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Abstract

Mammalian Central Nervous System (CNS) neurons regrow their axons poorly following injury, 

resulting in irreversible functional losses. Identifying therapeutics that encourage CNS axon repair 

has been difficult, in part because multiple etiologies underlie this regenerative failure. This 

suggests a particular need for drugs that engage multiple molecular targets. Although multi-target 

drugs are generally more effective than highly selective alternatives, we lack systematic methods 

for discovering such drugs. Target-based screening is an efficient technique for identifying potent 

modulators of individual targets. In contrast, phenotypic screening can identify drugs with 

multiple targets; however, these targets remain unknown. To address this gap, we combined the 

two drug discovery approaches using machine learning and information theory. We screened 

compounds in a phenotypic assay with primary CNS neurons and also in a panel of kinase enzyme 

assays. We used learning algorithms to relate the compounds’ kinase inhibition profiles to their 

influence on neurite outgrowth. This allowed us to identify kinases that may serve as targets for 

promoting neurite outgrowth, as well as others whose targeting should be avoided. We found that 

compounds that inhibit multiple targets (polypharmacology) promote robust neurite outgrowth in 
vitro. One compound with exemplary polypharmacology, was found to promote axon growth in a 

rodent spinal cord injury model. A more general applicability of our approach is suggested by its 

ability to deconvolve known targets for a breast cancer cell line, as well as targets recently shown 

to mediate drug resistance.
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INTRODUCTION

In recent years, the predominant paradigm in drug discovery has been the search for 

maximally selective drugs that act on individual targets (1). Nevertheless, promiscuous drugs 

have generally enjoyed more clinical success than highly selective counterparts (1–4). 

Promiscuous drugs can engage multiple targets (polypharmacology) that additively 

overcome the robust nature of biological networks (1, 5). While anti-target (unwanted off-

target) engagement can be deleterious, compounds with favorable polypharmacology that 

engage multiple targets and do not engage anti-targets can have excellent therapeutic 

efficacy with reduced toxicity and resistance (1–3, 5, 6). In fact, polypharmacology appears 

to be responsible for the efficacy of most FDA approved drugs (2, 3). Unfortunately, the 

difficulty in systematically identifying targets for complex biological processes has hindered 

rational exploitation of polypharmacology (1). Phenotypic screening can discover 

compounds with favorable polypharmacology, since it queries intact biological systems 

rather than an individual isolated target (7). However, identifying drug targets from 

phenotypic screening has been extremely challenging, frequently limiting follow-up studies 

(8).

Protein kinases are attractive drug targets for numerous disorders ranging from neurology to 

cancer (6, 9–11). The homology of kinase catalytic domains gives rise to kinase inhibitor 

promiscuity (12–15). This makes the design of hyper-selective kinase inhibitors difficult but 

facilitates the discovery of drugs with multiple “intended” targets (15, 16). So far, favorable 

polypharmacology in kinase inhibitors has been discovered mainly by chance (3); however, 

Dar et al demonstrated in Drosophila that it can be approached rationally given prior 

knowledge of multiple targets and anti-targets (17). Network-based methodologies are 

ultimately expected to predict the best drug targets and anti-targets in mammalian systems 

(1, 2). Unfortunately, such inductive predictions require detailed knowledge of the functional 

and temporal properties of signalling nodes within all relevant networks (18) – a currently 

impossible task, even in simple cellular systems. Additionally, the predicted targets may 

prove to be undruggable.

To facilitate rational exploitation of polypharmacology, we have developed an approach for 

deconvolving readily druggable targets directly from a phenotypic screen. Our goal was to 

identify compounds with favorable polypharmacology for promoting neurite outgrowth in 

central nervous system (CNS) neurons. We began by screening hundreds of kinase inhibitors 

in a phenotypic assay utilizing rat hippocampal neurons. We then used information theory 

and machine learning to relate the compounds’ effects on neurite outgrowth to their kinase 

inhibition profiles. This analysis identified kinases whose inhibition is likely to promote 

neurite outgrowth (targets) and others whose inhibition is likely to repress neurite outgrowth 

(anti-targets). Based on independent examination with RNAi, we identified a relatively small 

number of “robust” targets and anti-targets. Compounds with favorable pharmacology 

strongly increased neurite outgrowth in the phenotypic assay. A compound with especially 

favorable polypharmacology was found to promote axon growth in the adult mouse CNS.
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To assess the applicability of the approach to other disease models, we applied it to a cell 

viability screen utilizing the ErbB-2 addicted breast cancer cell line SK-BR-3 (19). 

Encouragingly, the EGFR/ErbB family was amongst the top identified target candidates.

RESULTS AND DISCUSSION

A variety of kinase inhibitors strongly promoted neurite outgrowth

We used a previously described phenotypic assay, with embryonic rat hippocampal neurons, 

to screen 1606 small-molecule kinase inhibitors. We chose this assay for its reliability, high 

screening suitability (20), and previous success in identifying transcription factors that 

promote axon regeneration in vivo (21). Neurite outgrowth in these cells is typically slow on 

poly-D-lysine but can be significantly induced with small molecules (Supporting 

Information Fig. 1). This gives the assay a large dynamic range and makes it appropriate for 

identifying neurite outgrowth promoters with high sensitivity. Screened compounds were 

classified based on their effects on neurite total length, expressed as percentage of control 

(%NTL) (Fig. 1a, Supporting Information Table S1). The screen identified 292 compounds 

that reproducibly promoted neurite outgrowth (“hits”), 77 of which had %NTL ≥ 200.

Combining hits further enhanced neurite outgrowth

The large diversity in chemical structures of hits (Supporting Information Table1) suggests 

that neurite outgrowth may be promoted through modulating a variety of target kinases and 

corresponding host networks. Additive effects on neurite outgrowth may therefore be 

achieved by co-treating cells with hits that act via distinct biological targets. We selected 5 

hits in a manner that maximizes the likelihood that they operate via distinct targets, thereby 

increasing the chances that they would have additive effects. The GlaxoSmithKline PKIS-I 

library of kinase inhibitors (22) had previously been profiled in a panel of kinase inhibition 

assays (data available via ChEMBL). Using these data, we selected the five strongest PKIS-I 

hits that had the most dissimilar kinase inhibition profiles, unrelated chemical structures, and 

divergent effects on six markers of neuronal signalling (Fig. 1b, Supporting Information 

Table S2). We used the phenotypic assay to screen 5-way combinations of these hits at 

different concentrations (total combinations tested = 1024). Results revealed additive - and 

possibly synergistic - effects for compounds GW659386A, SB-750140, and GSK1511931A 

(Fig. 1c, d, e).

