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MotifPrototyper: A Bayesian profile model for

motif families
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Contributed by Richard M. Karp, June 1, 2004

In this article, we address the problem of modeling generic features
of structurally but not textually related DNA motifs, that is, motifs
whose consensus sequences are entirely different but nevertheless
share “metasequence features” reflecting similarities in the DNA-
binding domains of their associated protein recognizers. We
present MotifPrototyper, a profile Bayesian model that can capture
structural properties typical of particular families of motifs. Each
family corresponds to transcription regulatory proteins with sim-
ilar types of structural signatures in their DNA-binding domains.
We show how to train MotifPrototypers from biologically identi-
fied motifs categorized according to the TRANSFAC categorization
of transcription factors and present empirical results of motif
classification, motif parameter estimation, and de novo motif
detection by using the learned profile models.

mixture model | Dirichlet density | hidden Markov model |
classification | semi-unsupervised learning

All motifs are not created equal.
Michael Eisen

Transcription regulation is mediated primarily by combinatorial
interactions between protein regulators called transcription
factors (TFs), and their corresponding cis-regulatory recognition
sites on the noncoding genomic sequences, often referred to as
DNA motifs. In general, the motif that is recognized by any
DNA-binding protein is not a unique sequence. Rather, the sites of
recognition are a set of similar sequences that are somewhat
complementary in structure to their corresponding TFs within a
certain degree of variability tolerance (1). As Michael Eisen
(personal communication) has pointed out, great potential exists
for improving motif recognition by modeling and exploiting such
structural regularities. In addition to biologically functional motifs,
complex genomes also contain nonspecific binding sites (nonsites)
that can interact with a protein but do not fall into its set of specific
recognition sequences and other recurring patterns not recogniz-
able by any TF despite their enriched occurrences. The sequence
variabilities among the set of instances of each motif (corresponding
to a unique TF) and the possible ambiguities between true motif
sites and nonsites at the sequence level make it difficult to identify
biologically plausible motif patterns during de novo motif detection
from long and complex genome sequences and to infer the function
of identified motifs in silico.

For the gene regulatory system to work properly, a TF must
display much higher binding affinities to its own recognition sites
than to nonsite DNA. This correspondence suggests possible
regularities in the DNA motif structure that match the structural
signatures in the DNA-binding domains of their corresponding
TFs. Can these regularities hidden in the true DNA motif
patterns be exploited to improve sensitivity and specificity
during motif discovery?

A commonly used representation for motifs in extant motif-
finding algorithms is the position weight matrix (PWM), which
records the relative frequency (or a related score) of each potential
DNA nucleotide at the positions of a motif (2, 3). Statistically, a
PWM defines a product multinomial (PM) model for the observed
instances of a motif, which inherently assumes that the nucleotide
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contents of positions within the motif are independent of each
other. Thus, a PWM only models independent statistical variations
with respect to a consensus pattern of a motif, but it ignores
potential couplings between positions inside the motif. This limi-
tation often weakens the ability of a PWM to discern genuine
instances of a motif from a very complex background that may
harbor random recurring patterns because of the low signal/noise
ratios reflected in the likelihood-based scores computed from the
PM model.

A recent article by Barash et al. (4) proposed a family of more
sophisticated representations to capture richer characteristics of
motifs. These representations are based on probabilistic graphical
models (also referred to as Bayesian networks for the cases of
directed acyclic models), a formalism that captures probabilistic
dependencies among random variables in complex domains by
using graph-theoretic representations with associated probabilistic
semantics (5, 6). Barash et al. (4) suggested that a mixture of PM
models can capture potential multimodalities of the biophysical
mechanism underlying the protein-DNA recognition between a TF
and its target motif sites. They further proposed a tree-based
Bayesian network capable of capturing pairwise dependencies of
nucleotide contents between nonadjacent positions within the
motif. A natural combination of the above two models leads to a
more expressive model, a mixture of trees, which captures more
complex dependency characteristics of motifs. In a series of exper-
iments with simulated and real data, Barash ez al. (4) showed that
these more expressive motif models lead to better likelihood scores
for motifs and can improve the sensitivity and specificity of motif
detection in yeast regulatory sequences under a simple scenario of
motif occurrence (i.e., at most one motif per sequence).

