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Neurobiology of Disease

Quantitative Trait Loci and a Novel Genetic Candidate for
Fear Learning
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Trauma- and stress-related disorders are clinically heterogeneous and associated with substantial genetic risk. Understanding the
biological origins of heterogeneity of key intermediate phenotypes such as cognition and emotion can provide novel mechanistic insights
into disorder pathogenesis. Performing quantitative genetics in animal models is a tractable strategy for examining both the genetic basis
of intermediate phenotypes and functional testing of candidate quantitative traits genes (QTGs). Here, existing and newly collected data
were used for collaborative genome-wide mapping of cued fear acquisition and expression in 65 mouse strains from the BXD genetic
reference panel. For fear acquisition, we identified a significant locus on chromosome (Chr) 10 and eight suggestive locion Chr 2,4, 5,11,
13, and 15. For fear expression, we identified one significant and another highly suggestive locus on Chr 13, as well as four suggestive loci
on Chr 10, 11, and X. Across these loci, 60 putative QTGs were identified. The quantitative trait locus on distal Chr 13 contained a single,
highly promising gene at the location of the peak likelihood ratio statistic score. The gene, hyperpolarization-activated cyclic nucleotide-
gated channel 1 (Henl), regulates neuronal excitability. Validation experiments using behavioral pharmacology revealed that functional
Hen channels in the basolateral amygdala are necessary for conditioned fear acquisition and expression. Henl, together with the other
candidate QTGs, thus provide new targets for neurobiological and treatment studies of fear learning and trauma- and stress-related
disorders.
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There is a knowledge gap in understanding the genetic contributions to behavioral heterogeneity in typical and atypical popula-
tions. Mouse genetic reference panels (GRPs) provide one approach for identifying genetic sources of variation. Here, we identified
threeloci for conditioned fear acquisition and expression in a mouse GRP. Each locus contained candidate quantitative trait genes
(QTGs). One locus had a single QTG, Henl (hyperpolarization-activated cyclic nucleotide-gated channel 1), which has been
implicated in neuronal excitability and learning. This discovery was validated using behavioral pharmacology, revealing that Hcn
channels in the basolateral amygdala are required for fear acquisition and expression. The study thus identifies novel candidate
QTGs that may contribute to variation in emotional learning and highlight the utility of mouse GRPs for the identification of genes
underlying complex traits. j

ignificance Statement

Introduction have established substantial genetic risk (30—60%) for posttrau-

Identifying genetic risk factors for trauma- and stress-related dis-
orders is a high priority for psychiatric genetics (Sullivan et al.,
2012; Logue et al., 2015; Smoller, 2016). Twin and family studies
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matic stress disorder, anxiety disorders, and major depression
(Major Depressive Disorder Working Group of the Psychiatric
GWAS Consortium, 2013; Smoller, 2016). Moreover, candidate
gene and genome-wide association studies have identified a
number of genetic risk factors (Smoller, 2016), with large collab-
orative mapping studies increasing statistical power to detect
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common, rare or shared variants (Cross-Disorder Group of the
Psychiatric Genomics Consortium, 2013; Gatt et al., 2015; Logue
et al., 2015). However, across psychiatric conditions, there have
been challenges with replication, “missing heritability,” deci-
phering molecular mechanisms that affect brain function, and
determining the role of risk variants across related and comorbid
disorders (Sullivan et al., 2012; Zuk et al., 2014; Logue et al., 2015;
Smoller, 2016).

As proposed by the National Institute of Mental Health (Na-
tional Institutes of Health) Research Domain Criteria initiative
and others, understanding the biological origins of heterogeneity
in key intermediate phenotypes such as cognition and emotion
that are affected in trauma- and stress-related disorders has the
potential to bring mechanistic precision to psychiatric medicine
(Kas et al., 2007; Casey et al., 2013; Norrholm et al., 2014; Hariri
and Holmes, 2015). In this context, individual differences in
emotional memory and conditioned fear are well established en-
dophenotypes (Norrholm et al., 2014; Wilker et al., 2014) that are
conserved across species (Holmes and Singewald, 2013; Bukalo et
al., 2014; Bowers and Ressler, 2015). Therefore, a quantitative
genetics approach in animal genetic reference panels (GRPs) pro-
vides a tractable approach for examining the genetic basis of in-
termediate phenotypes and enables efficient functional testing of
candidate quantitative traits genes (QTGs) (Kas et al., 2007; Plo-
min et al., 2009; Holmes and Singewald, 2013).

Mouse GRPs are composed of hundreds of recombinant in-
bred (RI) strains and offer a number of advantages for examining
the genetic architecture of intermediate phenotypes (Philip et al.,
2010; Overall et al., 2015)—particularly collaborative approaches
that increase power to detect QTGs. Here, we designed experi-
ments to both expand and exploit preliminary fear acquisition
and expression datasets previously collected in the BXD mouse
GRP (Yangetal., 2008; Brigman et al., 2009). Using genome-wide
mapping, we identified significant and highly suggestive loci for
fear acquisition [chromosome (Chr) 10] and expression (Chr 13)
and several other suggestive loci for both traits. Collectively, these
loci contain 60 putative QTGs, with 26 candidates that are par-
ticularly promising based on their reported involvement in rele-
vant functions and disorders.