Machine learning detects candidate targets and anti-targets

While this ad hoc approach identified combinations that strongly promoted neurite 

outgrowth, it did not provide information on biologically relevant targets. Towards this end, 

we analyzed the hit classification of screened compounds as a function of their in vitro 
kinase inhibition profiles. First, we used Support Vector Machines (SVM) to test the 

hypothesis that kinase inhibition data contains information relevant to neurite outgrowth. 

SVM is a computer-based learning algorithm that recognizes patterns given examples 

belonging to each of two categories (training phase), and builds a model that can classify 

new examples into either category (testing phase). In this case, the SVM learns the kinase 

inhibition profiles of hits (compounds that promote neurite outgrowth) and non-hits 

(compounds that do not promote neurite outgrowth), and then uses the inhibition profiles of 
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new compounds to predict whether or not they would promote neurite outgrowth. To assess 

the ability of SVM to distinguish between the two compound categories based on kinase 

inhibition profiles, we performed a ten-fold cross-validation experiment. We used the kinase 

inhibition profiles of 256 compounds (72 hits + 184 non-hits) against a panel of 190 kinases 

(Supporting Information Table S3). Encouragingly, SVM exhibited a classification accuracy 

of 80%. Furthermore, scrambling the kinase inhibition values across the 256 compounds 

degraded accuracy to random guessing (53%). This demonstrated that the kinase inhibition 

data indeed contained information relevant for neurite outgrowth.

Some profiled kinases, however, showed little to no inhibition by any of the compounds. 

Others showed indiscriminate inhibition by compounds from both compound categories. 

Such kinases are not likely to contribute useful information to the SVM and are therefore 

irrelevant for model building. Moreover, some kinases tend to have near identical inhibition 

patterns (pharmacological linkage (15)) and so contribute redundant information. We 

therefore sought to find the minimum number of kinases that could inform SVM predictions 

on the largest number of compounds. We adapted the maximum relevance (MR) algorithm 

(23) to analyze the kinase profiling data and select the 50 kinases with the highest 

information content. Here, information content measures how well the inhibition of a kinase 

correlates with either the hits or the non-hits. Of these 50, we programmed the SVM to 

select – using a greedy feature selection approach - a smaller number (no fewer than 15) of 

kinases that yield the most accurate predictions (see methods). These kinases therefore 

constituted the Maximum Information Set (MAXIS). The overall kinase selection scheme is 

abbreviated MR-SVM.

To assess the ability of an SVM model built using MAXIS kinases to classify compounds 

not encountered during kinase selection, we ran the entire MR-SVM process as a ten-fold 

cross-validation (Supporting Information Figure S2). We performed 10 independent 

experiments, each time dividing up the compounds differently (100 tests total). The routine 

had an overall accuracy of 82%, sensitivity of 72%, and specificity of 86% (see methods). 

Overall, about 15 kinases were on average sufficient to classify compounds not seen during 

MR-SVM training with average accuracy > 80%.

Due to pharmacological linkage, kinases may be selected by MR-SVM even if they do not 

themselves participate in the biological process, provided they are pharmacologically linked 

to kinases that do. Therefore, an independent line of evidence is required to investigate 

which kinases actually participate in the phenotypic readout. To enable investigation of this 

issue, we clustered the entire kinome into groups comprising pharmacologically linked 

kinases (see Methods). We recorded the number of times (out of the 100 MR-SVM runs) 

that at least one member of each group appeared in the MAXIS. This constituted the group’s 

MAXIS score (0 ≤ score ≤ 100). A high MAXIS score suggests that a group contains at least 

one member relevant to the assay, but does not differentiate between candidate targets and 

anti-targets. For that purpose, we devised a metric, Bk,, that reflects whether a kinase is more 

frequently and/or more strongly inhibited by either the hits or the non-hits (−2 ≤ Bk ≤ +2) 

(Supporting Information Figure S3, Supporting Information Table S4). A positive Bk value 

for an individual kinase reflects favoured inhibition by hits (target behaviour), while a 

negative Bk reflects favoured inhibition by non-hits (anti-target behaviour). Of the kinase 
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groups with MAXIS scores ≥ 20, we prioritized the 15 groups with the highest combined 

MAXIS × |group average Bk| scores for examination using an independent approach (RNAi 

knockdown) (Table 1, Supporting Information Table S5).

RNAi knockdown supports identification of robust targets/anti-targets

We used siRNA to investigate the effects of knockdown of 52 individual kinases from the 

prioritized groups on neurite outgrowth (Fig. 2). Overall, knocking down kinases from 

groups with large positive average Bk (potential targets) resulted in increased neurite 

outgrowth, whereas the opposite trend was observed for groups with low negative average 

Bk (potential anti-targets) (Fig. 2b). Although reducing kinase expression is not identical 

with reducing kinase activity, these results suggest that our identification of targets and anti-

targets is generally valid.

Since we grouped kinases to reflect high pharmacological linkage, a compound that inhibits 

one member within a group is likely to inhibit other members in that group. Hence, 

discordant groups (containing kinases that show opposing effects from knockdown) are less 

likely to be good pharmacological targets for altering neurite outgrowth, as their co-

inhibition will likely yield conflicting effects. Thus concordant groups had large absolute 

group average Bk values (high correlation between inhibition of all members and phenotypic 

outcome) while discordant groups generally had group average Bk values closer to zero (low 

correlation between inhibition of members and phenotypic outcome) (Fig. 3a). Given the 

difficulty of selectively inhibiting individual members within pharmacologically linked 

groups, and to focus polypharmacology on robust determinants of neurite outgrowth, we 

decided to prioritize targets/anti-targets in the context of their pharmacological linkages. 