In principle, it is possible to construct even more expressive
models for motifs by systematically exploiting the power of graph-
ical models, although fitting more complex models reliably de-
mands more training data. Thus, striking the right balance between
expressiveness and complexity remains an open research problem
in motif modeling.

This progress notwithstanding, it should be clear that all extant
motif models are essentially motif-specific and are intended to
generalize only to different instances of the same motif. An
important issue that remains little addressed is how to build models
that can generalize over different motifs that are somewhat related
(for instance, belonging to a family of regulatory sites that are
targets of TFs bearing the same class of binding domains) even
though they do not share apparent commonality in consensus
sequences. This issue is important in computational motif analysis
because,
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 often, we want to roughly predict the biological property of an
in silico identified motif pattern (e.g., to what kind of TFs it
is likely to bind) to reduce the search space of experimental
verification;

* we may need to introduce some generic but biologically mean-
ingful bias during de novo motif detection so that we can
distinguish a biologically plausible binding site (i.e., specifically
recognizable by some TF) from a trivial recurring pattern (e.g.,
microsatellites);

e we may also want to restrict attention to a particular class of
proteins in performing tasks, such as, “find a regulatory site
that potentially binds to type X TF,” or “find co-occurring
regulatory sites that can be recognized by type X and type Y
TFs, respectively.”

These tasks are important in inferring gene regulatory networks
from genomic sequences, possibly in conjunction with relevant
expression information.

In this article, we address the problem of modeling generic
features of structurally but not textually related DNA motifs, that is,
motifs whose consensus sequences are entirely different but nev-
ertheless share “metasequence features,” reflecting similarities in
the DNA-binding domains of their associated protein recognizers.
We present MotifPrototyper, a profile hidden Markov-Dirichlet
multinomial (HMDM) model, which can capture regularities of
nucleotide-distribution prototypes and site-conservation couplings typ-
ical of each particular family of motifs that corresponds to TFs with
similar types of structural signatures in their DNA-binding domains.
Central to our framework is the idea of formulating a profile motif
model as a family-specific, structured Bayesian prior model for the
PWDMs of motifs belonging to the family being modeled, thereby
relating these motif patterns at the metasequence level. We devel-
oped the theoretical framework of the HMDM model in an earlier
technical article (7). In this article, we show how to learn family-
specific profile HMDMs, or MotifPrototypers, from biologically
identified motifs categorized in standard biological databases; how
the model can be used as a classifier for aligned multiple instances
of motifs; and, most importantly, how a mixture model built on top
of multiple profile models can facilitate a Bayesian estimation of the
PWM of a novel motif. The Bayesian estimation approach connects
biologically identified motifs in the database to previously unknown
motifs in a statistically consistent way (which is not possible under
the single-motif-based representations described previously) and
turns de novo motif detection, a task conventionally cast as an
unsupervised learning problem, into a semiunsupervised learning
problem that makes substantial use of existing biological knowledge.

Categorization of Motifs Based on Biological Classification of
DNA-Binding Proteins
Unlike proteins or genes, which usually have a one-to-one
correspondence to monomer sequences and hence are directly
comparable based on sequence similarity, a DNA motif is a
collective object referring to a set of similar short DNA sub-
strings that can be recognized by a specific protein transcription
factor. Different motifs are characterized by differences in
consensus, stochasticity, and the number of occurrences. Since
each motif usually corresponds to a profile of gapless, multiple-
aligned instances rather than a single sequence as for genes and
proteins, comparisons based on sequence similarity for different
motif patterns are not as straightforward as for genes or proteins.
From a biological point of view, perhaps the most informative
way of categorizing DNA motifs is according to the regularities of
the DNA-binding domains of their corresponding transcription
factors. Advances in structural biology have provided an extensive
categorization of the biophysical structures of DNA-binding pro-
teins. The most recent update of the TRANSFAC database (www.
gene-regulation.com) (8) lists 4,219 entries, many of which are
homologous proteins from different species but nevertheless indic-
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Fig. 1. DNA-binding domains in TFs. (A) Leucine zipper. (B) Zinc fingers. (C)
Helix-turn-helix. (D) Beta scaffold.