We found that a highly suggestive quantitative trait locus
(QTL) for fear expression on Chr 13 contained a single candidate
QTG, hyperpolarization-activated cyclic nucleotide-gated chan-
nel 1 (Henl)—previously shown to regulate neuronal excitabil-
ity, synaptic plasticity, and several forms of learning and memory
(Nolan etal., 2003,2004; Wang et al., 2007; Shah, 2014; Maroso et
al., 2016). We next confirmed that the Henl protein was richly
expressed in multiple brain regions implicated in fear, including
the cortex, hippocampus, and basolateral amygdala (BLA). To
establish a causal connection between Henl and conditioned
fear, we blocked Hen channels in the BLA pharmacologically,
which robustly attenuated fear. Together, our findings confirm
and identify genetic loci for learned fear and reveal a novel func-
tional role for Henl in this behavior.

Materials and Methods

Mice. The BXD GRP comprises >100 RI strains generated from progres-
sive matings of C57BL/6] (B6) and DBA/2J (D2) offspring (Bx D) (Peirce
et al., 2004). The B6 and D2 parental lines show broad differences in
many neurobiological and behavioral traits and high levels of sequence
variation (~5 M SNPs, 500K INDELS, 55K CNVs). These are catalogued
at >7500 informative SNPs in the BXD offspring strains (Mozhui et al.,
2007). Studies were performed at the University of Southern California
(USC) and in the Laboratory of Behavioral and Genomic Neuroscience
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at the National Institute on Alcohol Abuse and Alcoholism (NIH) using
a study design similar to that described below and in Yang et al. (2008)
and Brigman et al. (2009). The B6 and D2 parental strains, F1 cross
(B6D2F1), and 62 BXD strains were tested in an overlapping manner
across sites, with 15 BXD strains (11, 12, 13, 14, 22, 23, 34, 38, 48a, 51, 61,
65b, 70, 81, and 95) tested exclusively at NIH, 24 BXD strains (6, 15, 27,
29,42,43,44, 48,49, 50,53, 62,63, 64,67,68,73,74,77,79, 83, 85,89, and
91) tested exclusively at USC, and the parental strains, F1 cross and 23
BXD strains (8, 9, 16, 19, 21, 28, 31, 32, 39, 45, 55, 60, 65, 65a, 66, 69, 75,
86, 87, 90, 98, 99, and 100) tested at both sites. For studies conducted at
USC and in Yang et al. (2008), adult male mice were obtained from The
Jackson Laboratory at 6—10 weeks of age. For studies conducted in Brig-
man et al. (2009), adult male and female mice were obtained from the
University of Tennessee Health Science Center at ~8 weeks of age. Mice
were housed in pairs (USC) or 1-4 per cage (NIH) by strain and were
allowed to acclimate to the facilities for 2—4 weeks before testing. Mice
were maintained on a 12 h light/dark cycle (lights on 6:00 A.M.) with ad
libitum access to food and water except during testing. Testing at both
sites occurred during the light phase (between 8:00 A.M. and 5:00 P.M.).
Adult mice (3-5 months of age) were tested at USC (9—12 mice/BXD
strain; 7075 mice/parental strain) and NIH (2-12 mice/strain). All pro-
cedures were approved by the Institutional Animal Care and Use Com-
mittee at USC and NIH and conformed to NIH guidelines.

Fear conditioning. Similar auditory-cued fear conditioning tasks were
used at both sites and the strains that were tested at both sites showed
similar levels of conditioned freezing during training and testing (see
Results).

Fear-conditioning paradigm at USC. Behavioral sessions were con-
ducted in an automated four-chamber near-infrared video fear condi-
tioning system (Med Associates). Each chamber (30 X 25 X 21 cm, L X
W X H) had stainless steel walls and floor bars and a transparent acrylic
door and was housed within a ventilated sound-attenuating chamber
(64 X 76 X 36 cm, L X W X H). Mice were acclimated for 30 minutes to
the training context “A” (stainless-steel walls and floor bars, 70% ethanol
cleaning solution) and trained the following day using 5 paired presen-
tations of a tone-conditioned stimulus (CS; 30 s, 5 kHz, 85 dB) and a
foot-shock unconditioned stimulus (US; 2 s, 0.5 mA; CS and US cotermi-
nated). There was a 180 s stimulus-free period before the first CS-US
pairing (baseline period) and after each pairing (interstimulus interval,
ISI). Mice were tested for cued-fear 24 h later in a novel context “B”
(textured plastic walls, smooth plastic floor, 70% ethanol cleaning solu-
tion) using 10 CS presentations (30 s CS, 180 s baseline period, 60 s ISI).
Behavioral sessions were videotaped (30 frames/s) under near-infrared
light and freezing times were scored automatically using VideoFreeze
software (Med Associates).

