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Radiation therapy (XRT) is an essential component in the management of many types of 

cancer 
1
. XRT of the thorax frequently places the heart in the radiation field, leading to 

cardiac injury 
1–3

. Improvements in early diagnosis and treatment have increased cancer 

survival, engendering the need to critically evaluate the long-term consequences of XRT 
2–3

. 

From a clinical standpoint, XRT-induced heart injury is heterogeneous. XRT-induced 

cardiomyopathy may be clinically apparent with an initial early injury or may be latent for 

many years before presenting with heart failure 
1
. From a pathologic standpoint, XRT 

induced cardiomyopathy is characterized by myocardial fibrosis in absence of left 

ventricular (LV) dilatation and associated with normal or reduced LV mass 
1–3

. 

Unfortunately, the incidence and pathophysiology of XRT-induced cardiomyopathy remains 

poorly described due to a lack of prospective data and a latency period that exceeds the 

follow-up duration of most clinical studies. Given the increasing recognition of XRT-

induced heart disease and recent progress in murine cardiac imaging, we performed a 

systematic study of XRT-induced cardiomyopathy in the mouse.
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Experiments followed guidelines on the humane use and care of laboratory animals for 

biomedical research published by National Institutes of Health (No. 85-23, revised 1996) 

and received local Institutional Animal Care and Use Committee approval. Three-months 

old C57BL/6J male mice (Jackson Laboratory, Bar Harbor, ME) were irradiated with a 

single 20 Gy dose of XRT (Group I, N=12). Anesthetized mice (pentobarbital 50 mg/kg) 

were shielded with lead plates leaving the thorax region exposed. XRT was administrated 

locally with a Trilogy linear accelerator equipped with state of the art guided radiation 

therapy (IGTR)(Varian, Medical system, Palo Alto, CA). An additional group of mice 

(Group II, N=6) underwent sham-irradiation. All mice were followed for 6 months (Figure, 

panel A).

Transthoracic echocardiography was performed under light anesthesia (pentobarbital 50 

mg/kg) to determine cardiac dimensions and function using the Vevo770 imaging system 

(VisualSonics Inc. Toronto, Ontario, Canada) equipped with a 30-MHz probe 
4–5

. The 

thickness of the posterior pericardium and of the mitral valve and aortic valve leaflets was 

also measured in M-mode, the presence of pericardial fluid was also determined. Finally, left 

ventricular ejection fraction (LVEF) was measured at rest and 3 minutes after injection with 

the β-adrenergic receptor agonist isoproterenol (10 ng/mouse, Sigma Aldrich), to measure 

contractile reserve, defined as percentage change of LVEF within 3 minutes after 

isoproterenol injection.

Tissue slides (5 μm), prepared from paraffin-embedded hearts collected at 6 months, were 

used for histological analysis. Collagen deposition was determined by Masson’s staining 

(Sigma Aldrich) and expressed as percentage fibrotic tissue in 5 random fields at 40X 

magnification using ImageJ software (rsbweb.nih.gov/ij/). DNA damage was detected by the 

TUNEL assay (Apo-Tag plus, Millipore, Billerica, MA) and expressed as percentage of the 

TUNEL positive cardiomyocytes on the total cardiomyocytes over 10 random fields.

Statistical analysis was performed using the SPSS 15.0 package for Windows. Continuous 

variables were expressed as mean and standard error. The T test for paired data was used to 

compare variables before and after treatment. Kaplan Meier survival curves were 

constructed and compared among different groups. The T test for unpaired data was used to 

compare 2 groups. Two-tailed P values <0.05 were considered significant.

XRT induced no significant changes in LVEF at 3 days, and 1 and 4 months. Contractile 

reserve, however, was reduced in the XRT-treated mice as early as 3 days post-XRT (p<0.05 

vs baseline and sham non-irradiated mice).

Between 4 and 6 months, 6 of the 12 (50%) XRT-treated mice died, while no deaths 

occurred in the 6 sham non-irradiated group (Figure, panel B)(p=0.049). At 6 months, the 

surviving irradiated mice showed a significant reduction in LVEF (−14% [absolute 

reduction] and −20% [relative reduction], p<0.05 vs baseline and sham non-irradiated mice) 

and a further significant drop in contractility reserve at 6 months (p<0.01, for trend; p<0.05 

vs baseline and vs sham non-irradiated mice, Figure, panels C-E) without LV dilatation or 

hypertrophy (Table). We detected no pericardial or valvular or regional wall motion 
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abnormalities suggestive myocardial infarction in either group at echocardiography or at 

postmortem examination.