ative of the vast number of transcription factors now known that
regulate gene expression. The TRANSFAC categorization of TFs
(Table 2, which is published as supporting information on the PNAS
web site.) provides a good indication of the types of binding
mechanisms involved in motif-TF recognition. (For briefness, we
refer to the supporting information, which provides detailed meth-
ods in the Supporting Text, as well as Table 2 and Figs. 7 and 8, which
are published on the PNAS web site.) For concreteness, the
following is a brief summary of the structural regularities of four of
the major classes of DNA-binding proteins, paraphrasing ref. 9.
Due to the correspondence between a TF and a DNA motif, the TF
categorization strongly suggests possible features in the structure of
motif sequences that are intrinsic to a family of motifs correspond-
ing to a specific class of TFs.

The leucine zipper signature (Fig. 14) under the superclass of
basic domain is an important feature of many eukaryotic regulatory
proteins. The hallmark of leucine zipper proteins is the presence of
leucine at every seventh position in a stretch of 35 residues. This
regularity suggests the presence of a zipper-like a-helical coiled coil
bringing together a pair of DNA-binding modules to bind two
adjacent DNA sequences. Leucine zippers can couple identical or
nonidentical chains, suggesting homodimeric or heterodimeric sig-
nature in the recognition site.

The zinc finger domain (Fig. 1B) is also common in eukaryotic
TFs and regulates gene expression by binding to extended DNA
sequences. A zinc finger grips a specific region of DNA, binds to the
major groove of DNA, and wraps part of the way around the double
helix. Each finger makes contact with a short stretch of the DNA,
and residues from the amino-terminal part of the a-helix form
hydrogen bonds with the exposed bases in the major groove.
Zinc-finger DNA-binding proteins are highly versatile and can have
various numbers of zinc fingers in the binding domain. Arrays of
zinc fingers are well suited for combinatorial recognition of DNA
sequences.

The helix-turn—helix domain (Fig. 1C) contains two a-helices
separated by 34 A, the pitch of a DNA double helix. Molecular
modeling studies showed that these two helices would fit into two
successive major grooves. This domain, common in bacterial DNA-
binding proteins, such as the bacteriophage A Cro protein, also
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Fig. 2. Conservation coupling of a zinc-finger motif gal/4 and a helix-loop-helix motif pho4. Since typical conservation couplings are often reflected in the
""contour shape’ (e.g., U or bell shape) of the motif logo (a graphical display of the spatial pattern of information content over all sites), we can understand this

property as a “shape bias.”

occurs in the eukaryotic homeobox proteins controlling develop-
ment in insects and vertebrates.

The beta-scaffold factors (Fig. 1D) are somewhat unusual in that
they bind to the minor groove of DNA. The binding domain is
globular rather than elongated, suggesting an extensive contact
between the DNA sequence and the protein binding domain.

These class-specific protein-binding mechanisms suggest the
existence of features that are characteristic of different families of
DNA motifs and shared by different motifs in the same family. It
is evident that the positions within the motifs are not necessarily
uniformly conserved, nor are the conserved positions randomly
distributed. Since only a subset of the positions inside the motif are
directly involved in protein binding, the degree of conservation of
positions inside the motif is likely to be spatially dependent, and
such dependencies may be typical for each motif family correspond-
ing to a TF class due to structural complementarity between motifs
and the corresponding TFs. It is also possible that due to different
degrees of variability tolerance for different TF classes, each family
of motifs may require a different selection of prototypes for the
distributions of possible nucleotides at the positions within the
motifs. Note that such regularities are less likely to be preserved in
a nonfunctional recurring pattern, thus they also provide important
clues to distinguishing genuine from false motif patterns during de
novo motif finding. Fig. 2 provides two examples for the so-called
conservation-coupling property of the position dependencies in
functional motifs. On the left-hand side are two genuine motifs
from two different families. On the right are artificial patterns
resulting from a column permutation of the original motifs. Al-
though the two patterns will receive the same likelihood score
under conventional PWM representations, clearly the patterns on
the left are biologically more plausible because of the complemen-
tarity of their patterns of conserved positions to the structures of
their binding proteins. Again, it is important to remember that the
conservation-coupling property and nucleotide-distribution proto-
types are only associated with the generic biophysical properties of
a motif family, but not with any specific consensus sequence of a
single motif; thus, we call them metasequence features.

