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ABSTRACT

Microarray profiling of chemical-induced effects is being increasingly used in medium- and high-throughput formats.
Computational methods are described here to identify molecular targets from whole-genome microarray data using as an
example the estrogen receptor a (ERa), often modulated by potential endocrine disrupting chemicals. ERa biomarker genes
were identified by their consistent expression after exposure to 7 structurally diverse ERa agonists and 3 ERa antagonists in
ERa-positive MCF-7 cells. Most of the biomarker genes were shown to be directly regulated by ERa as determined by ESR1
gene knockdown using siRNA as well as through chromatin immunoprecipitation coupled with DNA sequencing analysis of
ERa-DNA interactions. The biomarker was evaluated as a predictive tool using the fold-change rank-based Running Fisher
algorithm by comparison to annotated gene expression datasets from experiments using MCF-7 cells, including those
evaluating the transcriptional effects of hormones and chemicals. Using 141 comparisons from chemical- and hormone-
treated cells, the biomarker gave a balanced accuracy for prediction of ERa activation or suppression of 94% and 93%,
respectively. The biomarker was able to correctly classify 18 out of 21 (86%) ER reference chemicals including “very weak”
agonists. Importantly, the biomarker predictions accurately replicated predictions based on 18 in vitro high-throughput
screening assays that queried different steps in ERa signaling. For 114 chemicals, the balanced accuracies were 95% and 98%
for activation or suppression, respectively. These results demonstrate that the ERa gene expression biomarker can
accurately identify ERa modulators in large collections of microarray data derived from MCF-7 cells.

Key words: estrogen receptor; gene expression profiling; MCF-7 cell line; biomarker.

High-throughput screening (HTS) assays are an important com-
ponent of chemical safety evaluation programs carried out by a
number of organizations. The Environmental Protection Agency
(EPA) ToxCast screening program (http://www.epa.gov/chemi
cal-research/toxicity-forecasting) and the cross-agency Tox21
program (http://www.ncats.nih.gov/tox21) have screened more

than 1800 chemicals in as many as 700 HTS assays representing
approximately 350 molecular targets (Judson et al., 2014).
Although the use of the HTS assays in the ToxCast screening
program has proven useful in prioritizing chemicals for further
testing, there is increased recognition that the assays do not
sufficiently cover all potentially important pathways (Cox et al.,

Published by Oxford University Press on behalf of the Society of Toxicology 2016.
This work is written by US Government employees and is in the public domain in the US.

88

TOXICOLOGICAL SCIENCES, 151(1), 2016, 88–103

doi: 10.1093/toxsci/kfw026
Advance Access Publication Date: February 10, 2016
Research Article

Deleted Text: <sup>TM</sup>
http://www.epa.gov/chemical-research/toxicity-forecasting
http://www.epa.gov/chemical-research/toxicity-forecasting
http://www.ncats.nih.gov/tox21
Deleted Text: &sim;
Deleted Text: -
http://www.oxfordjournals.org/


2014; Filer et al., 2014). To more completely assess the effects of
chemicals on specific targets and pathways, approaches that
better capture perturbations of molecular targets of regulatory
interest in HTS formats are needed.

A complementary approach to multiple HTS assays is to use
microarray-based gene expression profiling. The field of gene
expression profiling is witnessing advances in methods that can
readily assess partial or full-genome gene expression changes in
HTS formats. A notable example is the screening program coor-
dinated by the Broad Institute which has recently made public
the Library of Integrated Network-based Cellular Signatures
(LINCS) database consisting of approximately 4000 mostly
pharmaceutical chemicals screened in approximately 17 cell
lines using a platform that assesses the expression of approxi-
mately 1000 genes (http://www.lincsproject.org). Although the
full impact of this effort on the field of chemical genomics is yet
to be determined, the LINCS project was derived in part from an
earlier project called the Connectivity Map (CMAP) in which a
collection of genome-wide transcriptional expression data was
collected from cultured human cells treated with approximately
1300 bioactive small molecules (Lamb, 2007; Lamb et al., 2006).
The CMAP database and associated tools have proven useful in
identification of drug candidates used to treat a number of dis-
eases (Hurle et al., 2013). In the near future, full-genome gene ex-
pression assessment will likely be available in affordable, HTS
formats. For example, the RNA-mediated oligonucleotide
Annealing, Selection, and Ligation with Next-Gen sequencing
(RASL-Seq) platform, which has been used to screen compounds
for antiandrogenicity (Li et al., 2012), could theoretically be used
to assess expression of all genes (Larman et al., 2014). Integrating
gene expression profiling into HTS, if carried out in appropriate
cell lines or organotypic cultures, would increase confidence
that fewer chemically induced effects would be overlooked.
Used in conjunction with in vitro to in vivo extrapolation
approaches, points-of-departure could be derived from chem-
ically induced perturbations in gene expression. Gene expres-
sion profiling could be used as “Tier 0” assays to further
prioritize targeted in vitro testing in the context of toxicity testing
programs.

One of the major challenges of HTS gene expression profiling
is to accurately identify modulation of specific molecular tar-
gets. Previous attempts at “connectivity mapping” or using gene
expression profiles to identify biological states have had some
success both in relation to drugs and diseases (Lamb et al., 2006)
and to toxicology (Smalley et al., 2010). Smalley et al. (2010) de-
veloped a method to query the CMAP datasets with gene ex-
pression signatures for 3 chemical classes, including potentially
endocrine-disrupting estrogens. As the identification of endo-
crine disrupting compounds (EDCs) is currently a high priority
at the EPA, we have greatly expanded on this work and deter-
mined whether computational procedures could be developed
which would identify potential EDCs that can interfere with
normal endocrine signaling. One mechanism through which
xenobiotics can act as EDCs is via inappropriate activation or re-
pression of a subgroup of nuclear receptors for estrogen, testos-
terone and thyroid hormones. These receptors, including 2
estrogen receptors (ERa and ERb), the androgen receptor and 2
thyroid hormone receptors (THRa and THRb), act as ligand
bound transcription factors that can be activated or repressed
by chemicals resulting in altered gene expression in susceptible
tissues. EDCs can also impact gene expression indirectly by
interfering with the biosynthesis, metabolism or transport of
activating hormones. Exposure to EDCs is a risk factor for

oncogenesis and disruption of reproductive development in
humans and wildlife (Diamanti-Kandarakis et al., 2009).

In the 1990s, increased recognition that man-made chemicals
may interfere with endocrine functions in wildlife and humans
led to legislation in the United States, eventually resulting in a
mandate that the U.S. EPA develop a screening program for po-
tential EDCs. In this program, approximately 10000 existing
chemicals would be evaluated for their potential to disrupt the
estrogen, androgen, and thyroid signaling systems (The
Endocrine Disruptor Screening Program [EDSP]; http://www.epa.
gov/endocrine-disruption). Under these guidelines, a battery of
Tier 1 in vitro and short-term in vivo screening assays including
those that assess nuclear receptor activity were developed to pro-
vide guidance for subsequent longer term, more definitive in vivo
Tier 2 tests for endocrine disrupting activity. The EPA’s vision for
the EDSP in the twenty-first century (EDSP21) includes utilization
of in vitro HTS assays coupled with computational modeling to
prioritize chemicals, and to eventually replace some or all of the
current EDSP Tier 1 screening assays. Within the ToxCast battery,
there are 18 HTS assays that have been used to evaluate the abil-
ity of chemicals to modulate ERa and ERb (Judson et al., 2015).

ERa, like other nuclear receptor family members, regulates
target gene expression through well-defined mechanisms. The
classical pathway includes ligand binding by agonists followed
by direct DNA binding to estrogen response elements (ERE) and
modulation of gene regulation (Barone et al., 2010; Safe and Kim,
2008). Nonclassical pathways include post-transcriptional
modulation of ERa through upstream activation of a number of
kinase-dependent signaling pathways. In addition, estrogens
also activate ERa-dependent transactivation through ERa inter-
actions with Sp1, AP1, and other DNA-bound transcription fac-
tors (Safe and Kim, 2008; Wu et al., 2008a,b).

