compared with that on free-choices of the small reward (i.e., suboptimal choices). a, c, Top plots show
block decoding accuracy of a pseudo-ensemble of 12 DMS CINs (a) or 12 DMS MSNs (c), during sliding 500 ms epochs across the trial. The same procedures were used as for the analysis shown in Figure
5, except that only free-choices of the big reward were tested. For comparison, data from small free-choices (suboptimal choices), shown in Figure 5, is also plotted here in dotted lines. Bottom plots
show decoding accuracy as a function of ensemble size for the same three epochs shown in Figure 4. b, d, Top plots show percentage of test trials in which the block decoder from the corresponding
plot (in a and c, respectively) misclassified the block as the one with the opposite drop-number rewards but the same flavor. Bottom plots show the misclassification percentage as a function of
ensemble size. *p � 0.05 **p � 0.01.
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without interference (Bradfield et al., 2013). Bradfield et al.
showed that rats in which CIN function was compromised
learned an initial set of associations normally but then failed to
appropriately separate new learning for those materials from the

initial learning. Instead, the rats seemed to average the two
learning episodes together, as if unable to separate the differ-
ent learning states or contexts. Our data provide a clear expla-
nation for this result—that CINs signal the subject’s internal

Figure 7. MSNs block decoding is “yoked” to CIN decoding during execution of suboptimal choices. a– d, Top plots show block decoding accuracy of pseudo-ensembles of MSNs recorded in the
same sessions as CINs. a, c, MSN decoding yoked to CIN decoding on suboptimal choices, meaning the percentage of trials on which MSN ensembles identified the same block as the CIN ensembles.
b, d, Block decoding accuracy of the same MSN ensembles as a and c (i.e., not yoked to CINs). Bottom plots show decoding accuracy as a function of ensemble size for three 500 ms epochs across the
trial. (starting 1000 ms before choice initiation, 100 ms before choice initiation, and at first reward delivery, respectively). **p � 0.01 compared with 0.

Table 4. Correlations between block-selectivity indices in pairs of epochs in DMS
CINs recorded in OFC-lesioned rats (related to Fig. 9c)

Epochs Before odor Odor/choice Reward

Odor/choice R 2 
 0.14
p 
 0.027

Reward R 2 
 0.27 R 2 
 0.10
p 
 0.0011 p 
 0.057

After reward R 2 
 0.00 R 2 
 0.01 R 2 
 0.00
p 
 0.71 p 
 0.55 p 
 0.82

Table 5. Correlations between block-selectivity indices in pairs of epochs in DLS
CINs recorded in OFC-lesioned rats (related to Fig. 9d)

Epochs Before odor Odor/choice Reward

Odor/choice R 2 
 0.03
p 
 0.37

Reward R 2 
 0.19 R 2 
 0.21
p � 0.05 p � 0.05

After reward R 2 
 0.03 R 2 
 0.50 R 2 
 0.26
p 
 0.36 p � 0.0001 p � 0.01
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belief regarding current state in real time. The loss of such a
signal would result in new learning being confused or com-
bined with previous learning. Importantly, the mechanism
demonstrated here differs from much more restricted alterna-
tive proposals in which CINs signal state changes or so-called
“state errors.” Our data indicate a much more pervasive role
for CINs in representing state in real time. This would put
CINs in a position to modulate behavior directly, although
appropriate state recall, and also indirectly through state rep-

resentation and even state creation during learning episodes.
In other words, when learning occurs, the ultimate effect of
that learning on behavior may depend as much on the state
represented by CINs as on the efficacy of the learning.

CIN activity was also uniquely related to the direction of
choice, especially at times when this information could only be
internally derived rather than stimulus driven. The combination
of integrative state information and trial-specific choice informa-
tion suggests an involvement in translating beliefs about the cur-
rent state into appropriate action selection. This gives credence
and specificity to suggestions that CINs (or TANs) provide mo-
tivational contexts for actions (Yamada et al., 2004) and that they
may be involved in initiation (or reporting) of appropriate ac-
tions (Blazquez et al., 2002; Lee et al., 2006; Apicella, 2007; Yarom
and Cohen, 2011). The mechanism through which DMS CINs
use state information to “tag” or otherwise influence synaptic
events and potentially influence choice behavior remains an open
question (Ashby and Crossley, 2011). Recent work has pointed to
cholinergic gating of plasticity and activity at corticostriatal syn-
apses (Wang et al., 2006; Ding et al., 2010) and to the close inter-
play and dependence between cholinergic and dopaminergic
activity in the striatum (Morris et al., 2004; Wang et al., 2006;
Goldberg and Reynolds, 2011). One interesting idea is that dopa-
minergic and cholinergic activity could provide related but
complementary pieces of information that modulate learning:
whereas dopamine provides a reward error signal, acetylcholine
might keep track of current state (Goldberg and Reynolds, 2011;
Bradfield et al., 2013).