Bayesian Profile Models for Motif Families
Our goal is to build a statistical model to capture the generic
properties of a motif family so that it can generalize to novel
motifs belonging to the same family. In the following text, we
develop such a model using a hierarchical Bayesian approach.
The column of nucleotides at each position in a motif can be
modeled by a position-specific multinomial distribution (PSMD). A
multinomial distribution over K symbols can be viewed a point in
a regular (K — 1)-dimensional simplex; the probabilities of the
symbols are the distances from the point to the faces of the simplex
(an example of a 2D simplex is shown in Fig. 34). A Dirichlet
distribution is a particular type of distribution over the simplex,
hence, a distribution over the multinomial distributions. Each
specific Dirichlet is characterized by a vector of K parameters. It can
impose a bias toward a particular type of PSMD in terms of how
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strongly it is conserved and to what nucleotide it is conserved. For
example, in Fig. 34, the center of probability mass is near the center
of the simplex, meaning that the multinomial distributions that
define a near uniform probability of all possible nucleotides will
have a higher prior probability. But for a Dirichlet density whose
center of mass is close to a corner associated with a particular
nucleotide, say, “A” (Fig. 3B), the multinomial distributions with
high frequencies for A have high prior probabilities. Therefore, we
can regard a Dirichlet distribution as a “prototype” of the PSMDs
of motifs.

We propose a generative model that generates a multialignment
A containing M instances of a motif of length L, in the following way
(as illustrated in Fig. 4). (i) We sample a sequence of states s =
(81 - - . ,82) from a first-order Markov chain with initial distribution
7 and transition matrix B. The states in this sequence can be viewed
as prototype indicators for the columns (positions) of the motif.
Associated with each state is a corresponding Dirichlet distribution
specified by the value of the state. For example, if s; = 7, then column
1 is associated with a Dirichlet distribution parameterized by o; =
[ait, . .., aia]'. (if) For each / € {1, ..., L}, sample a multinomial
distribution 6; according to p(6Lk,), the probability defined by the
Dirichlet component «,. (iii) All the nucleotides in column / are
generated iid according to the multinomial distribution parameter-
ized by 6.

Thus, the complete likelihood of a motif alignment A/« char-
acterized by a nucleotide-count matrix 4 is:

P(A, s, 6la, m, B) = p(A|6)p(6ls, a)p(s|m, B). [1]

Technically, such a model, which we refer to as a MotifPrototyper,
is a HMDM model (7, 10). It defines a structured prior for the
PWM of a motif. Formal development of the HMDM model and
mathematical details of Bayesian inference using this model can be
found in an earlier technical article (7) and hence are omitted here
for simplicity. With the availability of a categorization for motifs,
each family of motifs can be associated with a family-specific profile
HMDM model that imposes PSMD prototypes and positional
dependencies unique to this family.

What do we gain from a MotifPrototyper? First, a MotifProto-
typer introduces prior information about the joint distribution of
the nucleotide distribution in different positions of a motif of the

A J B

Fig. 3. Dirichlet densities over a 3-nt simplex.
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Fig. 4. The graphical model representation of a MotifPrototyper. Empty
circles represent random variables associated with a single motif and the
boxes are plates representing iid replicates (i.e., M observed instances of the
motif). Black arrows denote dependencies between the variables. Parameters
of the MotifPrototyper are represented by the center-dotted circles, and the
round-cornered box over the a parameter denotes / sets of Dirichlet parameters.