Previous studies have successfully linked specific gene ex-
pression profiles in developing rats to estrogenic activity as a pro-
posed screening tool (Naciff et al., 2003; Naciff and Daston, 2004).
To build on this idea of using genomic data to screen for EDCs,
we developed a gene expression biomarker for ERa and tested its
ability to identify estrogenic compounds in a database of micro-
array data. The predictive capabilities of the biomarker were
determined by comparison to the expression profiles of known
ERa active/inactive chemicals in the human breast cancer cell
line, MCF-7. We determined whether the biomarker could serve
as a surrogate for the in vitro HTS assays currently used to assess
estrogenicity or antiestrogenicity of compounds through HTS ER
screening programs (Judson et al., 2015; Rotroff et al., 2014).

MATERIALS AND METHODS
Strategy for identification of perturbants that modulate
ERa in MCF-7 gene expression profiles

A summary of the methods used in this study are outlined in
Figure 1. A screen for ERa modulators required a gene expres-
sion biomarker of ERa-dependent genes and an annotated data-
base of gene expression profiles of statistically filtered genes
(also called biosets). The ERa biomarker is a list of differentially
expressed genes that are consistently altered in expression after
exposure to ERa modulators. The biomarker includes fold-
change values associated with each gene, derived from the
average differences in expression across treatment by 7 agon-
ists. A commercially available gene expression database (http://
www.nextbio.com) facilitated the assembly of a gene expression
compendium that with the ERa biomarker could be used for
chemical screening. The NextBio database contains over 123000
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lists of statistically filtered genes from over 18800 microarray
studies carried out in 16 species (as of June, 2015). Available in-
formation about each bioset was extracted from NextBio and
used to populate a spreadsheet of experimental parameters. To
facilitate analysis, each bioset was annotated for the general
category of the perturbant (eg, hormone) and the specific name
of the perturbant examined (eg, 17b-estradiol). Biosets gener-
ated from experiments in the human breast cancer cell line,
MCF-7, were used in the analysis. MCF-7 cells were examined as
a possible in vitro cell line for ERa screening because of the
known expression levels of ER subtypes (ie, primarily ERa) and
responsiveness to ERa modulators. The ERa gene biomarker was
uploaded to the NextBio database and compared with all biosets
in the database using the Running Fisher algorithm
(Kupershmidt et al., 2010) to assess activation or suppression of
ERa function. The method allows an assessment of the overlap

in regulated genes between the biomarker and the bioset and
whether those overlapping genes are significantly regulated in
a similar or opposite manner. Biosets which exhibit expression
of biomarker genes that are positively correlated with the bio-
marker would be predicted to exhibit ERa activation. The activa-
tion could be due to direct agonism or occur indirectly (eg,
increasing pools of estradiol). Biosets which exhibit expression
of biomarker genes that are negatively correlated to the bio-
marker would be predicted to exhibit ERa suppression through
direct or indirect mechanisms. Due to endogenous ERa activa-
tors in the growth media (eg, Sikora et al., 2012 and discussed in
the results), MCF-7 cells exhibit some constitutive ERa activity
that allows positively regulated genes to be downregulated in
the presence of ERa antagonists. Results of the comparisons
were exported and used to populate the annotated compen-
dium with a Running Fisher test P value of each comparison

Derivation of DEGs 
Summarization, normalization, quality control 

and statistical analysis completed in NextBio as 
described in Kupershmidt et al. 2010 

Biomarker Development/ 
Characterization  

Functional Analysis 
IPA Canonical Pathways 

IPA Upstream TF Analysis 
ChIP-seq Analysis 

ESR1 siRNA knockdown 

       Biomarker Testing and Screening 

Export Running 
Fisher Test Results 

Test accuracy of 
biomarker 
predictions 

Derivation of biomarker genes 
1) Consistent expression behavior across agonists 
2) Opposite regulation by agonists vs antagonists 

Microarray 
Analysis 

ER  Biomarker 
32 up-regulated 
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Comparison to 
MCF-7 Gene 

Expression Biosets 

Running  
Fisher 

Algorithm 

Gene Ranking 
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FIG. 1. Estrogen receptor a (ERa) biomarker development and screening of a MCF-7 gene expression compendium. Left, ERa biomarker development and characteriza-

tion. Experiments used to identify ERa-regulated genes included 7 biosets from agonist exposed cells and 3 biosets from antagonist exposed cells from the connectivity

map (CMAP) 2.0 study (http://www.broad.mit.edu/cmap/; GSE5258). Differentially expressed genes (DEGs) were identified using the NextBio microarray processing pipe-

line (P value � .05, absolute fold-change � 1.2). Biomarker genes were identified from the DEGs after applying a number of filtering steps. Post hoc analysis on genes in

the biomarker was performed by Ingenuity Pathway Analysis (IPA) for canonical pathway enrichment and potential transcription factor regulators. Identification of pri-

mary targets of ERa was supported through queries of chromatin immunoprecipitation coupled with DNA sequencing (ChIP-seq) and chromatin interaction analysis

by paired-end tag sequencing (ChIA-PET) datasets and by examining expression of the biomarker genes following siRNA knockdown of ESR1. Right, biomarker testing

and screening. The ERa biomarker was imported into the NextBio environment, in which internal protocols rank-ordered the genes based on their fold-change.

Screening of an MCF-7 compendium was carried out by comparison of the biomarker to each bioset in the NextBio database using a pair-wise rank-based algorithm

(the Running Fisher test). The results of the test, including the direction of correlation and P value for each bioset in the compendium, were exported and used to popu-

late a master table containing bioset experimental details. A test of the accuracy of the biomarker predictions was carried out using treatments that are known agonists

and antagonists for ERa. The figure was adapted from figures in Oshida et al. (2015a,b,c) and Kupershmidt et al. (2010).
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and direction of correlation. Test results were used to determine
the accuracy of predictions as described later. We have previ-
ously used this analysis strategy to accurately identify chem-
icals that activate or suppress other transcription factors (aryl
hydrocarbon receptor [AhR], constitutive androstane receptor
[CAR] and peroxisome proliferator-activated receptor alpha
[PPARa]) (Oshida et al., 2015a,b,c).

Identification of differentially expressed genes in
NextBio microarray datasets

All differentially regulated genes were identified using the crite-
ria in the NextBio analysis pipeline and are described in detail
in Kupershmidt et al. (2010). Briefly, following platform-
appropriate processing and normalization, statistical analysis
to identify differentially expressed genes involved Welch or
standard t tests with a P value cutoff of .05 (without multiple
test correction) and a minimum absolute fold-change cutoff of
1.2. The CMAP database was downloaded as CMAP 2.0 build01
into NextBio. Even though there was only 1 biological replicate
per chemical exposure (ie, 1 Affymetrix .cel file per treatment),
statistically significant genes were identified by comparing each
treatment with a group of control samples using a t test to cal-
culate the P value with an assumption of equal variance be-
tween case and controls. Chemicals were excluded from the
analysis if there were an insufficient number of corresponding
controls matched to a treated sample. For the CMAP data, the
6 h treatment groups were analyzed in NextBio, which capture
initial cellular responses to chemical exposure through ERa

modulation.

Assembly of a compendium of gene expression
experiments carried out in MCF-7 cells

Information in the NextBio database was used to build an anno-
tated compendium of gene expression biosets derived from ex-
periments carried out in MCF-7 cells. First, annotated
information from NextBio about human-derived biosets was
used to populate a master file with information about each bio-
set including Biodesign, Biosource, Chemical Name, Gene, Gene
Mode, Phenotype, Tissue, and Study ID. Approximately 150 bio-
sets were removed from subsequent annotation because the
full name of the bioset was represented more than once in the
database. The table was then filtered for biosets derived from
MCF-7 cells, and these biosets were used to populate a separate
table. Biosets from other cell lines treated with 17b-estradiol
(E2) were also collected and used for additional subsequent
comparisons in this study. Each bioset was annotated for cat-
egory and name of the perturbant examined based on the name
of the bioset. For example, the bioset called “MCF-7
cellsþhexestrol, 14.8mM _vs_ DMSO vehicle” is in the category
“Chemical” and the specific perturbant is “Hexestrol.” The bio-
set called “MCF-7 with siRNA disrupted ESR1_72hr _vs_ siRNA
controls” is in the category “Gene” and the specific perturbant is
“ESR1.” Biosets that examined more than 2 perturbants at 1
time (eg, exposure to 3 chemicals vs control) or that could not
be interpreted were not used in any further analyses. The final
compendium contained approximately 2200 biosets.