Thus, we designated the top ten concordant groups, manifesting the largest absolute group 

average Bk values (Table 1), as our robust target and anti-target groups, picking a single 

member to represent each group. Activated CDC42 kinase 1 (TNK2), Rho-associated 

kinase-II (ROCK2), PI3-kinase δ (PIK3CD), Protein kinase C γ (PRKCG), Ribosomal 

protein S6 Kinase α-4 (RPS6KA4), cGMP-dependent protein kinase G 1 (PRKG1), and 

cAMP-dependent protein kinase X (PRKX) were selected as representatives of robust target 

groups, while p38α MAP kinase (MAPK14), MAP kinase-activated protein kinase 3 

(MAPKAPK3), and Cyclin-dependent-like kinase 5 (CDK5) were selected as 

representatives of robust anti-target groups (Fig. 3a). We did not identify a Cdk member 

whose knockdown produced an outcome consistent with anti-target behaviour, as we tested 

knockdown of only Cdk-1 and Cdk-2. Nevertheless, given previous reports on the role of 

Cdk-5 in promoting neurite outgrowth (24, 25) and the large negative group average Bk for 

the group, we chose to designate them as robust anti-targets. It is worth noting that co-

inhibition of a group of kinases may have effects that cannot be recapitulated by knocking 

down a single member (1).

We assessed, using ten-fold cross-validation, the accuracy of an SVM model built with 10 

representatives of robust targets/anti-targets (Fig. 3b). Remarkably, this classifier had an 

average accuracy of 88%, sensitivity of 78%, and specificity of 93%. Thus, the method is 

efficient at identifying hits based on kinase inhibition, and can be used to identify novel 

multi-target hits independent of chemical structure.
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Two compounds with complementary polypharmacology show strong additive effects

While the results from RNAi generally support the individual target/anti-target predictions 

for the tested kinases, they do not provide direct evidence for beneficial effects from co-

inhibition of robust targets. We identified two compounds that manifest complementary 

favorable polypharmacology covering all 7 robust targets, and tested them in combination in 

the neurite outgrowth assay. We found that co-treating neurons with these compounds 

produced an increase in neurite outgrowth larger than the maximal effects of any other 

individual compound or combination we tested, including 1600 individual kinase inhibitors 

and 1024 combinations of 5 of the strongest hit compounds (Supporting Information Figure 

S4).

A compound with favorable polypharmacology promotes axon growth in vivo

In adult mammals, CNS axons damaged by injury typically fail to regrow to their targets, 

limiting functional recovery (26, 27). This failure is due to intrinsic limitations on the 

neuron’s ability to grow axons as well as extrinsic inhibitory factors (e.g., myelin debris and 

chondroitin sulfate proteoglycans (CSPGs)) in the injured CNS (28). Promoting axon 

regrowth after injury has been difficult, at least in part due to these multiple factors 

inhibiting axon growth (28–30). ROCK and PKC, two kinases known to mediate repression 

of neurite outgrowth in response to myelin and CSPGs (11, 31, 32), were among the robust 

targets predicted by the algorithm, suggesting that these “repressor” kinases are basally 

active in the cultured neurons despite the absence of myelin and CSPGs. Similarly, the 

important pro-growth kinases p38α MAPK and Cdk-5 (24, 33) were among the predicted 

robust anti-targets, suggesting that these kinases are required for neurite extension in our 

neurons.

We tested compound RO0480500-002 in a mouse model of corticospinal axon growth, given 

its strong polypharmacology profile (Fig. 4a, b) and ability to promote neurite outgrowth in 

postnatal (P3) cortical neurons (Supporting Information Figure S5) as well as the 

hippocampal neurons. We performed a unilateral lesion of the right pyramidal tract 

(pyramidotomy) and used an osmotic pump to infuse RO480500-002 (or vehicle) into the 

ventricles post injury. Immediately after pyramidotomy, we labelled the unlesioned 

corticospinal neurons to assess their growth into the denervated contralateral grey matter at 

the level of the cervical spinal cord (i.e. compensatory sprouting). At four weeks after injury, 

we found significantly more sprouting in mice treated with RO480500-002 than in vehicle-

treated controls (Fig. 4 c–g). Our data indicate that RO480500-002 promotes growth of 

corticospinal axons in vivo.

MR-SVM identifies previously validated targets in breast cancer cells

To assess the generalizability of the approach to other cell-based assays, we ran the target 

deconvolution module in an unrelated phenotypic screen. We used data from a cell viability 

assay performed with the ErbB-2 addicted breast cancer cell line SK-BR-3 (19). The PKIS-I 

library compounds were screened and classified as hits (specifically decrease viability) and 

non-hits (do not specifically decrease viability) using differential Drug Sensitivity Scores 

(34) (Methods). These data, combined with kinase inhibition profiles of the compounds, 

were submitted to the MR-SVM as before. The EGFR/Erb-B receptor family acquired a full 
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MAXIS score and had a group average Bk > 0.7, indicating that inhibition of these receptors 

robustly decreased the viability of these cells - exactly as expected (Table 2, Supporting 

Information Table S13). Another top scoring kinase was PLK1, whose knockdown was 

previously shown to strongly suppress the survival of SK-BR-3 cells (35). More 

interestingly, the MR-SVM prioritized several kinase groups that were recently shown to 

mediate the adaptive resistance of SK-BR-3 cells to treatments that target Erb-B2 inhibition 

(36). These include Akt and its downstream target GSK3, tyrosine kinases such as YES1 and 

EPH receptors, DYRKs, STK3, and several Cdks (Table 2).

SUMMARY

In summary, we developed an approach combining phenotypic screening with biochemical 

enzyme assays to systematically deconvolve multiple biological targets. The strategy may 

help bridge the current gap between phenotypic screening and target-based drug 

development. As an example, it allowed us to identify both targets and anti-targets from a 

neurite outgrowth phenotypic assay, several of which (ROCKs, PKCs, RSKs, Cdks, 

MAPKs) had already been described as regulators of neurite outgrowth (10, 24, 25, 31, 33, 

37–39). Novel targets, including activated CDC42 kinase, PI3-kinase δ, cGMP-dependent 

protein kinase G1, and cAMP-dependent protein kinase X were also identified and 

independently examined using RNAi. Compounds with polypharmacology towards several 

target kinase groups were strong inducers of neurite outgrowth in the cell-based assay. In 

particular, RO0480500-002 had a pronounced positive effect on neurite outgrowth. Amongst 

its identified targets, RO0480500-002 inhibits both PKC and ROCK, two kinases known to 

mediate repression of axon growth by myelin and CPSGs in the CNS (11, 31, 32). 