Another important question is how CIN state encoding influ-
ences activity in MSNs, the output neurons of the striatum. From
our analysis, it appears that state information is not as concen-
trated in MSNs as it is in CINs (except perhaps during choice

Figure 8. DMS CINs also coded the direction of free-choice before and after it occurred better
than MSNs. Top plot shows choice-direction decoding accuracy of a pseudo-ensemble of 25 CINs
or MSNs. Only free-choice trials across entire sessions were used; therefore significant decoding
of direction before the choice could only reflect an internal intention or state. Bottom plots show
decoding accuracy as a function of ensemble size for three 1 s epochs across the trial. **p �
0.001.

Figure 9. OFC lesions eliminate state encoding in DMS CINs. As in Figure 3, plots in a and b show a bin-by-bin average index of block-selectivity for the entire DMS (a) and DLS (b) CIN population
in OFC-lesioned rats compared with those in sham rats. Block-selectivity scores of individual CINs in c and d show that OFC lesions eliminated the consistency of block-selectivity across the trial in DMS
CINs (c) without affecting that in DLS CINs (d). Left, Scores in a pre-odor epoch versus post-reward epoch; other pairs of epochs are summarized on the right.
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execution). Furthermore, it appears that state information held
by MSNs is not as closely related to choice as it is in CINs. The
relative restriction of state representations to the CINs suggests
that the DMS does not broadcast state information to down-
stream areas. Instead, its role may be mostly local, perhaps influ-
encing the appropriate recall of specific task variables (cues,
responses, anticipated outcomes) or associative information
(left¡big/chocolate, right¡small, vanilla) in specific subpopu-
lations of MSNs with which they interact. To really test this idea,
one would have to determine which set of MSNs receive input
from a particular CIN or set of CINs, information that is

opaque to us in this experiment. However, our finding that
MSNs recorded simultaneously with the CINs seem to fire in a
way that reflects the CIN-encoded state, particularly around
the choice point, is consistent with such an influence. We can
only speculate on why this occurs so prominently on subopti-
mal choice trials. One novel possibility is that this reflects the
unique importance of DMS CINs in the flexible control of
behavior, which may be particularly strongly driving behavior
on these trials; their role (and thus coding) may be much
weaker on optimal choice trials when presumably other sys-
tems, including those driving habitual behavior, may operate
in parallel to support behavior.

In this regard, it is also worth commenting on the specificity of
our result. We observed state correlates in DMS CINs but not in
DLS CINs recorded in the same rats. This specificity is consistent
with previous behavioral results, in which the role of the CINs in
integrating new learning with old was specific to the DMS (Brad-
field et al., 2013). However before jumping to the conclusion that
the segregation of information into states is a unique function of
DMS CINs, it is worth pointing out that, in both the earlier be-
havioral work and in our recording task, the relevant information
that must be segregated (the rules that differ across blocks or
training episodes) reflected changing response– outcome associ-
ations. As has now been well established, the DMS is particularly
important for behavior that reflects such rules, whereas the DLS is
not (Yin et al., 2004, 2005, 2006; Valentin et al., 2007; Tanaka et
al., 2008; Tricomi et al., 2009). Instead, the DLS seems to be more
important for behavior that reflects stimulus–response associa-
tions. The stimulus–response associations did not change in our
task. Indeed, from the perspective of stimulus–response rules,
our experiment consisted of but a single state or trial block. Thus,
our failure to see block correlates in the DLS CINs in our task may
simply reflect the fact that our blocks did not differ in the type of
information that DLS CINs use to identify different states. This
would be notable, because we have failed to see marked differ-

Figure 10. OFC lesions eliminate state encoding in DMS CINs. As in Figure 4, top plot shows
block decoding accuracy of a pseudo-ensemble of 19 DMS CINs in OFC-lesioned rats (only 19
neurons were recorded in blocks with a sufficient number of trials) versus those in sham rats,
also with a pseudo-ensemble of 19 neurons for comparison. Bottom plots show decoding accu-
racy as a function of ensemble size for three 1 s epochs across the trial. **p � 0.01.