Identification of ERa biomarker genes

Lists of statistically filtered genes were used to derive a consen-
sus gene expression biomarker for ERa. Biosets in NextBio used
to create the biomarker include the following derived from the
CMAP 2.0 dataset (Lamb et al., 2006):

“MCF-7 cells þ alpha-estradiol, 0.01mM _vs_ DMSO vehicle”
“MCF-7 cells þ genistein, 10mM _vs_ DMSO vehicle”
“MCF-7 cells þ hexestrol, 14.8mM _vs_ DMSO vehicle”
“MCF-7 cells þmestranol, 12.8mM _vs_ DMSO vehicle”
“MCF-7 cells þ estradiol, 0.01mM _vs_ DMSO vehicle”
“MCF-7 cells þ diethylstilbestrol, 15mM _vs_ DMSO vehicle”
“MCF-7 cells þ estrone, 14.8mM _vs_ DMSO vehicle”
“MCF-7 cells þ fulvestrant, 1mM _vs_ DMSO vehicle”
“MCF-7 cells þ raloxifene, 7.8mM _vs_ DMSO vehicle”
“MCF-7 cells þ clomifene, 6.6mM _vs_ DMSO vehicle”

These biosets were selected because they exhibited robust
gene expression changes (> 1700 statistically altered genes for
each bioset); also the chemicals used were structurally diverse,
and included both well-known agonists (first 7) and antagonists
(last 3). The top 5000 genes with the greatest degree of overlap
between all biosets were identified by the “meta-analysis” func-
tion in NextBio, and all data were exported. First, those genes
which exhibited consistent expression behavior across the
agonists were selected. For this filter, the genes had to consist-
ently exhibit either up or down regulation in at least 6 of the 7
comparisons. The resulting gene list was then compared with
the gene profiles of cells treated with antagonists and genes
that exhibited the contrasting directionality from controls were
selected. Those genes had to consistently exhibit either up or
down regulation by at least 2 of the 3 comparisons. Thus, bio-
marker genes that were increased in expression after chemical
exposure by agonists were decreased by antagonists, and genes
that were decreased in expression after agonist exposure were
increased by antagonists. The final list consisted of 46 genes.
An average fold-change across all agonist treatments was calcu-
lated for each gene. These average fold-change values and gene
abbreviations were imported into NextBio without any further
filtering.

Identification of ERa target genes

To determine putative target genes that may be directly regu-
lated by ERa in our biomarker gene list, we analyzed multiple
chromatin immunoprecipitation coupled with DNA sequencing
(ChIP-seq) datasets (Cicatiello et al., 2010; Grober et al., 2011; Hu
et al., 2010; Ross-Innes et al., 2010; Welboren et al., 2009) which
were curated in ChIPBase (Yang et al., 2013). An additional ERa

ChIP-seq performed in MCF-7 cells not included in ChIPBase but
found in the published literature was also examined in the ana-
lysis (Joseph et al., 2010). To increase the likelihood of selecting
regions that were ERa bound, we further filtered these bound re-
gions for the presence of an ERa binding motif (Welboren et al.,
2009) using the R Bioconductor package “MotifDb” (http://www.
bioconductor.org/packages/release/bioc/html/MotifDb.html). In
addition, we looked for distal ERa binding sites using data
derived from a chromatin interaction analysis by paired-end tag
sequencing (ChIA-PET) (Fullwood et al., 2009), thereby consider-
ing non-cis ERa regulation of gene expression. The evaluation of
evidence for linkage of ERa binding in association with target
genes was a post hoc analysis and served to support, but not de-
velop, the composition of the biomarker.

To determine if the level of ERa expression affects the ex-
pression of biomarker genes, biosets from experiments involv-
ing siRNA knockdown of ERa in MCF-7 cells were considered.
Specifically, the expression level (fold-change) of the 46 bio-
marker genes was determined in the following biosets:
“GSE27473: MCF7 breast cancer cells with estrogen receptor
alpha siRNA_vs_control,” “GSE18431: MCF7 breast cancer cell
line ESR1 shRNA_vs_control shRNA,” “GSE10061: MCF7 breast
cancer cells transfected 72 hr with estrogen receptor a
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siRNA_vs_untransfected,” “GSE18431: MCF7 breast cancer cell
line ESR1 shRNA_vs_luc1 shRNA,” “GSE10890: MCF7 with siRNA
disrupted ESR1_18hr_vs_siRNA controls,” “GSE37820: Breast
cancer MCF7 cell line—ESR1 siRNA_vs_control siRNA,”
“GSE10890: MCF7 with siRNA disrupted ESR1_72hr_vs_siRNA
controls.”

Comparison of the ERa biomarker to biosets in the
MCF-7 compendium

The strategy for comparison of a biomarker to collections of bio-
sets has been described in previous studies (Oshida et al.,
2015a,b,c). Using the Running Fisher algorithm, the ERa bio-
marker was compared with each bioset in NextBio. The P value
and direction of the correlation were exported. P values were
converted to �log(P value)s and those with negative correlations
were converted to negative numbers. The final list of �log(P
value)s was used to populate the table containing the study
characteristics of each bioset. This final master table enabled
the determination of effects on ERa by categories of perturbants
(eg, chemical) as well as individual perturbants (eg, genistein).

Prediction accuracy of ERa function

Biosets from the following microarray experiments in which the
MCF-7 cells were treated with hormones or chemicals with
known activation of ERa were used to determine predictive ac-
curacy: GSE10618, GSE11266, GSE11317, GSE11324, GSE11352,
GSE11467, GSE11506, GSE11791, GSE13577, GSE14986, GSE15548,
GSE15717, GSE20081, GSE22012, GSE2225, GSE22533, GSE23610,
GSE23850, GSE24065, GSE24592, GSE25316, GSE26259, GSE26459,
GSE26834, GSE27375, GSE28006, GSE30597, GSE30931, GSE32670,
GSE33366, GSE3529, GSE35428, GSE38252, GSE39564, GSE39623,
GSE4006, GSE4025, GSE42619, GSE43702, GSE4668, GSE46856,
GSE46924, GSE48931, GSE48989, GSE50705, GSE5200, GSE5258,
GSE53394, GSE57935, GSE5840, GSE6800, GSE8383, GSE8597,
GSE9253, and GSE9936. Experiments are represented by their
Gene Expression Omnibus (GEO) Series (GSE) number which
identifies them in the GEO public data repository and also in
NextBio. The number of biosets used to test for an increase in
ERa function (ie, ERa “activation”) was 122 true positives (TPs)
and 13 true negatives (TNs). The number of biosets used to test
for a decrease in ERa function (ie, ERa “suppression”) was 19 TPs
and 122 TNs. Prior studies with gene expression biomarkers for
xenobiotic receptors CAR and PPARa showed that a cutoff of the
Running Fisher algorithm P value� 10�4 after a Benjamini
Hochberg correction of a¼ .001 resulted in a balanced accuracy
of 95%, 97%, and 98% for AhR, CAR, and PPARa, respectively
(Oshida et al., 2015a,b,c). Applying a Benjamini Hochberg correc-
tion of a¼ .001 to the ERa biomarker predictions also resulted in
a P value cutoff of 10�4. This cutoff resulted in a balanced accur-
acy of ERa activation or ERa suppression of 94% or 93%, respect-
ively (see Results). The values for predictive accuracy were
calculated as follows: sensitivity (TP rate)¼TP/(TPþ FN); specifi-
city (TN rate)¼TN/(FPþTN); positive predictive value
(PPV)¼TP/(TPþ FP); negative predictive value (NPV)¼TN/
(TNþ FN); balanced accuracy¼ (sensitivityþ specificity)/2;
where FN¼ false negative and FP¼ false positive.