Fear conditioning paradigm at NIH. Behavioral sessions were conducted
using Med Associates or San Diego Instruments fear-conditioning systems,
as described in Yang et al. (2008). During training, mice received 35 pair-
ings of the tone CS and foot-shock US and were tested for cued-freezing 24 h
later in a novel context. Mice were trained in context “A” (transparent walls,
stainless-steel floor bars, 19.5% ethanol and 1% vanilla extract cleaning so-
lution) using 3 paired presentations of a tone CS (30 s, 3 kHz, 80 dB) and a
foot-shock US (2 s, 0.6 mA; CS and US coterminated). There was a 120 s
baseline period before the first CS-US pairing and a 60—120 s ISI after each
pairing. Mice were tested for cued-fear 24 h later in a novel context “B” (black
and white checkered walls, smooth plastic floor, 50% ethanol cleaning solu-
tion) using one CS presentation (180 s continuous CS, 180 s baseline period).
Behavioral sessions were videotaped and scored manually in 5 s intervals for
freezing, which was defined as the absence of all movement except that
required for breathing, by an observer who was blinded to strain identity.

Freezing during the final CS presentation was unavailable for the NIH
training datasets, so we assessed learning during training (fear acquisi-
tion) as the percentage of time mice spent freezing immediately after the
final CS-US pairing in the NTH and USC datasets. This measure of fear
acquisition was positively correlated with freezing during the final CS in
the USC dataset (n = 50 strains, R> = 0.55, p < 0.0001). Although
correlated, these are not identical measures, thus loci mapping with ad-
ditional datasets, when available, would be warranted. Fear learning dur-
ing testing (fear expression) was computed as the average percentage of
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freezing during the first three (USC) or one (NIH) CS presentation(s),
which reflects learning magnitudes before behavioral evidence of extinc-
tion. Of the 26 strains that were tested at both sites, 70% (18 of 26),
including the parental strains, showed high concordance in the percent-
age of freezing measured during training and testing (fear acquisition: R
= 0.89, slope = 0.88 = 0.08; fear expression: R?=0.79, slope = 1.00 =
0.13), whereas 30% (8 of 26) showed discordant freezing levels across
sites (fear acquisition: R? = 0.64, slope = —0.41 = 0.12; fear expression:
R?=0.15, slope = 0.22 = 0.21). The results of this comparison provide
evidence that, even in different experimental environments at different
times and with distinct experimenters handling the test mice, the training
and testing protocols generated similar levels of conditioned fear. For all
overlapping strains, we averaged data collected across sites. In separate
analyses, we conducted mapping in three ways by either omitting or
using NIH or USC data for the eight discordant strains and, under all
conditions, mapping results were highly similar (data not shown).

QTL mapping. Genome-wide simple interval mapping (SIM) was per-
formed using the genome mapping tools within GeneNetwork (GN;
http://www.genenetwork.org) to identify suggestive and significant
QTLs. We used composite interval mapping (CIM) to identify additional
suggestive QTLs masked by linkage and pair scanning to identify epistatic
interactions. The B6 and D2 parental strains show substantial sequence
variation (Shifman et al., 2006). The BXD Rl strains have been genotyped
at ~14,000 markers, including 7636 informative SNPs and microsatellite
markers (Shifman et al., 2006). A subset of 3811 informative markers is
used for QTL mapping within GN (intermarker interval, 0.66 Mb; Shif-
man et al., 2006). All mapping was performed without parental strain
data and with strain weighting to account for variations in SEM across
strains and studies. We performed permutation tests (5000) in GN to
determine the likelihood ratio statistic (LRS) thresholds for suggestive
and significant QTLs, corresponding to genome-wide probabilities of
0.63 and 0.05, respectively (Lander and Kruglyak, 1995). The proportion
of phenotypic variance accounted for by each significant locus was esti-
mated using the square of the Pearson correlation coefficient (1) between
the trait and the peak marker. Within the 1.5 logarithm of the odds
(LOD) drop support intervals, we selected candidate QTGs based on
their involvement in human neurological disorders (NCBI databases:
OMIM, ClinVar, and MedGen) or phenotypes related to anxiety, stress,
conditioned fear, and learning and memory.

Behavioral pharmacology. Adult male B6 mice were implanted stereo-
taxically with indwelling cannulas directed bilaterally at the BLA (n = 9-10/
group). Mice were anesthetized with 2% isoflurane and immobilized in a
stereotaxic instrument (David Kopf Instruments). Bilateral guide cannulas
(26-gauge; Plastics One) were targeted at the BLA (relative to bregma in
millimeters: anteroposterior — 1.5, mediolateral +3.2, dorsoventral —4.45).
After surgery, the guide cannulas were kept patent using stainless steel obtu-
rators (33-gauge) that extended 1 mm beyond the guide cannula. Drug
microinjections were performed with stainless steel infusion stylets (33-
gauge) that also extended 1 mm beyond the guide cannula. Cannulas were
implanted and affixed to the skull with dental cement and mice were allowed
to recover for ~1 week. Mice were conditioned in Context A using 3 CS-US
pairings and 24 h later received a cued-fear test using 5 30 s CS presentations