Figure 11. DMS CINs recorded in rats with OFC lesions decode trial stimuli better than those in sham rats. Top plots show odor identity (a) and reward number (b) decoding accuracy of a
pseudo-ensemble of 24 DMS CINs in shams versus OFC lesions, during sliding 200 ms epochs across the trial. All correct trials were included and therefore for odor identity, three odors had to be
decoded (the forced-choice left, forced-choice right, and free-choice odors). Note that because of correction trials and the pseudorandom sequence of trials, some limited information about the
upcoming trial-type could be derived before odor delivery began. Bottom plots show decoding accuracy as a function of ensemble size for three epochs each: for odor decoding, 1 s ending with the
beginning of odor delivery, the 500 ms of odor delivery, and the 1 s immediately following odor delivery; for reward number decoding, 1 s ending with the beginning of reward delivery, the period
of reward delivery and consumption (1500 ms beginning with delivery of the first drop of reward), and 1 s immediately after the end of the reward delivery epoch. **p � 0.01.
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ences in the rules represented at the level of individual MSNs in
the DMS versus the DLS (Stalnaker et al., 2010).

Second, these results join other findings (Bradfield et al., 2015)
that support the recent proposal that the critical contribution of the
OFC to processing in other areas is to signal state information (Wil-
son et al., 2014). Consistent with this idea, CIN state information in
the DMS was almost completely dependent on the ipsilateral OFC,
although other aspects of CIN response properties were unaffected
or even enhanced. Dependence on the OFC is in accord with long-
standing evidence that associative information signaled by the OFC
is strongly context dependent (Thorpe et al., 1983; Schoenbaum et
al., 1999; Wallis et al., 2001; Simmons and Richmond, 2008; Kenner-
ley et al., 2011; Young and Shapiro, 2011) and with more recent
reports that OFC neurons may signal context directly (Farovik et al.,
2015). Importantly, the states in this task were not perceptually dis-
tinct from each other, i.e., the task state was not explicitly identified
by an external cue or even the sequential order of the blocks, which
changed each day. Instead, to derive the current state, rats had to

remember the properties of the reward that had been received on the
right and those received on the left on recent trials and integrate these
pieces of information when re-engaging with the task at the start of
each trial. OFC has been repeatedly implicated in the ability to inte-
grate information from different sources and use it to make infer-
ences (McDannald et al., 2011; Gallagher et al., 1999; Jones et al.,
2012). Here this ability would be critical for disambiguating states
that are perceptually similar (Wilson et al., 2014). Notably, this was
true for both block information and internal information reflecting
the response selected, before and after the choice itself. Thus, the
OFC influenced the ability to maintain information relevant to both
learning (i.e., state) and ongoing behavior (i.e., choice) in DMS
CINs. Although the precise pathways through which the OFC may
influence CIN activity is uncertain, the interaction of the OFC with
DMS CINs could be one mechanism through which the OFC influ-
ences behavioral flexibility.

Understanding how neural systems keep track of state could
also be important for treating psychiatric diseases, such as addic-

Figure 12. Ipsilateral OFC lesions eliminate the relationship between free-choices of the small reward and miscoding of the block in DMS CINs. Top plots show percentage accurate block decoding
(a) and percentage miscoding as the opposite drop-number block (b), by a pseudo-ensemble of 12 CINs in sham rats or ipsilateral OFC-lesioned rats on suboptimal choices. Bottom plots show
accurate decoding and miscoding as a function of ensemble size for three 1 s epochs across the trial. c, Bars show average (�SE) reaction time by trial type in lesioned rats. The pattern of reaction
times was the same as in sham rats (Fig. 5); that is, they were faster for big reward than small reward, but free-choices of the small reward, suboptimal choices, were similarly fast to those when a
big reward was expected, suggesting an inaccurate prediction as to the number of drops to be received on those trials. d, Top plot shows choice-direction decoding accuracy of a pseudo-ensemble
of 24 CINs in sham rats or ipsilateral OFC-lesioned rats. Only free-choice trials were used; therefore significant decoding of direction before the choice could only reflect an internal intention or state.
Bottom plots show decoding accuracy as a function of ensemble size for three 1 s epochs across the trial. **p � 0.01.
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tion or anxiety disorders, in which patients generalize (or fail to
generalize) inappropriately between different contexts. For ex-
ample, in posttraumatic stress disorder, treatment strategies of-
ten address the original learning when perhaps what has gone
awry is the ability to keep separate information learned in differ-
ent states when moving between similar environments, such as
from Baghdad to Baltimore. Distinguishing the wartime and ci-
vilian contexts, which share many features, may often be a matter
of maintaining the appropriate internal state, particularly when it
is necessary to bridge gaps between external markers that clearly
distinguish the two. A pathological weakening of this mechanism
would likely not prevent separation of these states under most
circumstances, but it might occasionally result in momentary,
transient recall of the inappropriate state. This would result in
expression of behaviors and emotional responses from one con-
text in the other. Viewed from this perspective, understanding
how these internal states are recognized and represented in the
brain is a critical question facing the field, because it may be key
for both temporarily preventing symptomatic events and perma-
nently altering the underlying learned responses in a host of neu-
ropsychiatric diseases. Our study suggests that CINs, with input
from the OFC, are critical to this process.
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