corresponding family and gives high probabilities to those com-
monly found distributions possibly compatible with the degree of
variability tolerance intrinsic to the class of TFs corresponding to
the motif family. Under a MotifPrototyper, a posteriori, each PSMD
in a motif follows a family-specific mixture of multiple Dirichlet
distributions, which blends the different prototypes that might
dictate the nucleotide distribution at that position. Furthermore, a
MotifPrototyper stochastically imposes family-specific spatial de-
pendencies for different columns within a motif. As Fig. 4 makes
clear, a MotifPrototyper is not a simple hidden Markov model
(HMM) for sequence data. In an HMM the transitions would be
between the emission models (i.e., multinomials) themselves, and
the output at each step would be a single monomer in the sequence.
In MotifPrototyper, the transitions are between different prior
components for the emission models, and the direct output of this
HMM is the parameter vector of a generative model, which will be
sampled multiple times at each position to generate iid instances.
This approach is especially useful when we have prior knowledge
about motif properties, such as conservation-coupling or other
positional dependencies.

Second, rather than using a maximum likelihood (ML) approach
to estimate the PWM, which considers only the relative frequency
of nucleotides but is indifferent to the actual number of instances
observed, MotifPrototyper facilitates a Bayesian estimation of the
PWM under a family-specific prior, thus taking into consideration
the actual number of observations available for PWM estimation
along with the biological prior. It is possible with only a few
instances to obtain a robust estimation of the nucleotide frequency
at each position of a motif.

Note that a MotifPrototyper defines a family-specific structured
prior for the PWMs without committing to any specific consensus
motif sequence.

Training a MotifPrototyper. Given biologically identified instances of
motifs of a particular family, we can compile a multiple-alignment
for each motif and write down the joint likelihood of the training
data under a single-profile model (i.e., a MotifPrototyper) by
marginalizing the PWMs (i.e., 6’s) and the hidden Markov states
(i.e., s) of each motif in Eq. 1. This likelihood is a function of the
model parameters. Thus, we can compute the empirical Bayesian
estimation of the model parameters by maximizing the likelihood
over each parameter by using a quasi-Newton procedure (11). The
result is a set of parameters intrinsic to the training data.

Note that this training process also involves a model selection
issue of how many Dirichlet components should be used. As in any
statistical model, a balance must be struck between the complexity
of the model and the data available to estimate the parameters of
the model. Empirically, we found that eight components appear to
be a robust choice and also provide good interpretability.
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Classifying Motifs. Identifying that a motif belongs to a family and
relating it to other members of the family often allows inference
about its functions. Given multiple profile models, each corre-
sponding to a distinct motif family, we can compute the conditional
likelihood of a set of aligned instances of an unlabeled motif under
each profile model by integrating out the hidden variables (i.e., 6
and s) in each resulting complete likelihood function. The posterior
probability of each possible assignment of class membership to the
motif under test is proportional to the magnitude of the conditional
likelihood multiplied by the prior probabilities of the respective
motif families (which can be computed from the empirical fre-
quency of each motif family) (see supporting information).

Thus, we can estimate the family membership by a maximum a
posteriori scheme. It is noteworthy that, here, we are classifying a set
of aligned instances of a motif as a whole rather than a single
sequence substring as in a standard classification task, such as,
predicting the function or structure of a protein based on its amino
acid sequence (12, 13).

Bayesian Estimation of PWM and Semiunsupervised de Novo Motif
Detection. Given a set of aligned instances of a motif, if we know the
family membership of this motif, we can directly compute the
posterior distribution of its PWM, using the family-specific Motif-
Prototyper as a prior according to the Bayesian rule. The Bayesian
estimation of a PWM is defined as the expectation of the PWM with
respect to this posterior. If the family membership is not known a
priori (i.e., we do not prespecify what family of motif to look for, but
allow the motif to come from any family), then we can simply
assume that the PWM admits a mixture of profile models (see
supporting information).