<«

Figure 1. SIM and CIM to identify QTLs for conditioned fear acquisition in the BXD mouse
GRP. A, BXD panel shows continuous variation in fear acquisition as assessed by the percentage
of time strains spent freezing in the training context after the final pairing of the CSand US. Data
are shown as means %= SEM. Parental strains are shown in black (B6) and white (D2). The F1
cross (B6D2F1) and 61 BXD strains are shown in gray. B, SIM reveals a significant QTL (LRS >
26.56; top gray line) on proximal Chr 10 (peak LRS at 14.12 Mb). There are also nine suggestive
loci (LRS > 16.95; bottom gray line) located on Chr 2,4, 5,13, and 15. ¢, CIM controlling for QTL
10 using marker rs3686911 reveals an additional suggestive QTL on Chr 11 (peak LRS at 14.12
Mb). D, Candidate protein-coding genes listed in order of location on each on each chromosome
and selected based on evidence of involvement in human neurological disorders or key pheno-
types related to fear and anxiety, learning and memory, or anxiety and mood disorders. Bolded
genes are of special interest based on meeting both criteria or evidence of involvement in
conditioned fear or anxiety disorders. “&” indicates genes with no known single-nucleotide
polymorphisms (SNPs) between the parental strains.
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in Context B. Forty-eight hours later, mice received a contextual fear test (8
min) in Context A. To examine the effect of Hen channel antagonism on fear
acquisition and expression, the Hen channel antagonist ZD7288 (4-
ethylphenylamino-1,2-dimethyl-6-methylaminopyrimidinium chloride;
Tocris Bioscience) was infused (0.3 ug/0.5 ul/side) 30 min before condition-
ing (day 1) or before cued fear testing (day 2) using a syringe pump and 10 ul
Hamilton syringes connected to polyethylene tubing at a rate of 0.1 pl/min.
Infusion stylets were left in place for 2 min to allow for drug diffusion and
obturators were then replaced and mice were returned to their home cage
before training or testing. The dose and time point of ZD7288 administra-
tion was chosen based on prior microinjection studies (Chevaleyre and Cas-
tillo, 2002; Kocsis and Li, 2004) and drug dose was based on the salt form
and dissolved in 0.9% saline with 1% dimethyl sulfoxide (DMSO;
Sigma-Aldrich).

Immunohistochemistry (IHC) and confocal microscopy. ITHC was per-
formed on forebrain tissue and dendritic arbors in the hippoca-
mpus, amygdala, and cortex were imaged using fluorescent microscopy
(Zeiss 1sm700 scope). Adult mice were briefly sedated with isofluorane,
overdosed with ketamine-xylazine (80 mg/kg ketamine, 20 mg/kg xyla-
zine, IP), and intracardially perfused with 0.1 M PBS (15 ml) followed by
4% paraformaldehyde (60—75 ml). Brains were removed and postfixed
in 4% paraformaldehyde for 18—24 h, cryoprotected in 30% sucrose, and
then stored at —80°C until sectioning. A cryostat was used to collect 14
um coronal brain sections and slide-mounted sections were allowed to
dry for 60—120 min at room temperature and then stored at —80°C. The
day of IHC processing, slide-mounted sections were allowed to thaw and
dry for several hours. During the IHC procedure, slides were rinsed in
0.1 M TBS-0.05% Tween 20 (TBS-T), washed in 0.3% hydrogen peroxide
in methanol, washed in TBS-T, incubated for 30 min in fab fragment
donkey anti-mouse IgG (Jackson ImmunoResearch Laboratories, 715-
007-003, 1:50), and blocked for 30 min in TNB blocking buffer [0.1 M
Tris-HCI, pH 7.5, 0.15 M NaCl, and 0.5% (w/v) blocking reagent
(PerkinElmer, FP1020)] at room temperature. Slides were then incu-
bated in primary antibody in blocking buffer (1:500, UC Davis/NIH
NeuroMab Facility, Clone No. N70/28) overnight at 4°C, washed in 0.1 m
TBS-T, incubated in HRP-labeled secondary antibody (1:500, Jackson
ImmunoResearch Laboratories, 715-035-150), washed in TBS-T, incu-
bated in TSA Plus Cyanine-3 amplification buffer (PerkinElmer,
NEL744001KT), washed in TBS, and coverslipped with Vectashield.

Statistical analyses. Data are presented as the mean * SEM. Student’s ¢
tests were used to examine differences in means between two groups.
Differences in the means of three or more groups were tested using
one-way ANOVA followed by Bonferroni post hoc tests. Broad-sense
heritability was estimated for each phenotype using one-way ANOVA to
determine the proportion of phenotypic variance accounted for by strain
membership compared with the total phenotypic variance (SS /
SSora determined from R? values and reported as h2).

Strain/

Results

Heterogeneity in fear acquisition and expression

Across 65 strains of mice from the BXD panel, we found broad
heterogeneity in fear behavior (Figs. 1; 2). The magnitude of
freezing after the final training trial (“fear acquisition”) varied
30-fold across the panel (3.0 = 1.0, BXD92 to 87.5 * 4.2, BXD13;
strain-effect: Figyg39) = 12.69, p < 0.001; Fig. 1A). There was
continuous variation in conditioned freezing during testing
(“fear expression”), with values varying 10-fold across the panel
(9.75 * 6.95, BXD92 to 97.22 = 2.78, BXD13; strain-effect:
Fa837) = 11.29, p < 0.001; Fig. 2A). The fear acquisition and
expression traits were positively correlated (R* = 0.53, p < 0.001)
and moderately heritable (acquisition, h> = 0.49; expression,
h? = 0.46), consistent with previous reports (Brigman et al.,
2009; Carhuatanta et al., 2014).