Comparison of biomarker predictions to OECD reference
chemicals

A list of ER reference chemicals was taken from the
Organisation for Economic Co-operation and Development
(OECD) TG457 BG1 guidance document (OECD, 2012). Of the 45

reference chemicals in the document, there were 21 chemicals
represented by 98 biosets in the MCF-7 compendium, including
13 agonists, 3 antagonists, and 5 inactives. If biosets were avail-
able for more than 1 concentration for a single chemical, only
the bioset with the highest j�log(P value)j was considered for
this analysis.

Comparison of biomarker predictions to ToxCast/Tox21
assay predictions

Comparisons were made between the predictions using the ERa

biomarker and predictions from Judson et al. (2015) in which the
results of 18 in vitro HTS assays were used to score chemicals for
ER agonism or antagonism. These 18 assays included those for
receptor binding, receptor dimerization, reporter gene assays
and cell growth, implemented in a variety of cell types, and
assay readout formats. The rationale for using this large battery
of assays was to account for a variety of assay artifacts and
assay interference issues that can arise when screening a very
diverse set of chemicals, as well as testing chemicals up to con-
centrations at which cell stress and cytotoxicity can occur. Of
the approximately 1800 chemicals examined in the Judson et al.
(2015) study, 114 chemicals were also evaluated by transcript
profiling in MCF-7 cells. Most of these biosets came from the
CMAP 2.0 dataset. If there was more than 1 bioset evaluating a
chemical, the bioset for the highest exposure concentration was
selected to increase the probability of detection of ERa modula-
tion using the biomarker. There were 6 biosets included as part
of the evaluation that came from studies other than CMAP. Five
came from GSE50705 (17a-ethinylestradiol [EE], 4-nonylphenol,
bisphenol A [BPA], genistein, E2). One bioset came from
GSE35428 in which 4-hydroxytamoxifen was evaluated for its
ability to suppress E2-induced responses. ER scores were con-
sidered active if area under the concentration-response curves
(AUC)� 0.1, median-T> 50%, and median-Z-score> 3 according
to Judson et al. (2015). ER scores were considered inactive if
these criteria were not met.

Evaluation of the effect of biomarker size on predictive
ability

To determine how the size of the biomarker affects the predict-
ive ability, shortened gene lists were derived. The 46 genes were
ranked in order of decreasing absolute value of the fold-change.
The genes with the lowest fold-change were removed, first
removing 6 genes to create a list of 40, then removing 5 genes at
a time to create lists of 35, 30, 25, 20, and 15 genes. Each new
biomarker was queried against the MCF-7 compendium using
the Running Fisher test. The 46 gene biomarker showed signifi-
cant correlation (�log(P value)> 4) with 327 biosets; the correl-
ation of each shortened biomarker to these 327 biosets was
plotted. Linear, logarithmic and exponential trend lines were
added to the graph in Excel to determine which fit resulted in
the optimal R2 values.

Additional computational analyses

Heat maps were generated using Treeview software (http://jtree
view.sourceforge.net; accessed 29 January 2014). The genes in
the ERa biomarker were analyzed using the Ingenuity Pathways
Analysis Core Analysis function (Qiagen). All results were ex-
ported as Excel files and filtered based on P value and ratio or
activation z-score.
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RESULTS
Assembly and Functional Characterization of an ERa

Biomarker

To assemble a biomarker predictive of ERa modulation, gene ex-
pression comparisons (biosets) were utilized from chemically
treated MCF-7 cells, a cell line which expresses ERa as the major
ER subtype (Al-Bader et al., 2011; Li et al., 2014; Zivadinovic et al.,
2005). As described in the Materials and Methods, the biomarker
was built using biosets from MCF-7 cells treated for 6 h with 7
agonists or 3 antagonists from the CMAP 2.0 study (Lamb et al.,
2006) (Figure 1). Putative ERa-regulated genes were first identi-
fied as those that exhibited consistent regulation across at least
6 of 7 agonists. The genes were further filtered to include only
those that also exhibited opposite regulation by at least 2 of 3
antagonists. A total of 46 genes (32 with increased expression
and 14 with decreased expression) were identified which ex-
hibited consistent regulation by the chemicals (Figure 2). A
number of the identified genes are well-known targets of

ERa, including PGR (Petz et al., 2004), CXCL12 (Hall and Korach,
2003), EGR3 (Inoue et al., 2004), and SIAH2 (Frasor et al., 2005).
The full list of genes in the biomarker is found in
Supplementary File 1.

The biomarker genes were examined for evidence that they
are direct targets of ERa regulation using published ChIP-Seq ex-
periments, which identified direct interactions between ERa

and the promoter regions of biomarker genes in MCF-7 cells. In
addition, genes that may be regulated by ERa through long-
range chromatin interactions were identified by ChIA-PET
(Fullwood et al., 2009). A total of 32 genes in our biomarker had
ERa-bound regions (7 by ChIP-Seq, 2 by ChIA-PET, and 23 by
both; Figure 2, arrowheads), which suggests direct transcrip-
tional regulation by ERa. Direct targets of ERa were expected
given that we selected a short treatment time (6 h) to capture
primary target genes of responsive transcription factors (Lamb
et al., 2006). Overall, the results of the ChIP-Seq and ChIA-PET
studies indicate that 70% of the genes in the ERa biomarker are
under direct transcriptional control of ERa.
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FIG. 2. Assembly and functional characterization of the ERa biomarker. Lists of statistically significant genes from MCF-7 cells treated with 7 agonists (red ovals) or 3

antagonists (blue ovals; names starred) of ERa were used to construct the biomarker as described in the Materials and Methods. The Venn diagram shows the number

of genes that were identified as significantly changed after exposure to the indicated compound. The resulting ERa biomarker consisted of 46 overlapping genes. Fold-

change values for each gene were averaged across the 7 agonist treatments to result in the fold-change values for the biomarker. The genes that were identified as

interacting with ERa by ChIP-seq or ChIA-PET studies are indicated with arrowheads.
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We also determined whether or not constitutive expression
of the biomarker genes was influenced by the level of ERa. Gene
expression was examined in MCF-7 cells after the ESR1 gene
was knocked down using siRNA methods. Knockdown of ESR1
in 7 biosets from 5 studies showed generally consistent effects
on the genes in the biomarker with decreased expression of the
upregulated genes and increased expression of the downregu-
lated genes (Figure 3).

The 46 ERa biomarker genes were examined for functional
class enrichment by Ingenuity Pathway Analysis (IPA). The top 25
canonical pathways enriched with the biomarker genes included
pathways associated with ER modulation: “Ovarian Cancer
Signaling,” “Endometrial Cancer Signaling,” and “Estrogen-
Dependent Breast Cancer Signaling” (Supplementary Figure 1).
The upstream analysis function of IPA identified a number of
transcription factors and chemicals that were predicted to regu-
late the biomarker genes (Supplementary Figure 2). The tran-
scription factors and chemicals with significant z-scores (� 2.0)
that activate the biomarker genes included those that were
expected (b-estradiol, estrogen, and ESR1). In addition, RNF31
is an atypical ubiquitin ligase that increases the expression of

ERa-regulated genes by stabilizing ERa in the cytoplasm (Zhu
et al., 2014). NCOA2 is a nuclear receptor coactivator that is over-
expressed in breast cancer and regulates ERa (Wagner et al.,
2013). Upstream regulators that inhibit expression of biomarker
genes (z-score��2.0) include the chemicals bexarotene,
PD98059, and fulvestrant. Fulvestrant is a complete ERa antagon-
ist. Bexarotene is a selective retinoid X receptor (RXR) agonist;
RXR activation increases the expression of HSD17B2, which medi-
ates the conversion of estradiol to the less potent estrone, thus
decreasing estradiol pools (Cheng et al., 2008). PD98059, a MAPK/
ERK kinase inhibitor, blocks phosphorylation of ERK1/2, and thus
inhibits a pathway of nonclassical ER signaling (Alessi et al.,
1995). Therefore, all of the significant upstream regulators as
identified by IPA have biologically plausible explanations for ef-
fects on ERa biomarker genes.