In de novo motif detection where locations of motif instances are
not known, the motif matrix A is an unobserved random variable.
We can iterate between predicting motif locations based on the
current Bayesian estimation of the motif PWM and updating the
Bayesian estimation based on newly predicted motif instances. It
can be proved that such a procedure is guaranteed to converge to
a locally optimal solution (14). But unlike the standard EM
algorithm for estimating a PWM, since we can compute the
Bayesian estimation based on a trained profile motif prior, we
essentially turn de novo motif detection from an originally unsu-
pervised learning problem into a semiunsupervised learning prob-
lem that can make use of biological training data without commit-
ting to any particular consensus motif pattern.

It is straightforward to generalize our current formulation of the
MotifPrototyper model to family-specific prior distributions of
more sophisticated motif representations, such as trees or mixture
of trees (4) by slightly reparameterizing the MotifPrototyper model.
The training procedure and the usage for classification and de novo
motif detection require little modification.

Experiments

In this section, we present results of learning MotifPrototyper
models from categorized families of motifs and demonstrate ap-
plications of the learned MotifPrototypers with three experiments,
each addressing a typical issue of interest in in silico motif analysis.
(¢) Given instances of a (computationally) identified motif, assign
the motif to a motif family that corresponds to a particular class of
transcription factors. (i) Provide a Bayesian estimation of PWM
that be more informative than a ML estimation. (iii) Improve de
novo motif detection by casting the problem as a semisupervised
learning task that makes use of biological prior knowledge incor-
porated in the family-specific MotifPrototypers (with a small-scale
demonstration).

Parameter Estimation. The TRANSFAC database (version 6.0)
contains 336-nt count matrices of aligned motif sequences. These
matrices summarize a significant portion of the biologically iden-
tified transcription regulatory motifs reported in the literature and
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Table 1. Motif classification with MotifPrototyper

Basic Zinc
CV error domain  finger  Helix-turn-helix  Beta scaffold
Whole set 0.256 0.423 0.443 0.403
Major classes 0.217 0.373 0.379 0.178

CV, cross-validation

are well categorized and curated (although the original aligned
sequences corresponding to the count matrices are not provided).
We used 271 of the matrices as training data, each derived from at
least 10 recognition sites of a TF in one of the four well represented
superclasses (Table 2), to compute the empirical Bayesian estima-
tions of the parameters of four profile Bayesian models of motif
families.

We performed 50 random restarts for the quasi-Newton algo-
rithm for parameter estimation and picked the solutions corre-
sponding to the highest log likelihood achieved at convergence (Fig.
7 illustrates the parameters of the four resulting profile models
pictorially). We have not attempted to interpret the numerical
representations of each profile model in terms of their biological
implications, but it is possible to read off some interesting high-level
biological characteristics therefrom (see supporting information).
In this article we refrain from such elaborations but simply maintain
that MotifPrototyper is a formal mathematical abstraction of the
metasequence properties intrinsic to a motif profile represented by
the training examples.

To evaluate the training quality of our profile models, we define
the training error as the percentage of misclassification of the
superclass identities of the training motif matrices using profile
models learned from the full training set. Our training errors ranged
from 10% to 28%, with the beta-scaffold MotifPrototyper having
the best fit (basic domain, 16.8%; zinc finger, 17.3%; helix—turn—
helix, 27.6%; and beta-scaffold, 10%). Given that motif family is a
rather loose definition based on TF superclasses, and that each
superclass still has very diverse and ambiguous internal structures,
these training errors indicate that family-specific regularities can be
captured reasonably well by MotifPrototyper.

Motif Classification. To examine the generalizability of MotifProto-
typer to newly encountered motif patterns, we performed a 10-fold
cross-validation test for motif classification (see supporting infor-
mation). The performances over each family of motifs are summa-
rized in Table 1. We present classification error rates for both the
entire data set and the slashed data set that contains only the major
motif subclasses (i.e., those with at least 10 different motifs, see
Table 2 for details of the class hierarchy) under each superclass. Not
surprisingly, performance on the data set with only major subclasses
is significantly better, suggesting that the minor classes in each
superclass are possibly more ambiguous and less typical with respect
to the overall characteristics of the superclass. In fact, some minor
classes were unanimously assigned to a different superclass by our
classifier; for example, all six members of class 1.6 (bHSH) and all
seven members of class 3.4 (heat-shock factors) are assigned to
superclass 4 (beta-scaffold), whereas all five members of class 4.7
(HMG) are assigned to superclass 3 (helix-turn—helix). Whether
such inconsistencies reflect a deficiency of our classifier or possible
true biological ambiguity of these motif patterns is an interesting
problem to be investigated further.