RO0480500-002 also inhibits the growth regulatory S6 Kinases, which have been shown to 

limit intrinsic neuronal capacity for axon growth and regeneration (40, 41). Moreover, 

RO0480500-002 inhibits cGMP-dependent protein kinase G 1 and cAMP-dependent protein 

kinase X, two kinases involved in the regulation of cell migration and cytoskeletal 

rearrangement. RO0480500-002 also promoted sprouting of corticospinal axons after 

pyramidotomy, suggesting that its polypharmacology profile may provide an opportunity for 

developing effective drugs for neuroregenerative applications. Presumably, the in vivo 
efficacy of RO0480500-002 could be significantly improved through chemical modifications 

that extend its very short plasma half-life (t1/2 < 1 min (42)).

An important feature of our method is the ability to identify novel compounds with favorable 

polypharmacology even if they bear no structural resemblance to phenotypically screened 

hits. This can be critical for drug development programs in which the best hits from 

phenotypic screening have chemistries not suitable for hit-to-lead development. Kinase 

activity predictors (43) can eventually be used in lieu of kinase profiling panels to accelerate 

the in silico identification of such compounds and also the repurposing of approved drugs. 

Additionally, the modular nature of this approach means that it is not limited to neurite 

outgrowth and axon regeneration studies; rather, it should be applicable to any drug 

discovery campaign in which a phenotypic assay is used to screen highly annotated chemical 

libraries. As an example, the approach correctly identified the well-established ErbB targets 

in a breast cancer cell line, as well as kinases that were recently described to mediate 

resistance to therapies that target the ErB family of tyrosine kinases.
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While achieving favorable polypharmacology in a single drug has advantages, it may be 

necessary in some cases to combine drugs for optimal interactions with multiple targets. Our 

deconvolution approach is also applicable in such cases. As an example, we identified two 

compounds having complementary polypharmacology, which between them inhibit all 7 

identified targets. Treating cells with a combination of the two compounds promoted neurite 

outgrowth with higher efficacy (and at a smaller dose) than any individual compound or 

other combination we tested.

A current limitation of our method is that it applies to kinases for which biochemical 

profiling data exists. Targets that are not profiled (and have no pharmacological linkage to 

profiled targets), or that are not inhibited by any of the phenotypically screened compounds, 

remain “invisible” to the algorithm. Thus, the targets and anti-targets identified in this study 

are by no means a comprehensive list. Expanding the kinase profiling data and diversifying 

the inhibition profiles within the chemical library should further improve the coverage and 

accuracy of target identification. Additionally, kinase inhibitors may exert their biological 

effects via non-kinase targets. For example, the (S)-enantiomer of the MET/ALK inhibitor 

crizotinib blocks progression of RAS-mutant cancer cells via potent inhibition of MTH1 

(44), and several kinase inhibitors are also potent inhibitors of BET bromodomains (45). 

Thus, extending biochemical profiling to include non-kinase families such as phosphatases, 

GPCRs, membrane channels/transporters, epigenetic enzymes, and other families with 

assayable activities would enable the identification of a wider range of readily druggable 

targets, and will complement network approaches for therapeutic exploitation of 

polypharmacology.

Methods

Materials

Mouse α-βIII tubulin antibody was prepared in house (20), Rabbit anti- βIII (T2200) was 

purchased from Sigma Aldrich, Alexa Fluor 488 cross-linked Goat anti-Mouse (A11029) 

and anti-Rabbit (A11034) antibodies were purchased from Life Technologies. Primary 

antibodies α-GSK3β (9832), α-cJun (3270), α-Cofilin-1 (5175), α-Erk1/2 (9107), α-NF-κB 

(6956), α-pSer9 GSK3β (5558), α-pSer73 c-Jun (2315), α-pThr202/Tyr204 Erk1/2 (4370), 

and α-pSer276 NF-κB (3031) were purchased from Cell Signaling; α-pSer3 Cofilin-1 

(sc-271923) was purchased from Santa Cruz Biotechnology. Secondary antibodies α-mouse-

[IR800] (926-32210) and α-mouse-[IR680] (926-32220) were purchased from LiCor, while 

α-rabbit-[IR800] (611-732-127) and α-rabbit-[IR680] (611-130-002) were purchased from 

Rockland. Poly-D-Lysine (P7886-500MG) and sterile dimethyl sulfoxide (DMSO) (D2650) 

were purchased from Sigma Aldrich. Hippocampal tissue was incubated in Hibernate E from 

BrainBits, supplemented with NeuroCult® SM1 (05711) from StemCell Technologies. 

Neurons were cultured in NbActive4® media from BrainBits. Accell siRNA SMARTpools 

were purchased from Thermo Scientific. All other reagents were purchased from Life 

Technologies. In vitro kinase profiling was done at NanoSyn.
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Kinase inhibitor libraries

InhibitorSelect™ Protein Kinase Inhibitor libraries I, II, & III (approximately 240 

compounds) were purchased from EMD Millipore. A hit-focused library (150 compounds) 

was designed by querying Vichem’s Extended Kinase Inhibitor database for compounds 

with structural similarity (Tanimoto > 0.7, using FP fingerprint) to hits previously identified 

(20) within the EMD libraries. A library of clinically tested kinase inhibitors (approximately 

130 compounds) was assembled from commercial vendors. Published Kinase Inhibitor Set I 

and II (PKIS-I and PKIS-II) libraries (approximately 900 compounds) were provided by 

GlaxoSmithKline. Published Kinase Inhibitor Set (235 compounds) was provided by Roche. 

A set of 33 compounds was provided by Stefan Knapp (Structural Genomics Consortium).

Neurite outgrowth screening assay with hippocampal neurons

Kinase inhibitor libraries were screened in our previously described neurite outgrowth assay 

(20). As before, compounds were screened on rat embryonic (E18) hippocampal neurons 

cultured for 2 DIV on poly-D-lysine. Plates were fixed, immunostained, and imaged in a 

Cellomics ArrayScan VTI robot. Images were automatically traced using the Neuronal 

Profiling Bioapplication (version 3.5). As before (20), hits were defined as compounds 

whose %NTL reached at least 130% in two independent experiments (hits: %NTL ≥ 130, 

non-hits: %NTL < 130). Non-hits were defined as compounds whose %NTL did not cross 

the 130% threshold in either experiment. Compounds that reduced viable cell count by more 

than 40% at concentrations below [800 nM] were considered toxic and excluded from 

subsequent analysis.