QTL mapping
Using genome-wide mapping for fear acquisition, we identified a
significant locus on proximal Chr 10 (14.1232 Mb, LRS = 33.49),
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Table 1. Quantitative trait locus locations and features for fear acquisition and expression

Genes Genes with Genotype,

QTLlocation  1.5L0D Peak LRS Peak LRS No.of with human additive
Trait QTL  Chr (Mb) interval (Mb) ~ score location (Mb) Peak marker genes” SNPs ortholog effectsize Previous reports of QTL¢
Fear 2a 2 4354-4406 41.30-50.50 16.99 435383 1513476464 11 9 n B6,13.1  Anxiety (Yang et al., 2008; Philip et al., 2010)
acquisition  2b 2 62.00-65.50 57.64—68.79 19.47 65.1401 D2Mit205 4) 39 42 B6,14.0  Contextual fear (Yang et al., 2008; Parker et al.,
2014)
4 4 66.84-81.93 65.61-8193 23.84 71.8013  rs6222684 15 14 14 B6,15.3  Contextual fear (Brigman et al., 2009)
5 5 127.04-128.05 126.62-128.27 24.08  127.0399 gnf05.120.578 4 4 4 D2,15.3  Contextual fear (Parker et al., 2012), Cued fear
acquisition (Carhuatanta et al., 2014); Anxi-
ety (Yang et al., 2008; Cook, Unpub, 2009)
10 10 334-21.83  3.13-21.83 33.49** 141232 rs3686911 7 66 71 B6,17.9  Anxiety (Cook, Unpub, 2009), passive
avoidance (Paylor, Unpub, 2011), contextual
fear (Parker et al., 2012; Liao, Unpub, 2013),
spatial learning (Shea et al., 2015)
1M 11 8.06-1490  4.41-16.85 13557  13.5740 153673722 62 40 62 B6,13.5  Neocortex volume (Beatty and Laughlin, 2006)
13a 13 78.42-80.88 78.26—81.06 18.16 78.4146 1513481896 2 1 2 D2,13.5  Anxiety (Cook, Unpub, 2009; Philip et al.,
2010), contextual fear and cued fear acquisi-
tion and expression (Philip et al., 2010;
(arhuatanta et al., 2014), hippocampus
morphology (Krebs et al., 2011), amygdala
morphology (Mozhui et al., 2007)
15a 15 3.23-435 3.22-7.27 1844 3.9279 1513459177 18 12 18 B6,13.6  Depression assay (Lad et al., 2007)
15b" 15 27.87-28.88  27.29-4421 20.07 28.2515 1513482497 24 19 24 B6,14.5  Anxiety (Philip etal., 2010)
15b% 15 4212-44.18 27.29-4421 1826 421234 156339552 40 28 39 B6,13.6  Seelinked loci 15b" and 15
156° 15 57.99-60.99 55.00-63.15 18.77 58.9910 53702158 28 14 27 B6,15.2  Anxiety (Melloni, Unpub, 2009; Philip et al.,
2010)
Fear 10" 10 334-9.13 3.13-19.10  17.03 9.1332  D10Mit28 33 30 33 B6,10.5 See QTL 10 (above)
expression 10210 14.122-14.123  3.13-19.10  15.95 14.1225 153686911 24 24 24 B6,10.3  See QTL 10 (above)
1M 11 13.57-14.90 4.41-16.48 13119 13.5740 153673722 61 39 61 B6,12.0 SeeQTL 11 (above)
13a 13 7842-96.28 78.26-96.47 21.72* 84.6480  m(V24625340° 54 41 54 D2,11.7  See(QTL13a (above)
13b 13 116.72-119.53 116.58-119.97 20.67" 1183938 1513482033 6 5 6 B6,11.3  Depression assay (Chen, Unpub, 2013)
X' X 5649 47.53-68.69 1537 56.4887 1513483770 37 28 33 B6,10.2  See QTL X2 below
X X 61.60-66.92 47.53-68.69 14.65 61.5953 513483785 15 9 14 B6,9.8  Hippocampus morphology (Lassalle et al., 1994)

**Highly significant LRS (p << 0.01); *significant LRS (p << 0.05); “highly suggestive LRS ( p < 0.068); all other loci are suggestive ( p < 0.63). Fear acquisition: suggestive LRS > 16.95, significant LRS > 26.56; fear expression: suggestive

LRS > 13.68, significant LRS > 21.70.

“CIM analysis LRS. Fear acquisition: suggestive LRS >10.82, significant LRS > 17.33; Fear expression: suggestive LRS > 10.74, significant LRS > 16.85.
% oci within Chr 10, 15 and X are linked and show overlapping drop support intervals. Candidate genes were selected across the entire drop support interval and separated by approximate peak locations: 10'-3.13-12.0 Mb, 102-12.1-19.10

Mb, 15b"-27.29-35.0 Mb, 15h~35.1-44.18 Mb, X"~ 47.53-58.0 Mb and X*~58.1-68.69 Mb.

“No marker available for peak LRS location; closest marker is listed. rs3702158 is located at 56.9920 Mb, mCV24625340 is located at 84.8411 Mb.