To our knowledge, there has been no algorithm that classifies
aligned sets of motif instances as a collective object based on
metasequence features shared within motif families. The closest
counterpart in sequence analysis is the profile HMM (pHMM) for
protein classification (15), but pHMM is based on the assumption
that proteins of the same family share sequence-level similarities,
and the objects classified are single sequences. Thus, no direct
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represents a motif being tested, and the x coordinate (respectively, y coordi-
nate) represents the log likelihood odds due to the ML (respectively, Bayesian)
estimation.

comparison can be made between pHMM and MotifPrototyper.
Nevertheless, we note that although pHMM is based on much more
stringent features at the sequence level and aimed at a relatively
simpler task of evaluating single sequences, typical performance of
pHMM is ~20-50% for short polypeptides (i.e., <100 aa) (12, 13),
similar to the performance of motif classification using Motif-
Prototyper. Thus, we believe that MotifPrototyper exhibits a rea-
sonable performance given that the labeling of motif family mem-
bership is more ambiguous than that of single protein sequences,
the metasequence features we use are far less stringent than
sequence similarities, and motif patterns are much shorter than
polypeptides.

PWM Estimation and Motif Scoring. A major application of Motif-
Prototyper is to serve as an informative prior for Bayesian estima-
tion of the PWM from a set of aligned instances of a novel motif.
Since in a realistic de novo motif detection scenario, we have to
evaluate many substrings corresponding to either a true motif, or
random patterns in the background, we expect that the Bayesian
estimation of PWM resulted from a mixture of MotifPrototypers
provides a more reliable discriminability than the ML estimation
between true motifs and background sequences. We demonstrate
this ability by comparing the likelihood of a true motif substring
with the likelihoods of background substrings, all scored under the
estimated PWM of the motif (see supporting information).

As evident from Fig. 5, the discriminability of the Bayesian
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Fig. 6. Median hit rates of de novo detection of yeast motifs with Motif-

Prototyper (), PM (O), and the best outcome of four single-profile-based
predictions with MotifPrototyper (¢). Motifs are listed along the x axis,
ordered by the hit rates of MotifPrototyper for each motif.
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estimation of the PWM, measured by the log likelihood odds (of
motif vs. background substrings), is indeed better than that of the
ML estimation for most of the motifs we tested. A more detailed
analysis (supporting information) further reveals that, in cases
where only a small number of instances are available for estimation,
mixture of profile models still leads to a good estimation that
generalizes well to new instances and results in high log likelihood
odds, whereas the ML estimation does not generalize as well.

These results give strong support to the claim that, in many cases,
a MotifPrototyper-based approach can significantly improve the
sensitivity and specificity for novel motifs and provide a robust
estimation of their PWM under few observations. These are very
useful properties for de novo motif detection in complex genomic
sequences.

De Novo Motif Discovery. Finally, we present a comparison of the
(mixture of) profile Bayesian motif model, MotifPrototyper, with
the conventional PM model for de novo motif detection, using
semirealistic test data of which the ground truth (i.e., full annotation
of motif types and locations) is known for evaluating the prediction
results (see supporting information).

We tested on sequences each containing a single “authentic”
motif instance and contaminated by artificial “decoy” patterns (e.g.,
the permuted patterns in Fig. 2). This scenario frees us from
modeling the global distribution of motif occurrences, as needed for
more complex sequences (compare the LOGOS model, ref. 10) and
therefore demonstrates the influence of different models for motif
patterns on de novo detection.