Neurite outgrowth assay with cortical neurons

Rat postnatal (P3) cortical neurons were prepared as previously described (46). The cells 

were used in the neurite outgrowth assay exactly as described above for the hippocampal 

neurons.

Cell viability screening assay

The PKIS-I library compounds were screened against the ErbB-2-addicted breast cancer cell 

line SK-BR-3 at 5 concentrations covering a 10,000-fold concentration range (1–10,000 nM) 

in the same way as previously described for “drug sensitivity and resistance testing” (DSRT) 

for primary leukemic cells (47). The testing was done in 384-well plates where 2,000 cells 

were seeded per well. Cells were incubated with the compounds for 72 h and cell viability 

was measured with CellTiter-Blue reagent (Promega) according to the manufacturer’s 

recommendations. Viability in the test wells was normalized to the numbers from vehicle 

(0.1% DMSO) and cell killing treated (100 μM benzethonium chloride) wells. The 5 

concentration data points for each compound were fitted to a dose response curve and a 

Drug Sensitivity Score (DSS) was calculated as previously described (34, 47). A differential 

DSS (dDSS) representing an SK-BR-3-selective response for each compound was 

subsequently established by subtracting the average compound DSS from 25 cell lines (19 

breast cancer and 6 pancreatic adenocarcinomas) from the SK-BR-3 compound DSS.
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Activity profiling of screened kinase inhibitors

In vitro profiling of kinase inhibitors against a panel of 190 kinases was performed at 

NanoSyn. Assay details, along with the complete list of assayed kinases, ATP 

concentrations, and incubation times are provided in Supporting Information Table S7. A 

value of 0% indicates no inhibition, while a value of 100% indicates complete inhibition. 

Below range values were adjusted to 0%, while above range values were adjusted to 100%. 

The entire kinase profiling data set (for all PKIS-I compounds plus some additional kinase 

inhibitors) is provided in Supporting Information Table S8.

Testing the effect of hit combinations on neurite outgrowth

All identified hits in the PKIS-I library were clustered by similarity of their kinase inhibition 

profiles (using only the data for non-mutated kinases) and divided into 8 clusters 

(Supporting Information Table S9). A single compound was selected from each cluster that 

had compounds with %NTL ≥ 200, whereby the selected compound was the one which 

crossed 200 %NTL at the lowest screen dose. We examined the effect of these compounds 

(GW784684X, SB-682330-A, GSK1511931A, GW659386A, and SB-750140), as well as 

seven other structurally unrelated hits, on the phosphorylation state of six intracellular 

signaling markers that had previously been associated with neurite outgrowth regulation 

(20). The five compounds induced divergent effects on marker phosphorylation (Fig. 1b), 

lending further support to the notion that they likely promote neurite outgrowth via 

incongruent mechanisms. Combinations of all five compounds were prepared to yield a final 

concentration in culture of [1, 10, 100, or 1000 nM] for each individual compound. To cover 

all possible combinations, a Hamilton STAR liquid handling robot was used to create 1024 

compound mixtures at 500X in DMSO. Combinations were screened in the neurite 

outgrowth assay (3 biological replicates) as previously described (20).

Western blot analysis of phosphorylation of neurite outgrowth signaling markers

Hippocampal (E18) neurons were cultured in NbActive4 (Invitrogen). Cells were seeded 

into 24 well plates at 0.25–0.5 × 106 cells/well in 1 ml of media. Compound stocks (10 mM 

in DMSO) were diluted in cell culture media to a final concentration of 0.8, 4, or 20 μM, 

depending on which of these concentrations the compound produced the largest %NTL in 

the assay. Control wells received the corresponding volume of DMSO, which was kept 

constant across all treatments at 0.2% v/v. Each plate contained two DMSO control wells 

(one normalization control and one treatment control). After 10–12 h, the media was 

aspirated and cells were washed once with PBS. The monolayer was then scraped in 150 μl 

of hot SDS loading buffer (preheated in a boiling water bath) containing protease and 

phosphatase inhibitors. Samples were immediately placed in a heat block and kept at 95°C 

for 10 min. Analytical SDS-PAGE was performed using precast 4–12% gradient 

polyacrylamide gels (Invitrogen) run in MOPS buffer at 150 V (constant) for 1 h or until the 

tracking dye reached the bottom of the slab. Protein was transferred from the gel to a 

nitrocellulose membrane in a wet transfer apparatus using 25 mM sodium bicarbonate as 

transferring solution. Membranes were blocked with Odyssey blocking buffer for at least 1h, 

then incubated overnight in primary antibody solution (1:1 PBS, Odyssey blocking buffer 

with 0.1% Tween-20) at 4 °C on a shaker. Membranes were washed 3x in PBS-Tween (10 
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min washes) and incubated in secondary antibody solution (secondary antibodies in 1:1 

PBS, Odyssey blocking buffer with 0.1% Tween and 0.02% SDS) at room temperature for 2 

h with shaking. 800-IR-dye conjugated secondary antibodies were used to develop total 

protein bands, and 680-IR-dye conjugated secondary antibodies were used to develop 

phosphorylated protein bands. Finally, membranes were washed 5x in PBS Tween (10 min 

washes). Blots were scanned using an Odyssey system. Relative change in phosphorylation 

in response to treatment was computed as:

Calculated values were averaged over the 3 biological replicates. Clustering of marker 

phosphorylation profiles was performed using a Spearman correlation metric.

Support Vector Machines (SVM)

SVM was implemented in MatLab’s statistics toolbox (R2011b and R2013b). SVMs were 

trained using a linear kernel with a boxconstraint = 1 and no data scaling. A compound must 

have ≥ 10% inhibition activity against at least one of the kinases in a dataset for it to be 

included in SVM training or testing (compounds with no activity against all kinases were 

ignored). In tenfold cross-validation SVM experiments, compounds were first divided into 

ten parts while keeping the hits/non-hits ratio constant. An SVM was trained with 9 parts 

(training examples) then tested with the remaining tenth part (test examples). The process 

was repeated until all parts have been used as test examples - a total of ten tests. Finally, 

SVM predictions were compared to bioassay results to calculate 

, and 

.