9Prior QTLs reported in Pubmed or GeneNetwork for traits related to fear and anxiety, learning and memory, stress, or emotional requlation. Reports were required to have a suggestive or significant LRS score within 10 Mb of the present
QTLs and to be from datasets with at least 15 strains. “Unpub” refers to specific investigators depositing unpublished datasets in GeneNetwork (www.genenetwork.org).

which explains 30% of trait variation across strains, and nine
suggestive locilocated on Chr 2, 4, 5,13, and 15 (Fig. 1B). For fear
expression, we identified one significant locus on proximal Chr
13 (13a: 84.6480 Mb, LRS = 21.72) and another highly suggestive
locus on distal Chr 13 (13b: 118.3938 Mb, LRS = 20.67), which
independently explain 27% and 19% of trait variation across
strains, respectively (Fig. 2B). There are also four suggestive loci
located on Chr 10 and X for this trait (Fig. 2B). Interestingly,
QTLs 10 and 13a are detected at the suggestive or significant level
for both acquisition and expression, consistent with the hypoth-
esis that shared or neighboring genes within these loci affect both
traits. To further understand possible linkage between Chr 10
and Chr 13a, we conducted CIM of the acquisition and expres-
sion datasets using the markers with the highest LRS scores. For
fear acquisition, controlling for QTL 10 using marker rs3686911
completely eliminated QTL 13a, revealed a new suggestive QTL
on Chr 11 (peak LRS at 14.1232 Mb), and unmasked QTL 13b
(Fig. 1C). In a similar manner, in the fear expression dataset,
controlling for QTL 13a using marker mCV24625340 completely
eliminated QTL 10 and revealed QTL 11 (same location as in fear
acquisition; Fig. 2C). Therefore, CIM analysis for both datasets
provides evidence of linkage between QTLs 10 and 13a and re-

veals a suggestive QTL on Chr 11. Pair-scan mapping of the fear
acquisition and expression datasets did not provide evidence of
epistatic interactions (data not shown).

Table 1 summarizes the location of the suggestive and significant
QTLs for fear acquisition and fear expression. Analysis of linkage
disequilibrium provides evidence of linkage of peaks on Chr 10, 15,
and X. For clarity, in Table 1, we show the mapping results and gene
information for each individual locus; linked loci are given the same
QTL name (superscript indicates position) and unlinked loci on the
same Chr are listed as QTL “a” and “b.” For fear acquisition, B6
alleles at QTL 10 have an additive effect size of 17.9% increased
freezing. For fear expression, D2 alleles at QTL 13a have an additive
effect size of 11.7% increased freezing and B6 alleles at QTL 13b have
an additive effect size of 11.3%. All other loci, with the exception of
QTL 5, had additive effects associated with B6 alleles. To centralize a
resource of specific and related datasets, we include citations of pre-
viously published studies, as well as unpublished quantitative genet-
ics findings with significant or suggestive loci within 10 Mb of theloci
reported here. With the exception of QTLs 11 and X, all loci overlap
with those previously reported as significant or suggestive in quan-
titative genetics studies of fear learning, anxiety, or depression-like
behavior in rodents (Table 1). In particular, QTL 10 was identified
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for contextual fear (Parker et al., 2012) and spatial learning (Shea et
al.,2015) and in unpublished datasets available on GN for contextual
fear, anxiety, and passive avoidance. QTL 13a has been identified for
cued fear acquisition and expression and contextual fear (Philip et
al., 2010; Carhuatanta et al., 2014), anxiety (Philip et al., 2010) and
amygdala and hippocampal morphology (Mozhui et al., 2007; Krebs
etal., 2011). Some of these studies were performed in small numbers
of RI strains. Our identification of significant QTLs 10 and 13a sup-
ports the findings of the previous work and highlights the broad
consistency of mapping results, especially in similarly powered stud-
ies (Philip et al., 2010; Carhuatanta et al., 2014).

QTG identification

We generated candidate gene lists from the 1.5 LOD support
intervals and narrowed our analysis to protein encoding genes.
There are 317 protein-coding genes in the QTLs identified for
fear acquisition and 230 in the QTLs identified for fear expres-
sion, with 120 genes present in shared QTLs 10, 11, and 13a, for a
total of 427 protein-encoding genes. Of these 427 genes, 76.8%
(328) have SNPs between the parental strains and 98.1% (419)
have a human ortholog. We selected a prioritized list of 60 can-
didate genes based on their involvement in a human neurological
disorder (38 genes) or prioritized brain-based phenotypes (41
genes)—with 19 genes meeting both criteria (bolded in Figs. 1D,
2D). As described above, the most significant and recurring loci
for fear acquisition and expression are QTLs 10, 13a, and 13b.
QTL 10 contained 13 genes that met one or both criteria, several
of which have been implicated previously in conditioned fear
(Oprm1, Good and Westbrook, 1995; Sanders et al., 2005; Sgk1,
Lee et al.,, 2007; Kim and Richardson, 2009), mood and anxiety
disorders (Oprm1, Liberzon et al., 2007; Esr1, Sundermann et al.,
2010; Ryan et al., 2011; Sgk1, Licznerski et al., 2015), intellectual
disability (Hivep2, Takagi et al., 2015), and learning and memory
(Nmbr, Yamada et al., 2003; Sgk1, Tyan et al., 2008; Roesler et al.,
2012; Hivep2, Takao et al., 2013). QTL 13a contained 11 genes
that met one or both criteria, several of which have been impli-
cated previously in conditioned fear (Mef2¢, Cole et al., 2012;
Pde8b, Tsai et al., 2012), learning and memory (Mef2c, Barbosa
etal., 2008; Zweier etal., 2010; Homer1, Wagner et al., 2014), and
stress response and anxiety disorder risk (Crhbp, Westphal and
Seasholtz, 2006; Enoch et al., 2008). These various QTGs repre-
sent interesting candidates for further study.