As shown in Fig. 6, MotifPrototyper significantly outperforms
PM [i.e., with >20% margin in “hit-rate” (supporting informa-
tion)] on 11 of the 28 motifs and is comparable with PM (within
+10% difference) for the remaining 17 motifs. Overall, Motif-
Prototyper correctly identifies 50% or more of the motif in-
stances for 16 of the 28 motifs, whereas the PM model achieves
a 50% hit rate for only 8 of the 28 motifs. Note that Motif-
Prototyper is fully autonomous and requires no user specifica-
tion of which particular profile motif model to use. If we are
willing to introduce a manual postprocessing step, in which we
use each of the four profile motif models described before
separately for de novo motif finding, and generate four sets of
motif predictions instead of one (as of MotifPrototyper) for
visual inspection, it is possible to obtain even better predictions
(Fig. 6, O).

The ability to provide multiple candidate solutions, each corre-
sponding to a specific TF category, manifests a key advantage of the
profile motif model. It allows a user to capture different types of
prior knowledge about motif structures and bias motif prediction
toward a particular metasequence structure in a well controlled
way. A human observer given a visual presentation of the most
likely motifs suggested by different profile motif models could easily
pick out the best one from these candidates, whereas PM can yield
only a single most likely answer.

Conclusion

We have presented MotifPrototyper, a novel profile Bayesian motif
model that captures generic metasequence features shared by
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motifs corresponding to common transcription factor superclasses.
It is a probabilistic graphical model that captures the positional
dependencies and nucleotide distribution prototypes typical to each
motif family, and it defines a prior distribution of the positional
weight matrices of motifs for each family. We demonstrated how
MotifPrototyper can be trained from biologically identified motif
examples and its applications for motif classification, Bayesian
estimation of PWM, and de novo motif detection.

To the best of our knowledge, all extant motif models are
intended to be motif-specific, emphasizing the ability to character-
ize sequence-level features unique to a particular motif pattern.
Thus, when one defines a model in such a way for a novel motif not
biologically characterized before, one needs to solve a completely
unsupervised learning problem to identify the possible instances
and fit the motif parameters simultaneously. Under this unsuper-
vised framework, there is little explicit connection between the
novel motif to be estimated from the unannotated sequences and
the rich collection of biologically identified motifs recorded in
various databases. It is reasonable to expect that the fruitful
biological investigations of gene regulatory mechanisms and the
resulting large number of known motifs could contribute more
information to the unraveling of novel motifs. MotifPrototyper
represents an initial foray into the development of a new framework
that turns de novo motif detection into a semiunsupervised learning
problem. It provides more control during the search of novel motif
patterns by making use of prior knowledge implied in the known
motifs, helps to improve sensitivity to biologically plausible motifs,
and potentially reduces spurious solutions often occurring in an
pure unsupervised setting.

It is possible to build a stronger motif classifier by using discrim-
inative approaches, such as neural networks or support vector
machines, and we are currently pursuing this direction. But since the
goal of this article is not merely to build a classifier but to develop
a model that can be easily integrated into a more general archi-
tecture for de novo motif detection, we feel that a generative
framework, especially by means of a Bayesian prior model, provides
the desired generalizability and flexibility for such tasks. As dis-
cussed in ref. 10, a graphical model formalism of the motif detection
problem allows a modular combination of heterogeneous submod-
els, each addressing a particular component of the overall problem,
i.e., the local structure of a motif pattern, the global organization of
motif instances and motif modules, and the distribution of back-
ground sequences, thereby enabling a complex modeling and
inference problem to be handled in a divide-and-conquer fashion.
The design of MotifPrototyper aligns with this principle and can be
used as the “local” submodel under the LOGOS framework (10).

In should also be clear that the main aim of this article is to
demonstrate the profile Bayesian model as a modeling approach to
capture metasequence motif features. To make the presentation
simple and focused, in this article we did not intend to present
working software that performs motif discovery in real complex
sequences, which also requires appropriate modeling of other
aspects of gene regulatory sequences, such as genomic distribution
of motif locations. This issue should be addressed with another
probabilistic model and de novo motif detection in metazoan
genomes using a joint model should be investigated.
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