Identifying the Maximum Information Set (MAXIS) of kinases using Maximum Relevance 
and Support Vector Machines (MR-SVM)

For neurite outgrowth assay (hippocampal neurons)—We excluded from this 

analysis compounds whose maximum %NTL fell within ± 15% of the hit threshold of 130% 

(Supporting Information Figure S2a). This stratification accentuates differences between the 

hit and non-hit categories and improves selection of relevant kinases (48). The remaining 

compounds that were profiled in a kinase activity panel comprised the input for the analysis. 

A total of 256 compounds (72 hits and 184 non-hits) with profiling data against 190 kinases 

constituted the input for MR-SVM analysis (Supporting Information Table S3). The 

maximum relevance (MR) algorithm (23) was used to calculate a relevance score (as 

quantified by mutual information I) for each profiled kinase according to the following 

formula:
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Where I(h,k) is the mutual information between kinase k inhibition and compound category 

h, h={ hit, non-hit}, p(h) and p(k) are the respective marginal probabilities, and p(h,k) is the 

joint probability distribution. The 50 top scoring kinases were trimmed using a Support 

Vector Machine (SVM) learning algorithm. Inhibition profiles were “discretized” to convert 

the continuous (0%–100%) inhibition range to a discrete integer range (0%→10%=1, 
10%→20%=2,…, 90%→100%=10). The SVM was trained to classify compounds as hits or 

non-hits based on their inhibition profiles against the 50 most relevant kinases. SVM 

performance with the relevant kinases was assessed using ten-fold cross-validation. Then, 

kinases were iteratively removed from the model (by deleting inhibition activity points 

corresponding to the kinase). If removing a kinase degraded the SVM performance, the 

kinase was added back into the model. Otherwise, the kinase was discarded. We devised a 

simple differential prediction metric (48), Cperf, to track SVM performance and maintain 

sensitivity as kinases are removed. Cperf evaluates the scalar difference between sensitivity 

and error:

Where TP is the number of true positives, FP is the number of false positives, TN is the 

number of true negatives, and FN is the number of false negatives. SVM performance was 

considered degraded if removing a kinase decreased Cperf by an amount greater than a 

preset buffer_value. The training data set was parsed several times, starting with a 

buffer_value of 1%, then halving this value after every round. If, at any point, a compound 

had inhibition activity < 10% against all kinases within a set, it was automatically excluded 

from the analysis. Similarly, if at any point a kinase had no compounds that inhibit it 

>=10%, it was automatically dropped. This process was continued until one of two 

conditions was met: 1) no kinases could be removed without degrading the SVM 

performance, or 2) the number of kinases reached a preset minimum value (set to 15). The 

resultant set of kinases comprised the Maximum Information Set (MAXIS).

For cell viability assay (SK-BR-3 cells)—We excluded from this analysis compounds 

whose differential drug sensitivity score (dDDS) fell between 0 and 2, stratified hits: dDDS 

≥ 2 (82 compounds), stratified non-hits: dDDS ≤ 0 (199 compounds). This produced the 

dataset provided in Supporting Information Table S12. Using this dataset as input, the MR-

SVM analysis was performed exactly as described above. Complete output is provided in 

Supporting Information Table S13.

Assessing MR-SVM out-of-set performance

We performed a cross-validation test to assess the ability of MR-SVM in predicting the 

category of compounds not included in the training set (out-of-set prediction), based solely 

on their inhibition activities against MAXIS kinases. A ten-fold cross-validation was carried 

out as follows: 1) the profiled compounds were divided randomly into 10 partitions with 

each partition maintaining the same proportion of hits and non-hits as the original data set. 

2) One of the 10 partitions was designated the test set, while the remaining nine partitions 

were designated the training set. 3) The training set was run through MR-SVM to find the 
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MAXIS kinases (~ 15). 4) An SVM was trained using the compounds of the training set and 

their inhibition activity against the MAXIS kinases. 5) The trained SVM was used to predict 

the category of the test set compounds using their inhibition activity against the MAXIS 

kinases. Only compounds that had >10% inhibition against at least one of MAXIS kinases 

were predicted. The sensitivity, specificity, and accuracy of the classification predictions 

were then calculated. This process was repeated until all ten compound partitions had been 

tested, thus completing a full test cycle. To account for performance differences due to 

partitioning, the entire cycle was repeated nine more times, whereby the data was partitioned 

differently for each cycle. Sensitivity, specificity, and accuracy were averaged over all runs 

(total runs =100).

Identifying groups of pharmacologically linked kinases

Kinases that are likely to be inhibited by the same compounds may represent one another in 

MR-SVM analysis, and these were identified for the current profiled set as follows. Amino 

acid sequences of the kinase domains of 482 human kinases were obtained (49) and 

compared pairwise for sequence similarity using the Needleman-Wunsch global sequence 

alignment algorithm. Kinases in Supporting Information Table S8 were also compared 

pairwise for pharmacological similarity using a modified version of the Pharmacological 

Interaction Strength (Pij) term (15):

Where Nij
active is the number of compounds that showed >10% inhibition against either 

kinase i or j (or both), and Nij
coactive is the number of compounds which had above threshold 

inhibition against both kinases. Kinases were grouped together so that any two kinases with 

a Pij score ≥ 0.6 (direct measure) or a sequence similarity score ≥ 0.7 (indirect measure) 

belonged to the same group (Supporting Information Table S10).

Calculating kinase inhibition bias

Inhibition bias B for every kinase k (Bk) was calculated using the kinase profiling data in 

Supporting Information Table S3 according to the following equations:

Where Bk(f) ∈ [−1,1] is inhibition frequency bias (calculated as the difference of normalized 

frequencies), and Bk(I) ∈ [−1,1] is inhibition intensity bias,  is the frequency of 

compounds in the hits category that inhibit k by ≥ 10%,  is the frequency of 

compounds in the non-hits category that inhibit k by ≥ 10%,  is the mean 

inhibition activity of all hits that inhibit k ≥ 10%,  is the mean inhibition 

Al-Ali et al. Page 13

ACS Chem Biol. Author manuscript; available in PMC 2016 August 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



activity of all non-hits that inhibit k ≥ 10%. A positive value indicates inhibition bias by hits, 

while a negative value indicates inhibition bias by non-hits.