Nomination and characterization of Henl1 in fear

Notably, we found that one of the two major fear expression
QTLs (13b) is a gene-sparse region that harbors a single candidate
QTG, hyperpolarization-activated cyclic nucleotide-gated non-
selective cation channel subunit 1 (Hcnl), located at the peak LRS
score. Henl is one of four subunits that make up Hen channels.
These channels are present at high levels in the brain and have a
well established role in regulating resting membrane potential,
neuronal excitability, and synaptic plasticity (He et al., 2014;
Shah, 2014) and are implicated in various forms of learning and
memory (Nolan et al., 2003, 2004; Wang et al., 2007). Interest-
ingly, recent studies have shown that Hen channels increase the
excitability of pyramidal neurons in the principal fear-mediating
region of the brain, the BLA (Giesbrecht et al., 2010; but see Park
et al., 2011). However, whereas one prior study found that
forebrain-wide deletion of Henl in a hybrid B6x129SvEv back-
ground impaired spatial memory but not conditioned fear (No-
lan et al., 2004), the specific role of Henl in the BLA is currently
unknown. Therefore, using immunocytochemistry, we first con-
firmed earlier reports that Henl has moderate to high expression
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in putative pyramidal neurons in the mouse BLA, as well as the
cortex and hippocampus (Fig. 3A; Moosmang et al., 1999; No-
tomi and Shigemoto, 2004). We then infused the Hen channel
antagonist ZD7288 into the BLA (Fig. 3C) of B6 mice before
conditioning or cued-fear testing. ZD7288 infusion before fear
conditioning significantly reduced freezing relative to vehicle-
infused controls during the final CS presentation during training
(te) = 5.22, p = 0.000084; Fig. 3B) and during the tests for cued
(tne) = 4.36, p = 0.00049) and contextual (f,¢ = 2.98, p =
0.0087) fear expression the following 2 d (Fig. 3B). ZD7288 infu-
sion before cued-fear testing significantly reduced freezing dur-
ing the cued-fear test (.,,, = 2.49, p = 0.023), but did not affect
freezing during the contextual fear test (f,,) = 0.94, p = 0.36)
(Fig. 3C). These results demonstrate a novel and important func-
tional role for Hen channels expressed in the BLA in both fear
acquisition and cued-fear expression.

Discussion

Using a collaborative quantitative genetics approach, we identi-
fied multiple QTLs for conditioned fear behavior in mice. Within
these loci, we identified 60 candidate QTGs of high biological
rationale based on publications indicating their involvement in
human neurological disorders or key phenotypes, including con-
ditioned fear, learning and memory, and anxiety disorders. QTL
13b was particularly noteworthy because it contained a single
candidate QTG, Hcnl, previously implicated in learning (Nolan
etal., 2003, 2004; Wang et al., 2007) and anxiety- and depression-
related behaviors in rodents (Giesbrecht et al., 2010; Park et al.,
2011; Kim et al., 2012; He et al., 2014). Validating the QTL-
mapping data, we found that Henl was richly expressed in the
BLA and that pharmacologic blockade of Hen channels in this
brain region impaired fear acquisition and cued-fear expression.
Together, these data establish Henl as a novel QTG for learned
fear and, more generally, support the utility of quantitative ge-
netics for identifying QTLs and QTGs for disorder-relevant in-
termediate phenotypes.

Conditioned fear is a polygenic trait and simple and compos-
ite interval analyses revealed complex linkage across loci and ge-
notypes. In particular, QTLs 10 (B6 additive effect) and 13a (D2
additive effect) show substantial linkage and were detected at
the suggestive or significant level for both fear acquisition and
expression using SIM. Similarly, the Henl locus (QTL 13b; B6
additive effect) was detected at the suggestive level after CIM
for fear acquisition and SIM for fear expression. Overlapping
yet distinct molecular mechanisms support fear acquisition,
consolidation, and expression (Johansen et al., 2011). There-
fore, the identification of overlapping loci suggests either
shared genetic regulation of these processes or the influence of
unique genes that are in close physical proximity or a combi-
nation of the two. RI mice and parental strains provide a ge-
netically and behaviorally tractable system for future studies
aimed at parsing these possibilities.