The Biomarker Accurately Predicts ERa Modulation in a
Compendium of MCF-7 Biosets

The ability of the 46 gene biomarker to identify chemicals that
modulate ERa was examined in a compendium of biosets
derived from MCF-7 cells assembled as described in the
Materials and Methods. The compendium contains biosets of
gene expression differences between control and experimental
states including chemical and hormone treatments. Most of the
chemical comparisons were derived from the CMAP 2.0 study.

The Running Fisher algorithm (Kupershmidt et al., 2010), a fold-
change rank-based pattern matching strategy, was used to predict
modulation of ERa by chemicals. The algorithm calculates the sig-
nificance of the correlation between the biomarker and biosets in
the database. In previous studies, the Running Fisher algorithm
coupled with derived gene expression biomarkers was found to be
very accurate (balanced accuracy range: 95%–98%) in predicting the
activation of xenobiotic-responsive transcription factors in a mouse
liver compendium (P value� 10�4) (Oshida et al., 2015a,b,c) (see
Materials and Methods for details of derivation of the cutoff). Using
these methods, the ERa biomarker was examined for correlation to
the 10 biosets used to identify the biomarker genes. As expected,
the biosets from agonist-treated cells exhibited statistically signifi-
cant positive correlation to the biomarker (P values� 10�12), and the
biosets from treatments with the 3 antagonists exhibited significant
negative correlation to the biomarker (P values� 10�10) (Figure 4).

The biomarker was evaluated for the ability to predict ERa

modulation by chemicals with known activity. A list of ER refer-
ence chemicals was taken from the OECD TG457 BG1 guidance
document (OECD, 2012). Of the 45 reference chemicals listed in
the document, there were 21 chemicals represented by 98 bio-
sets in the MCF-7 compendium, including 13 agonists, 3 antag-
onists, and 5 inactives. The potency category of the reference
chemicals (ie, strong, moderate, weak, very weak, and inactive)
are listed along with the �log(P value) to indicate correlation
with the ERa biomarker (Table 1). The biomarker correctly iden-
tified chemicals that are classified as weak (BPA, daidzein, gen-
istein) or very weak (apigenin, kaempferol, 4-nonylphenol
[linear, CAS 104-40-5]) agonists. The very weak activator chrysin
represented by 1 bioset was classified as inactive using the bio-
marker. Although 2 of the inactive chemicals, reserpine and flu-
tamide, had no activity, it was surprising that the other 2 OECD
inactives, cycloheximide, and corticosterone, exhibited signifi-
cant suppression by the biomarker approach. (These com-
pounds are examined in greater detail later.) The antagonists 4-
hydroxytamoxifen, tamoxifen, and raloxifene showed ERa sup-
pression as determined by significant negative correlation to
the biomarker. The 1 reference compound classified as inactive
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contains only 34 of the biomarker genes as not all genes were responsive to

ESR1 knockdown.
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for antagonism (progesterone) was also inactive using the bio-
marker. In summary, of the 21 compounds examined, the bio-
marker was able to correctly classify 12 of 13 agonists, all 3
antagonists, and 3 of 5 inactives. Importantly, the biomarker

could identify weak and very weak agonists.
A classification analysis was performed on biosets from

MCF-7 cells that were treated with chemicals or hormones with
known effects on ERa including those discussed earlier.
Classification of activation or suppression required a threshold
P value� 10�4. For prediction of activation, the ERa biomarker
had a sensitivity of 88% and a specificity of 100%, with a bal-
anced accuracy of 94% (Table 2). For prediction of suppression,
the ERa biomarker had a sensitivity of 86% and a specificity of
100%, with a balanced accuracy of 93%. Overall, evaluation of
the predictive power of the biomarker resulted in an excellent
balanced accuracy to detect exposure conditions which lead to
ERa activation or suppression.

Comparison of ERa Biomarker Predictions With Those
From 18 ER HTS Assays

Eighteen in vitro HTS assays which examined activity at differ-
ent points in the ER pathway (receptor binding, receptor dimer-
ization, reporter gene assays run in agonist and antagonist
mode, and cell proliferation) have been used to evaluate the
estrogenicity of approximately 1800 chemicals (Judson et al.,
2015). A mathematical model was used to derive pathway-level
concentration-response profiles for either agonism or antagon-
ism. Efficacy values were normalized to agonist activity for 17b-
estradiol (E2). Agonist and antagonist scores were calculated as
the AUC for the chemical relative to the positive control. Thus,
the higher the AUC, the higher was the predicted ER activity
(combined potency and efficacy) for that chemical. Assay inter-
ference (ie, from cytotoxicity) is another important factor to
consider when evaluating the HTS data for estrogenicity. Assay
results are compared with the results of 35 cytotoxicity assays
by the calculation of a Z-score to address this issue (Judson
et al., 2015). Based on the analysis in Judson et al. (2015), we
excluded chemicals with possible non-ER-specific activity based
on their scores for maximum efficacy (T) and cytotoxicity
(Z-score). For the comparisons in this article, chemicals
were classified as active if their AUC� 0.1, median-T> 50%,
and median-Z-score> 3, and inactive if all conditions were
not met.
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FIG. 4. The biomarker accurately identifies ERa modulators in a MCF-7 compen-

dium. Assessment of the correlation between the ERa biomarker and the 10 bio-

sets used to create the biomarker. The ERa biomarker was compared with the

biosets using the Running Fisher test (Kupershmidt et al. 2010). The significance

of the correlation is indicated by the �log(P value). Biosets with positive or nega-

tive correlation to the biomarker are indicated as positive or negative numbers,

respectively, and are indicated as those that activate or suppress ERa.

TABLE 1. The Biomarker Accurately Identifies OECD Reference
Chemicals for ER

CASRN Chemical Name Classification �Log(P value)

57-91-0 17alpha-Estradiol moderate agonist 19.7
84-16-2 meso-Hexestrol strong agonist 18.4
50-28-2 17beta-Estradiol strong agonist 18
53-16-7 Estrone moderate agonist 16.2
104-40-5 p-n-Nonylphenol very weak agonist 16.1
446-72-0 Genistein weak agonist 16
80-05-7 BPA weak agonist 15.4
486-66-8 Daidzein weak agonist 15.2
57-63-6 17alpha-EE strong agonist 13.4
520-18-3 Kaempferol very weak agonist 13.4
56-53-1 Diethylstilbestrol strong agonist 12.8
520-36-5 Apigenin very weak agonist 4.96
480-40-0 Chrysin very weak agonist 2.77
57-83-0 Progesterone inactive 1.14
13311-84-7 Flutamide inactive 0.87
50-55-5 Reserpine inactive �2.6
66-81-9 Cycloheximide inactive �7.28
68392-35-8 4-Hydroxytamoxifen

(E/Z)
antagonist �13.9

10540-29-1 Tamoxifen antagonist �15.3
50-22-6 Corticosterone inactive �21.7
82640-04-8 Raloxifene antagonist �26.3

Twenty-one reference chemicals with known ERa activities were examined for

correlation to the biomarker (�log(P value)). The classification refers to the agon-

ist or antagonist potency as reported in the OECD reference list as described in

the text. The 3 chemicals for which the ERa biomarker prediction and OECD clas-

sification do not agree are italicized. CASRN - Chemical Abstracts Service

Registry Number.