XRT-treated mice had a 2-fold increase in myocardial interstitial fibrosis compared to sham 

non-irradiated mice at 6 months (p=0.014), reflecting XRT-induced injury. XRT-treated mice 

showed a 4-fold increase in TUNEL-positive cells (reflecting DNA fragmentation) 

compared to the sham non-irradiated mice, but the difference did not reach statistical 

significance.

Here we describe a mouse model of radiation-induced cardiomyopathy characterized by a 

latent phase of injury lasting several months in which the LVEF is normal but the mouse has 

significantly impaired contractile reserve, and a subsequent phase of reduced LVEF without 

evidence of LV enlargement of hypertrophy and in the presence of further impairment of 

contractile reserve, increased interstitial cardiac fibrosis and sudden death, a phenotype of 

overt cardiomyopathy. The absolute reduction in LVEF of 14% is likely highly significant, 

as in clinical trials using chemotherapy agents with cardiotoxicity an absolute decrease in 

LVEF of 5–10% is associated with an >4-fold increase risk of symptomatic heart failure and 

cardiac death 
6
.

Other animal models of XRT-induced cardiomyopathy have been reported 
7
. In the most 

commonly used rat model, toxicity presents with acute pericarditis and effusion that may be 

lethal, but is generally not evident when doses <30 Gy are administrated 
8
.

A recent study confirmed that XRT increases the long-term risk of death due to heart failure 

in women that received XRT for the treatment of a left-sided breast cancer (>50% higher 

risk) than those treated for a right-sided breast cancer 
9
, and patients with XRT-induced 

cardiomyopathy have a reduction in peak oxygen consumptions of a degree consistent with 

severe heart failure 
10

.

The mechanisms leading to the late cardiomyopathy and sudden death are not completely 

understood but previous investigations suggest that an acute inflammatory response occurs 

early after radiation promoting tissue fibrosis 
11

. The early decline in LV contractile reserve 

in our model is consistent with an early injury. From a clinical standpoint, the results of this 

study indicate that while the injury to the heart occurs immediately or very early after 

irradiation, a long latent clinical phase may occur. Consequently, many patients who have 

received chest irradiation in the past may have clinically latent disease and be at risk for late 

occurrence of heart failure or sudden death. It becomes clear that strategies are needed that 

are designed to prevent or limit the initial injury and/or the progression of the disease.
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Figure. 
The Experimental design is described in panel A: Group I (N=12) received a single thoracic 

radiation of 20 Gy at day 0, Groups II (N=6) sham non-irradiated mice were used as 

controls; an echocardiogram was performed at baseline (1 day prior to irradiation), 3 days, 

and 1, 4 and 6 months post irradiation; isoproterenol was administrated at 3 days, 4 and 6 

months to measure contractile reserve. Panel B shows increased mortality in the XRT-treated 

group (p=0.049 vs sham non-irradiated). Panel C shows that XRT-treated mice had no 

significant change in LVEF up to 4 months and a significant drop in LVEF by 20% between 

4 and 6 months (p<0.05 vs sham-non-irradiated). Panel D shows representative M-mode 

echocardiography recordings of the LV transverse mid-ventricular sections obtained before 

and after isoproterenol treatment in sham non-irradiated and XRT-treated mice. A M-Mode 

measurement of contractile reserve expressed as the change in LVEF measured before and 

after isoproterenol injection (a β-adrenergic agonist) is shown in panel E. The XRT-treated 

mice demonstrated a reduction in LV contractile reserve at 3 days, 4 and 6 months (p<0.05 

vs sham-non irradiated). Interstitial myocardial fibrosis expressed as percentage of fibrotic 

areas on total area per field is shown in panel F, XRT-treated mice had a 2-fold increase in 

interstitial collagen deposition (p=0.014). Panel G shows a trend in the increment of 

TUNEL+ nuclei (indicated with and asterisk) reflecting apoptotic DNA fragmentation 

(p=NS).
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IP=intraperitoneal, isopt=isoproterenol, XRT= XRT-treated mice, LVEF=left ventricular 

ejection fraction.
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