Knockdown of candidate target/anti-target kinases using siRNA

GE Dharmacon Accell siRNAs (SMARTpool format) were used to knockdown candidate 

kinases using an assay format similar to the one described for the kinase inhibitor screen. 

Accell siRNA oligos are covalently modified in order to increase stability and facilitate 

direct uptake by cells without the need for transfection reagents. Each SMARTpool is 

comprised of a mixture of 4 siRNAs for a given target gene, and 4 non-targeting oligos for 

the scramble control (list of SMARTPools and cat n# is provided in Supporting Information 

Table S9). Dissociated hippocampal neurons were seeded in 96-well poly-D-lysine-coated 

plates at 1500–1800 cells per well in 150 μl of NbActive4 and incubated overnight. The 

following day, SMARTpool solutions were prepared in 96 well plates at 2 μM in 100 μl of 

media and allowed to equilibrate for one hour in a CO2 incubator. Each treatment plate 

contained 6 wells with non-targeting SMARTpools (24 per experiment). Immediately before 

treatment, 100 μl of media was removed from the cells and replaced with 50 μl of siRNA 

solution (duplicate wells for each treatment) to bring the final SMARTpool concentration to 

1μM (per vendor recommendation) in a total volume of 100 μl. Cells were incubated for 5 

DIV, then fixed and analyzed for neurite outgrowth as previously described for the neurite 

outgrowth assay (20). The robust z-score (50) for each treatment was calculated according to 

the following formulae:

Where (SMARTPool)NTL is the mean neurite total length for the SMARTPool well, 

MedianNTL is the median of mean neurite total length values of all wells, MADNTL is the 

median absolute deviation from, MedianNTL, (SMARTPool)LOLN is the mean length of the 

longest neurite of the SMARTPool well, MedianLOLN is the median of length of longest 

neurite mean values of all wells, and MADLOLN is the median of absolute deviations from 

MedianLOLN. Reported values are averages ± SEM from 4 replicates (2 biological replicates 

with 2 technical replicates each).

We used Accell siRNA (SMARTpool) directed against Doublecortin (DCX) to assess 

knockdown efficiency of this method in primary neurons. The transfection was carried out in 

the same assay used for compound screening, except cells were incubated for 5 DIV (as 

opposed to 2 DIV in the kinase inhibitor screen) to allow sufficient time for knockdown to 

take effect. Neurons were fixed and stained with α-DCX and α-βIII tubulin, and knockdown 

was assessed using high content analysis. The intensity of DCX staining was normalized to 

βIII tubulin staining and compared to cells treated with a non-targeting SMARTpool. This 

revealed > 90% mean decrease in DCX staining in cell bodies of neurons treated with DCX 

SMARTpool, as compared to cells treated with the non-targeting SMARTpool (Supporting 

Information Table S11).
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Surgical procedures

One day prior to surgery, osmotic pumps (Alzet Model 1004) were loaded with 100 μl of 

RO0480500-002 (4 mM) or vehicle (10% DMSO) and primed by submersion in 0.9% sterile 

saline at 37°C overnight. Next day, adult female C57BL/6J mice (7–8 weeks old, Jackson 

Labs) were anesthetized (ketamine/xylazine, 100/15 mg kg-1 i.p) and the head and ventral 

portion of the neck were shaved and wiped down with Nolvasan disinfectant solution. After 

an incision along the neck’s ventral midline, underlying muscle was bluntly dissected to 

reveal the surface of the ventrocaudal region of the occipital bone. The caudal portion of the 

occipital bone was removed using laminectomy forceps to expose the right medullary 

pyramid. A Feather microscalpel (15°, Electron Microscopy Sciences) was used to puncture 

the dura and lesion the right pyramidal tract. After repositioning the muscle, skin was closed 

using 4-0 vicryl sutures. (Ethicon, Johnson & Johnson Intl). Immediately after 

pyramidotomy, the head was placed on a stereotaxic frame, a midline incision was made to 

expose the skull and a craniotomy performed over the left sensorimotor cortex. To trace the 

corticospinal tract, AAV8-UBC-GFP virus (1.2 × 1014 GC ml−1, Miami Project Viral Vector 

Core) was injected into two sites using a pulled glass pipette connected to a nanoliter 

injector (WPI, 50 nl min−1): −0.2 mm and 0.3mm anterioposterior, and 1.5mm lateral to 

bregma at a depth of 0.7 mm below surface of brain. After injection, the pipette was left in 

place for 1 min before being carefully withdrawn.

Immediately following viral injections, a small burr hole was made over the right 

sensorimotor cortex using a 21-gauge needle and a cannula from Alzet Brain Infusion Kit 3 

(model 0008851) was inserted at the following coordinate in reference to bregma: −0.2 mm 

anterioposterior, 1 mm lateral, and 2mm below the surface of the skull. After securing the 

cannula with Loctite 454 adhesive glue, a catheter was used to connect the cannula to the 

Alzet pump placed subcutaneously in between the scapula. Skin was closed with 4-0 Vicryl 

sutures and mice were given buprenorphine (0.05 mg kg−1), Baytril (10 mg kg−1) and 

lactated ringer’s solution (1ml) subcutaneously twice per day for seven days post-

operatively. Mice were randomly placed into each treatment group (compound or vehicle).

Four weeks after injury, mice were anesthetized as above and transcardially perfused with 

4% paraformaldehyde. Tissues were cryoprotected in 30% sucrose and serial frozen sections 

(18 μm) were collected as previously described (30). For quantifying total labeled CST 

axons, axons were manually counted at the level of medulla oblongata proximal to the 

pyramidal decussation. Axons were counted in four rectangular areas randomly placed in the 

pyramidal tract and this axon density was multiplied by the total area of the tract to obtain 

the total number of labeled axons. This was done for two sections placed 160 μm apart and 

then the two counts were averaged to obtain the final number for each animal. To count the 

sprouted axons, three vertical lines were drawn: 1) adjacent, 2) 500 μm, 3) and 1000 μm 

lateral to the central canal, and fibers crossing each line were manually counted in each 

section (Supporting Information Figure S8). The results were presented after normalization 

with the number of counted CST fibers at the medulla level: sprouting axon number index is 

represented as the ratio of the total number of axons that cross the three vertical lines 

described above over the total number of labeled axons at the level of medulla. At least three 

sections from C3–C4 were counted for each animal and averaged together. Experimenters 
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were blinded to the treatment groups at all steps including osmotic pump loading, catheter 

and pump implantation, and histological analysis.