TABLE 2. Summary of the Sensitivity and Specificity of the ERa

Biomarker

Activation Suppression

True positives 122 19
True negatives 13 122
False positives 0 0
False negatives 16 3
Sensitivity 0.884 0.863
Specificity 1.000 1.000
PPV 1.000 1.000
NPV 0.448 0.976
Balanced accuracy 0.942 0.932

The biomarker was compared with biosets that are known positives or negatives

for ERa activation including chemicals and E2. Separate tests for ERa activation

(estrogenicity) and ERa suppression (antiestrogenicity) were carried out.
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Figure 5A shows a comparison of the predictions based on
the �log(P value)s from the ERa MCF-7 screen and the ER AUC
from the Judson et al. study for the 114 overlapping chemicals.
The �log(P value)s of the biomarker predictions were rank
ordered and colored based on their predicted activity by the
HTS assay model. Most of the compounds (83) had no activity as
assessed by both methods (ie, an ER AUC of< 0.1 or median-Z-
score< 3 and j�log(P value)j< 4). False positive chemicals are
those that were predicted to activate ERa in MCF-7 cells but
were inactive in the Judson et al. model. The call of inactive
could be due to an AUC< 0.1 (filled black circles: theobromine,
4-nonylphenol, methotrexate, niclosamide, digoxin, and cor-
ticosterone) or due to a Z-score< 3 (open black circles: norethin-
drone and cycloheximide). There was 1 false negative for
activation, chrysin. Using the 18 in vitro assays as the reference
dataset, an accuracy test for predictions of activation or sup-
pression using the ERa biomarker gave balanced accuracies of
95% and 98%, respectively (Table 3). Thus, for the 114 com-
pounds in common, there was excellent agreement between
the 2 approaches.

Differences in the predictions from the Judson et al. (2015)
study and those using the biomarker were examined in greater
detail. Figure 5B shows a heat map representing the fold-change
of each gene in the biomarker for the false negative and false
positive chemicals as well as the �log(P value) from comparison
to the biomarker. The chemical chrysin was the only false nega-
tive. Chrysin was identified as having marginal estrogenicity in
the HTS assays (AUC score¼ 0.134) but no significant activity
with the biomarker (�log(P value)¼ 2.77). Examination of the

heat map of chrysin indicated that the pattern lacked marked
similarity with the biomarker (Figure 5B, left). Because chrysin
was evaluated only at a single concentration after 6 h of ex-
posure in MCF-7 cells, it is possible that this very weak agon-
ist would have been identified in our MCF-7 screen if a full
concentration-response analysis was carried out comparable to
that in the HTS ER assays (ie, up to 100 mM) or if exposure time
was increased.

The false positives are those 8 chemicals that had activity
predicted by the biomarker but were considered inactive in the
HTS ER model. For these chemicals, the gene expression biosets
showed visible similarity to the ERa biomarker as expected due
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FIG. 5. Comparison of ERa biomarker predictions to those using high-throughput assays that evaluate ER activity. A, Predictions using the ERa biomarker were com-

pared with those of Judson et al. (2015), which evaluated 18 high-throughput assays of binding, dimerization, agonism, and antagonism of ERa. The 114 chemicals pre-

sent in both analyses are rank ordered based on �log(P value)s. Gray or black circles indicate the classification of ERa activity (active includes both agonism and

antagonism) based on the Judson model. An open black circle indicates that the inactive call was due to cytotoxicity. Dotted lines denote the biomarker cutoffs of P

value ¼ 10�4. False positive and false negative chemicals are labeled. B, Expression behavior of the biomarker genes after exposure to chemicals identified as false

negatives or false positives. (Top) Heat map showing expression behavior. (Bottom) �log(P value)s from predictions using the ERa biomarker.

TABLE 3. Classification Analysis With ER Model Predictions

Activation Suppression

True positives 16 6
True negatives 93 104
False positives 4 4
False negatives 1 0
Sensitivity 0.941 1.000
Specificity 0.959 0.963
PPV 0.800 0.600
NPV 0.989 1.000
Balanced accuracy 0.950 0.980

Summary of the sensitivity and specificity of the ERa biomarker compared with

the predictions from the Judson et al. (2015) study. Separate tests for ERa activa-

tion (estrogenicity) and ERa suppression (antiestrogenicity) were carried out.
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to the significant �log(P value)s (Figure 5B, right). Theobromine
and methotrexate showed no activity in the agonist HTS assays
and corticosterone showed no activity in the antagonist HTS
assays. The other 5 false positive chemicals had an AUC> 0.1 or
showed activity in at least 1 individual ER assay but had Z-
scores< 3 suggesting that it is not possible to differentiate true

ER activity from assay interference due to cytotoxicity. Thus, 5
of the 8 false positive chemicals had some activity in at least 1
of the 18 assays, raising the possibility that these chemicals
could alter ERa in a subset of assays and cellular contexts, and
also at concentrations that may be inducing overall cytotoxicity
in the cells. The results of these comparisons were similar to
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the analysis using an earlier version of the ER model (Rotroff
et al., 2014) in which 13 assays were used to provide predictions
of ERa activity (data not shown).

Relationship Between Biomarker Gene Number and
Prediction of ERa Modulation

Screening for candidate EDCs using HT gene expression profil-
ing may utilize array platforms with considerably fewer genes
than the full-genome arrays that were used in this study. For
example, the L1000 platform used by the Broad Institute LINCS
effort examines the expression of approximately 1000 represen-
tative genes from the human genome. We thus examined the
relationships between the number of genes in the ERa bio-
marker and the ability to predict ERa modulation. Predictions
within the MCF-7 compendium were carried out using bio-
markers which lacked, in increments of 5, the bottom ranked
genes (those with the lowest average jfold-changej) resulting in

ERa biomarkers of 40, 35, 30, 25, 20, and 15 genes (Figure 6A, in-
set). Using the original 46 gene ERa biomarker as the reference,
the changes in the number of biosets predicted to have activa-
tion or suppression of ERa were determined. Figure 6A shows
the �log(P value)s from biosets which were predicted to have
ERa activation (327) using the original 46 gene biomarker com-
pared with the 6 shortened versions. Similar trends were
observed for ERa suppression (data not shown). A linear trend
line was used to determine the points at which there is cross-
over with a j�log(P value)j ¼ 4 for the individual shortened ver-
sions of the biomarker. Linear trend lines resulted in the best
representation of the data with R2 values of 0.968–0.675 as com-
pared with exponential (R2 0.986–0.237) or logarithmic (R2 0.896–
0.627). Figure 6B summarizes the percent of biosets that would
be misclassified as false negatives as a function of biomarker
gene number. These results indicate that the biomarker could
be reduced to 32 (activation) or 38 (suppression) genes while
keeping the number of false negatives under 10%. However, if
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FIG. 7. Responsiveness of the biomarker to E2 treatment in different cell lines. A, Significance of the correlations of the biomarker to biosets from E2-treated human

breast cancer cell lines. Numbers in parentheses represent the number of biosets from the indicated cell line. Five biosets from 3 ERa-positive cell lines were grouped

together (Misc.; from MDA-MB-134, SUM44PE, ZR-75-1 cells). All 23 biosets from E2-treated ERa-negative MDA-MB-231 were negative for ERa activation. B, E2-respon-

siveness in cell lines from the indicated tissues. Cell lines from “Other tissues” were derived from blood, endothelial cells, leukocytes, liver, ovary, quadriceps muscle,

raphe nuclei, skin, umbilical cord, and vagina.
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the goal is to utilize the biomarker as a Tier 0 screening strategy,
the number of false negatives would need to be minimized to
avoid misclassifying any chemical that may have effects. This
gene expression screening strategy would require using the full
46 gene biomarker.