We mapped a number of promising candidate QT Gs implicated
previously in conditioned fear, learning and memory, stress, or hu-
man neurological disorders. To our knowledge, QTL 13b containing
Henl has not been reported previously as being related to fear. How
might genetic variation in Henl affect fear learning? The Henl gene
is large (378 kb, 8 exons) and contains >3500 intronic SNPs and
INDELSs of unknown biological influence and few SNPs in coding
regions. Examination of microarray datasets in GN did not reveal
compelling correlations between fear phenotypes and regional Henl
gene expression, albeit in a smaller (and potentially underpowered)
set of strains than used in our current QTL analysis. However, be-
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A, Immunohistochemical staining for Hcn reveals dense localization in distal cortical dendrites (A’; dashed line marks separation between layer I/1l and layer I11) and hippocampal CA1

stratum lacunosum moleculare (B”; P marks the location of the pyramidal cell layer). Hcn1 immunolocalization is evident in the BLA (C’; outlined), with higher magnification of the expected
punctate labeling in the BLA (D”; boxed). B, Behavioral pharmacology to examine the role of Hcn channels in the BLA on cued and contextual fear acquisition. Top, Drug administration time course.
Bottom, Microinjection of the Hen channel antagonist ZD7288 (0.3 g/0.5 wl/side) into the BLA 30 min before cued-fear training impairs fear acquisition in Context A (Acq), cued fear expression
24 h later in Context B (Cue), and contextual fear expression 48 h later in Context A (Cxt). C, Behavioral pharmacology to examine the role of Hen channels in the BLA on cued and contextual fear
expression. Top, Drug administration time course. Bottom, Microinjection of the Hcn channel antagonist ZD7288 (0.3 1.g/0.5 wl/side) into the BLA 30 min before cued-fear testing impairs cued fear
expression in Context B (Cue), but does not affect contextual fear expression 48 h later in Context A (Cxt). Data are shown as mean == SEM.n = 9—10/group. D, Summary of cannula tip placements
in the BLA in mice treated with vehicle (VEH) or Hen channel antagonist (ZD7288) (illustration of coronal brain sections from Paxinos and Watson, 1996).

cause Henl modulates neuronal excitability as a function of its dif-
ferentially localized distribution on dendritic or somal regions
(Magee, 1998; Lorincz et al., 2002; Lewis et al., 2011; Kim et al.,
2012), measures of gene expression may reflect poorly what could be
robust differences in Henl function. More precisely delineated pro-
tein expression/distribution analyses would be valuable in determin-
ing whether intronic or coding variants affect the stability and/or
trafficking of Hen1 channels.

Nevertheless, there is a biologically compelling rationale for
Hcnl involvement in this behavior. Henl channels are expressed
in brain regions that are critically involved in fear learning, in-
cluding the amygdala, PFC, and hippocampus, where they have
an important role is establishing the resting membrane potential

(Moosmang et al., 1999; Notomi and Shigemoto, 2004; Shah,
2014). Moreover, Hen channels have profound effects on neuro-
nal excitability and synaptic plasticity, which depend upon pre-
synaptic and somatodendritic trafficking (Lorincz et al., 2002;
Huang et al., 2011), the complement of other ion channels
(George et al., 2009), and interactions with cAMP and the auxil-
iary subunit TRIP8b (Huang et al., 2011; Hu et al., 2013; Shah,
2014). Last, previous work shows that Henl channels modulate
spatial learning and working memory (Nolan et al., 2003, 2004;
Wang et al., 2007; Maroso et al., 2016), as well as anxiety-,
depression-, and stress-related behaviors in rodents (Giesbrecht
et al., 2010; Park et al., 2011; Kim et al., 2012). One prior study
found a subtle abnormality in eye-blink conditioning but normal
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cued and contextual fear (freezing) in mutant mice on a mixed
129xB6 background with forebrain-wide Hcnl gene deletion
(Nolan et al., 2003, 2004). The reason for the apparent discrep-
ancy with our QTL and pharmacological data is not clear, but
there are a number of plausible explanations. First, given the
importance of Hen channels in setting resting membrane poten-
tial, genetic deletion of Henl could induce strong compensatory
effects that mask the channel’s normal function. Second, the Cre
driver line used to delete Henl may have incompletely deleted the
gene in the BLA or Henl deletion at multiple regions within the
wider fear circuitry may have produced different effects to loss of
function in the BLA alone. In lieu of studies to test for these
various possibilities, based on prior and current findings, we
posit a role for Henl in modulating neuronal and synaptic pro-
cesses in the BLA necessary for the formation and expression of
fear memories. This could have implications for the treatment of
anxiety-, stress-, and learning-related disorders (McIntosh et al.,
2012; Bukalo et al., 2014; Omrani et al., 2015). For example,
selective pharmacologic agents targeting Hen channels are cur-
rently in use to improve cardiac function and brain-specific com-
pounds are under development (Han et al., 2015; Sartiani et al.,
2015).

The collaborative and open access nature of GRPs thus pro-
vides exceptional opportunities for quantitative genetic analysis
of intermediate phenotypes in animal models. Conditioned fear
is a complex polygenic trait and the functional testing in a paren-
tal strain performed here provides a tractable simplifying model
in which the genotype of all relevant genes is held constant. With
both replication of previously reported QTLs and the discovery of
new ones, a goal for future studies in the field is to identify the
QTGs within the other loci and to understand epistatic mecha-
nisms by which the function of individual QTGs is revealed or
masked.
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