Animals were excluded from study if they 1) exhibited poor axonal labeling and/or 2) had 

their cannula removed and/or had their catheter chewed off multiple times. This resulted in 

the exclusion of 6 of 15 mice from both treatment groups. All animal procedures were 

approved by University of Miami IACUC and in accordance with NIH guidelines on animal 

use.

All computational analyzes and tools were implemented in MatLab (R2011b and R2013b). 

Statistical analyzes were performed in GraphPad prism (5.03), MATLAB, or Excel (2007). 

Jchem for Excel was used to render molecular structures, Jchem for Excel 5.4.1.446, 2009, 

ChemAxon (http://www.chemaxon.com).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Kinase inhibitors strongly promote neurite outgrowth
a) Scatter plot representing relative neurite total length (%NTL, relative to DMSO) of all 

screened compounds at the 5 screened concentrations [32 nM, 160 nM, 800 nM, 4 μM, and 

20 μM]. Compounds were arranged in decreasing order of maximum %NTL. Dots represent 

averages of 2 biological replicates (with 2 technical replicates in each). Hits were defined as 

compounds that induced (at any of the tested concentrations) a %NTL ≥ 130% in two 

independent experiments. The median, mean, standard deviation (STDV), and mean absolute 

deviation (MAD) of the entire data set are displayed above the plot. b) Hits had divergent 

effects on phosphorylation status of six signaling markers. Primary hippocampal neurons 

cultured on poly-D-lysine were treated with 12 different hits. Cells were lysed 10 h later and 

phosphorylation (relative to DMSO treated cells) was assessed using western blotting. 

Compounds were chosen to represent a diverse set of scaffolds (Supporting Information 

Figure S6). Arrowheads point to the hits selected from the PKIS-I library to test in 

combinations. Heat map represents values from 4 replicates (2 biological with 2 technical 

each). Average values ranging between 0.9 and 1.1 were ignored. c) Different combinations 

of the five hits (GW784684X, SB-682330-A, GSK1511931A, GW659386A, and 

SB-750140) were tested in the neurite outgrowth assay. Each combination contained all five 

hits, with each hit having a final concentration of 1 nM, 10 nM, 100 nM, or 1 μM (total 

combinations tested = 45 = 1024). The panel shows the twenty-nine combinations that 

produced a %NTL that was 50% higher (p < 0.05, Fisher’s LSD test) than the %NTL of any 

of the individual component hits. Left columns indicate the concentration (expressed as 

Log10 μM) of each compound in the combination, and the right columns depict the %NTL 

of the combination as well as the %NTL of the component hits when they were tested 

separately at the corresponding concentrations. N= 3 biological replicates. d) Bar chart 
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depicting %NTL values for the five hits tested individually at the four indicated 

concentrations, as well as the %NTL values of four different combinations that we tested in 

a follow up experiment. Arrows compare %NTL of individual compounds to that of their 

combination. Mean ± SEM; N=6 (*** p < 0.001, one way ANOVA with Bonferroni’s 

multiple comparisons test). e) Hippocampal neurons treated with kinase inhibitors or vehicle 

for 2 DIV, then immunostained for βIII-tubulin (cell bodies and neurites, green), and nuclear 

DNA (Hoechst, blue).
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Figure 2. Outcome of knockdown of individual kinases in hippocampal neurons correlates with 
target/anti-target predictions
a) Accell siRNA directed against doublecortin (DCX) substantially reduces DCX levels in 

neurons. Neurons were treated (5 DIV) with either anti-DCX siRNA SMARTPool or non-

targeting siRNA SMARTPool. Cells were stained for βIII tubulin (green), DCX (red), and 

nuclear DNA (blue). Anti-DCX siRNA decreased DCX staining > 90% compared to 

controls (not shown). b) Effect of siRNAs directed against candidate target and anti-target 

kinases on neurite outgrowth parameters; mean ± SEM. Kinase groups are graphed in order 

of decreasing mean group Bk. Within each group kinases are arranged in order of decreasing 

Bk. Arrows point to kinases for which no profiling data was available (unknown Bk). These 

were included in their corresponding groups due to sequence similarity to other group 

members.
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Figure 3. Kinases representing robust target and anti-target groups allow accurate prediction of 
hits
a) Groups selected from MR-SVM; dark green, increased (robust z-score> 1) both neurite 

outgrowth parameters; light green, increased single growth parameter; light red, decreased 

(robust z-score < −0.5) single growth parameter; dark red, decreased both growth 

parameters; grey, inconsistent or no effect; white, not tested. ROCK1 and ROCK2 were 

classified based on a follow up experiment (Supporting Information Figure S7). Single 

representative kinases (right) were selected from robust target and anti-target groups. b) 

Matrix depicts the representative kinases and the compounds that inhibit at least one 
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representative by ≥ 10% at [0.1 μM]. Activity distribution shows a strong correlation 

between target inhibition and hits, and between anti-target inhibition and non-hits. 

Compounds are arranged top to bottom in order of decreasing Maximum %NTL (right-hand 

color scale). RO0480500-002 (red arrowhead), which strongly inhibits 5 representative 

target kinases and no anti-target kinases, produced %NTL up to 400%, well above the 

%NTL of any of the other compounds. Full data are in Supporting Information Table S6.
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Figure 4. Favorable polypharmacology improves neurite outgrowth in vitro and axon growth in 
vivo
a) Examples of hits with favorable polypharmacology and very strong effects on neurite 

outgrowth promotion. b) RO0480500-002 has no chemical similarity (Tanimoto < 0.5, FP 

fingerprint) to three other hits with analogous polypharmacology, suggesting that similar 

polypharmacology can be obtained with different molecular scaffolds. c–g) Delivery of 

RO0480500-002 after pyramidotomy in mice promotes growth of uninjured corticospinal 

axons into the denervated contralateral gray matter. d, f) Magnified images represented by 

boxed regions in c, e respectively. g) Number of axons in the contralateral gray matter was 

significantly higher after RO0480500-002 treatment compared to DMSO-treated controls; 

one-tailed Student’s t-test, *p < 0.05. Mean ± SEM; n=9 per group.
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