Evaluation of the Biomarker as a Potential Screening
Tool in Different Cell Models

We determined if the biomarker developed using MCF-7 cell ex-
periments could be used in conjunction with gene expression
profiling in other cell lines. Biomarker behavior was first exam-
ined across E2-treated breast cancer cell lines with known ERa

activity. The biomarker was able to identify significant ERa acti-
vation in 75 out of 80 biosets from E2-treated MCF-7 cells (Figure
7A). Short exposure times (1–4 h) may explain why E2 did not ac-
tivate ERa in 5 of these biosets. All 5 biosets from 3 ERa positive
cell lines (MDA-MB-134, SUM44PE, ZR-75-1) treated with E2
showed significant activation. In contrast, only 3 of the 14 bio-
sets from the ERa positive T47D cells exposed to E2 showed
significant ERa activation. Although these cells are generally ER-
responsive, the very high levels of progesterone receptor ex-
pressed in T47D cells may inhibit E2-induced gene expression
(Abdel-Hafiz et al., 2002; Horwitz et al., 1982). It should be noted
that this cell line was used in the HTS ER screening program as
a model of E2-induced growth (Judson et al., 2015; Rotroff et al.,
2014). None of the 23 biosets from E2-treated ERa-negative cell
line MDA-MB-231 showed significant ERa activation.

The biomarker was also evaluated to determine responsive-
ness in cell lines derived from tissues other than breast. ERa ac-
tivation was observed after E2 treatment in 8 of 27 biosets from
endometrium-derived cell lines (Figure 7B). Most of these bio-
sets were generated using the Ishikawa cell line, which
expresses ERa and ERb (Hevir-Kene and Rizner, 2015). Only 1 of
the 10 E2-treated biosets from the U-2 OS osteosarcoma cell line
resulted in significant activation. Cell lines derived from
E2-treated blood, endothelial cells, leukocytes, liver, ovary,
quadriceps muscle, raphe nuclei, skin, umbilical cord, and va-
gina did not exhibit significant activation. Lack of activation
could be due to either little or no expression of ERa/ERb or that
ERa is expressed but regulates a different set of genes in these
tissues. Thus, the biomarker appears to be most useful as a
screening tool in MCF-7 cells and could possibly be used in a
subset of ERa-positive breast cancer cell lines. However, the bio-
marker does not appear to be useful for screening chemicals in
other cell lines.

DISCUSSION

HTS assays including those that are carried out as part of the
ToxCast/Tox21 screening programs have proven useful in the
identification of candidate EDCs and in providing information
about their potential mechanisms of action (Judson et al., 2015).
In this study, a testing strategy complementary to these HTS ER
assays was evaluated to identify candidate EDCs using a gene
expression biomarker in combination with transcript profiling.
As a proof of principle, our efforts were focused on identifica-
tion of chemicals that modulate ERa, arguably one of the most
important and well-studied EDC targets, using a 46 gene bio-
marker derived from microarray profiles of ERa agonists and an-
tagonists in MCF-7 cells. The ERa biomarker genes exhibited
consistent regulation by structurally diverse agonists and op-
posite regulation by antagonists (Figure 2). Although our ap-
proach did not specifically screen for genes that were regulated

by ERa, most of the biomarker genes are direct targets of ERa.
Approximately 70% of the genes were found to have direct inter-
actions with ERa in their promoter/enhancer regulatory regions
as assessed by ChIP-Seq/ChIA-PET experiments (Figure 2).
The regions bound by ERa all contain an ERE motif, so this inter-
action is likely a direct binding of ERa to the promoter (data not
shown). Furthermore, many of the genes exhibited altered ex-
pression when the ESR1 gene itself was knocked down by siRNA
methodologies (Figure 3). The biomarker genes exhibited ex-
pected changes in expression after E2 exposure in ERa-positive
but not ERa-negative breast cancer cell lines (Figure 7). Our ap-
proach significantly expands on a study that used statistical
procedures to identify commonly regulated genes in 10 pub-
lished microarray experiments that involved E2 exposure in
MCF-7 cells (Ochsner et al., 2009). Nine of those 10 datasets are
included in our analysis (Figure 7) and 39 of our biomarker
genes were identified in their study, supporting the validity
of our approach. Taken together, our procedures identified ERa-
regulated genes that could be useful in classifying chemicals for
effects on ERa.

To explain the biomarker genes that do not have evidence
for direct ERa binding, it should be noted that although the bio-
marker was built using gene expression profiles from chemicals
that bind to ERa, the biomarker cannot distinguish between
those chemicals which activate by the classical agonism mech-
anism and those chemicals that may activate through alterna-
tive mechanisms (eg, nonclassical activation or by increasing
the availability of estrogens) (Chen et al., 2014). Thus, the term
“activation” is used in this study to include all mechanisms that
lead to increased activity of ERa. ERa “suppression” then in-
cludes true antagonism as well as decreases in background or
estrogen-stimulated activation through other mechanisms (eg,
depletion of pools of estrogen through alteration in metabol-
ism). In fact, depletion of estrogens from serum affects the ex-
pression of the ERa biomarker genes similar to that of
antagonist exposure (Supplementary Figure 3).

To provide an appropriate cellular context for testing the
biomarker, a compendium of gene expression comparisons
(also called biosets) was assembled from experiments carried
out in the human breast cancer cell line MCF-7. This ERa-posi-
tive cell line has been extensively used as a model for breast
cancer treatment strategies and to identify ERa modulating
chemicals. A large number of biosets were identified and anno-
tated from curated studies found in a commercially available
gene expression database (NextBio). The final compendium
contains over 1400 biosets from chemically treated cells, most
of which came from the CMAP 2.0 drug study (Lamb et al., 2006),
as well as hundreds of comparisons of hormone effects consist-
ing mostly of E2 treatments used as a positive control in various
experiments. The compendium also contains biosets from ex-
periments which examined the effects of overexpression or
knocking down expression of approximately 200 different
genes. Applications of our screening approach for identification
of novel CMAP chemicals and genes encoding proteins that
modulate ERa will be described in future work and is not a focus
of this study. The compendium, which will continue to grow in
parallel with advances in genomic screening techniques, will be
a useful database for future studies to link chemical exposure
and genetic perturbation to molecular targets and pathway-
level effects. The prediction of ERa modulation is the first appli-
cation of this compendium.

To screen for chemicals that lead to alterations of ERa func-
tion, the biomarker was compared with individual biosets in the
MCF-7 compendium using the fold-change rank-based
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nonparametric Running Fisher algorithm (Kupershmidt et al.,
2010). The approach, somewhat analogous to the Gene Set
Enrichment Analysis method (Lamb, 2007; Lamb et al., 2006),
has proven useful in identifying novel treatment strategies for
disease (Eriksson et al., 2015). The approach finds, in an un-
supervised manner, biosets with expression patterns of bio-
marker genes with statistically significant positive or negative
correlation corresponding to activation or suppression of ERa.
Antagonist-like activity can most likely be detected because the
MCF-7 cell line cultured under standard conditions exhibits a
basal level of ERa activation that can be suppressed with antag-
onists. Indeed, ERa is suppressed under conditions of depletion
of estrogens in the media by charcoal filtering (Supplementary
Figure 3) and culture conditions for MCF-7 cells contain approxi-
mately 20 pM of E2 (Bindal and Katzenellenbogen, 1988). This
level of E2 could likely modulate ERa-regulated genes.

The use of the gene expression biomarker resulted in excel-
lent predictive accuracy for ERa modulation. Using 141 biosets
from cells treated with E2 or chemicals with known ERa activity,
a test for prediction of activation or suppression gave a bal-
anced accuracy of 94% or 93%, respectively (Table 2). This high
level of accuracy demonstrated the robustness of the computa-
tional procedures to identify ERa modulators despite the fact
that the biosets were nonhomogeneous, consisting of a collec-
tion derived from experiments with various exposure condi-
tions carried out in different labs that queried gene expression
using different microarray platforms (data not shown). The high
degree of accuracy using the ERa biomarker is consistent with
our past experience identifying modulators of the transcription
factors AhR, CAR, and PPARa that also resulted in excellent ac-
curacy (95%, 97%, and 98% balanced accuracy, respectively) in a
compendium of liver biosets (Oshida et al., 2015a,b,c). The com-
putational approach used in these studies will be useful for the
future assessment of chemical modulation of other transcrip-
tion factors including those that are important mediators of
endocrine disruption.

There was excellent concordance between the predic-
tions using the ERa biomarker and those of other tests for
estrogenicity/antiestrogenicity. The biomarker was able to
correctly classify 18 of 21 OECD ER reference chemicals (Table
1), most notably identifying 3 of the 4 agonists classified as
“very weak.” The very weak agonist chrysin gave a positive re-
sponse but did not achieve significance (�log(P value)¼ 2.77).
Two of the chemicals (corticosterone and cycloheximide) were
misclassified as false positives for antiestrogenicity using the
biomarker. Cycloheximide was likely confounded by cytotox-
icity as the concentration used in the CMAP 2.0 study was
14.2 lM, a concentration that was cytotoxic in a number of HTS
ER assays (Judson et al., 2015). We hypothesize that
corticosterone, a glucocorticoid receptor (GR) agonist, may be
influencing expression of ERa-responsive genes indirectly
through GR-mediated increases in the expression of SULT1E1, a
sulfotransferase that sulfonates and inactivates estrogen (Gong
et al., 2008).

The biomarker predictions were compared with 18 in vitro
HTS assays which examined different endpoints of ER activity
carried out as part of the EDSP HTS program (Judson et al., 2015).
Remarkably, the biomarker was able to correctly classify 105 of
the 114 chemicals in common (Figure 5; Table 3). Accuracy tests
for ERa activation or suppression gave balanced accuracies of
95% or 98%, respectively. Chrysin was the only false negative of
the 114 chemicals tested and, in support of this finding, was a
very weak modulator in the Judson et al. study with an agonism
score of 0.134, very near the cutoff used. Of the 4 false positive

chemicals for estrogenicity, theobromine was previously identi-
fied as an estrogenic chemical in a study of drug repurposing
(Iskar et al., 2013), and 4-nonylphenol was shown to activate ERa

(Vivacqua et al., 2003). Digoxin, which possesses a steroid struc-
ture, was 1 of the 4 false positive chemicals for ERa suppression.
Digoxin has been linked to estrogenicity in other cellular con-
texts (Biggar, 2012), indicating that digoxin can act as a selective
ERa modulator. Further experiments are warranted to confirm
the activity of these compounds.

The concordance between the biomarker classifications and
these other methods was remarkable considering the deficien-
cies inherent in most of the biosets used for classification in our
study. In particular, the biosets from the CMAP 2.0 dataset
included chemical comparisons in which statistically signifi-
cant gene lists were derived using a t test comparison between
1 treated sample versus multiple control samples at only 1 time
point and concentration level (approximately 10 mM for most
chemicals). As the concentration of a chemical and time of ex-
posure are critical factors determining toxicity, evaluation of a
range of concentrations and time points is necessary to reduce
the risk of false negatives and false positives in toxicity testing.
Therefore, when HT gene expression profiling is ultimately im-
plemented within chemical screening programs, the ability to
identify chemicals of concern should be greatly improved over
the present analysis when multiple replicates, concentrations,
and times of exposure are examined.

The excellent concordance between our method and the ER
predictive model indicates that the MCF-7 cell line will be useful
for future HT gene expression profiling. The MCF-7 cell line has
been used as a model to examine genes and signaling pathways
that determine ERa activation by classical and nonclassical
mechanisms (Marino et al., 2006). Several signaling pathways
that impact ER activation and are associated with cell growth
and cancer are functional in MCF-7 cells including G protein-
coupled receptor pathways, PI3K-Akt signaling, Wnt/b-catenin,
and Notch signaling (Hu et al., 2011). In contrast to the MCF-7
cells, at least some of the assays used in the ER HTS program
cannot identify chemicals that activate ERa through nonclas-
sical mechanisms. The assays carried out in the human kidney
cell line HEK293T and the human hepatoblastoma cell line
HepG2 use hybrid proteins consisting of the ligand binding do-
main (LBD) of ERa in frame with the yeast GAL4 DNA binding
domain. These systems are only responsive to activation/sup-
pression mediated through the LBD and would not be respon-
sive to activation by signaling in the ERa protein N-terminal to
the LBD. In contrast to other systems, the human ovarian cell
line BG1 used for agonist and antagonist assays, like the MCF-7
cells, depend on the endogenous full-length ERs for activity. It
would be interesting to determine if chemicals that activate ER
in BG-1 and MCF-7 cells, but not in the HEK293T or HepG2 cells,
act through nonclassical mechanisms of activation. Our screen
with the biomarker identified a number of chemicals that were
not identified in other assays (the false positives discussed ear-
lier). It is possible that these chemicals activate ERa through
nonclassical mechanisms but further work is needed to confirm
this hypothesis.

There are a number of potential caveats of our approach for
identification of ERa modulating chemicals. The approach does
not reveal the underlying nature of the agonist-like or antagon-
ist-like activity. Like the current strategy of using ER HTS assays,
the methods described here will greatly reduce the number of
chemicals for further testing, but additional tests would have to
be carried out to determine how the chemicals are causing
modulation. In addition, the MCF-7 cell line may not be
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appropriate to identify chemicals that alter ERa through effects
on steriodogenesis that determine the level of E2. Two aroma-
tase inhibitors are included in the compendium (letrozole, ami-
noglutethimide) but both had no effects on ERa consistent with
studies that show that endogenous aromatase is expressed at
levels that do not allow inhibition effects to be seen (Zhou et al.,
1990). To circumvent this problem, an MCF-7 cell line that con-
stitutively expresses human aromatase, the MCF-7aro cell line
has been recently used as a screening model (Chen et al., 2014;,
2015) and provides a solution to detect not only aromatase in-
hibitors but also chemicals that affect other steroidogenesis en-
zymes. Of note, the ERa biomarker would not necessarily
identify chemicals that are ERa modulators in other cellular
contexts due to the likelihood of tissue-specific differences in
ERa target genes. Our examination of E2 responsiveness in an

array of cell types indicated that the biomarker is only appropri-
ate for screening in a subset of human breast cancer cell lines,
namely those that are ERa-positive (Figure 7).

Another limitation is that the number of genes in the bio-
marker determines the sensitivity of the predictions (Figure 6).
This aspect is important when considering that it may not be
feasible to interrogate the full genome for high-throughput
gene expression profiling. Platforms with smaller numbers of
genes (eg, Broad Institute L1000) may allow only a subset of
derived biomarker genes to be queried. Our analysis of the im-
pact of the number of genes in the biomarker indicates that as
the size of the biomarker decreases, there are increases in the
number of false negatives for prediction of both ERa activation
and suppression.

In summary, we have developed gene expression-based
computational procedures to screen chemicals for ERa activity
that closely replicate the results of 18 HTS assays without an in-
crease in the number of false negatives. High-throughput tran-
script profiling in MCF-7 cells for ERa modulators could
complement the current screening paradigm by serving as a
Tier 0 screen which would be followed by more targeted assays
to uncover the underlying mechanism of action. Although the

experimental details have yet to be fully explored, the cost,
time, and resource requirements of running a single gene ex-
pression experiment will undoubtedly provide savings over the
current HTS assay platform. The procedures also have the ad-
vantage of simultaneously assessing agonist-like or antagonist-
like activity in a single assay system. As detailed in a recent U.S.
Federal Register Notice (https://www.federalregister.gov/art
icles/2015/06/19/2015-15182/use-of-high-throughput-assays-
and-computational-tools-endocrine-disruptor-screening-pro
gram-notice; accessed 23 June 2015), 3 assays in the EDSP Tier I
battery could be replaced by in vitro ER assays based on the abil-
ity of the assays used in the Judson et al. (2015) model to accur-
ately predict uterotrophic results in mice and rats (Browne et al.,
2015). Thus, the methods developed here could not only be used
as a more streamlined alternative to the 18 ER ToxCast assays
but also provide a general strategy for the identification of ER
modulators that would meet the needs of a number of EDSP
stakeholders.

SUPPLEMENTARY DATA

Supplementary data are available online at http://toxsci.ox
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