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Abstract

SHAPE chemistries exploit small electrophilic reagents that react with the 2′-hydroxyl group to 

interrogate RNA structure at single-nucleotide resolution. Mutational profiling (MaP) identifies 

modified residues based on the ability of reverse transcriptase to misread a SHAPE-modified 

nucleotide and then counting the resulting mutations by massively parallel sequencing. The 

SHAPE-MaP approach measures the structure of large and transcriptome-wide systems as 

accurately as for simple model RNAs. This protocol describes the experimental steps, 

implemented over three days, required to perform SHAPE probing and construct multiplexed 

SHAPE-MaP libraries suitable for deep sequencing. These steps include RNA folding and SHAPE 

structure probing, mutational profiling by reverse transcription, library construction, and 

sequencing. Automated processing of MaP sequencing data is accomplished using two software 

packages. ShapeMapper converts raw sequencing files into mutational profiles, creates SHAPE 

reactivity plots, and provides useful troubleshooting information, often within an hour. SuperFold 
uses these data to model RNA secondary structures, identify regions with well-defined structures, 

and visualize probable and alternative helices, often in under a day. We illustrate these algorithms 

with the E. coli thiamine pyrophosphate riboswitch, E. coli 16S rRNA, and HIV-1 genomic RNAs. 

SHAPE-MaP can be used to make nucleotide-resolution biophysical measurements of individual 

RNA motifs, rare components of complex RNA ensembles, and entire transcriptomes. The 

straightforward MaP strategy greatly expands the number, length, and complexity of analyzable 

RNA structures.
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INTRODUCTION

RNA plays many fundamental biological roles, often by interacting with other RNAs, 

proteins, and small molecules
1–3

. In these roles, RNA molecules must adopt specific 

secondary and tertiary structures, the details of which are often difficult or impossible to 

characterize from sequence alone. A wide variety of chemical probing approaches have 

proven to be powerful tools for understanding the critical features of RNA structure at both 

small and large scales
4–6

. Of these, SHAPE (selective 2′-hydroxyl acylation analyzed by 

primer extension) has emerged as a particularly useful probe of RNA structure. SHAPE uses 

small hydroxyl-selective electrophilic reagents to probe the reactivity of the RNA ribose 2′-

OH group. SHAPE reactivities are insensitive to base identity and correlate with local 

nucleotide flexibility and dynamics
7–9

 because flexible residues sample a wide range of 

conformations, a subset of which enhance the reactivity of the 2′-hydroxyl
10

 (Fig. 1a).

SHAPE chemistry makes it possible to thoroughly examine RNA structure because, with the 

exception of some post-transcriptionally modified RNAs, all RNA nucleotides carry a 2′-

hydroxyl group. SHAPE reactions are self-inactivating through a competing hydrolysis 

reaction with water (Fig. 1b) and thus require no specific quench step. Because few 

compounds have a net reactivity as high as 55 M water, intrinsic SHAPE reactivities are 

largely insensitive to the presence of (additional) competing small molecules, ligands, and 

proteins. SHAPE experiments work robustly when performed in complex environments 

including those inside virus particles
11–13

 and in living cells
14–17

. By careful choice of 

SHAPE reagent (Fig. 1c)
15,16,18 and experimental design, nucleotide flexibilities can be 

compared under different experimental or environmental conditions including cell-free 

versus in-cell and as a function of ligand and protein binding. When used as constraints in 

RNA modeling algorithms, SHAPE reactivity data yield accurate secondary structure 

models for many classes of RNA
19–21

.

Development of SHAPE-MaP, ShapeMapper and SuperFold

SHAPE and other RNA structure-probing approaches have recently been combined with 

massively parallel sequencing to enable the study of larger and more complex RNA 

systems
6,22–27

. These approaches have used similar adapter-ligation methods and suffer 

from common limitations arising from multi-step library preparation protocols and low 

signal levels (see Alternative Methods below). To overcome these limitations we developed 

SHAPE-MaP, a direct, rapid and robust strategy for RNA structure probing at multiple 

scales.

SHAPE-MaP and ShapeMapper—In SHAPE-MaP, SHAPE adducts are detected by 

mutational profiling (MaP), which exploits an ability of reverse transcriptase enzymes to 

incorporate non-complementary nucleotides or create deletions at the sites of SHAPE 

chemical adducts (Fig. 2)
28

. The ability of reverse transcriptase to occasionally extend 

through chemical lesions in RNA has been noted previously
29,30. Due to the optimized 

primer extension conditions used in the MaP approach, at least 50% of chemical adducts are 

detected
28

. The cDNA generated are subjected to massively parallel sequencing, and 

mutations are counted to create SHAPE reactivity profiles using ShapeMapper (Fig. 2).
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Because MaP sequencing data are digital and because both chemical modification and (no-

reagent) non-modification are recorded for every nucleotide, analysis yields mutation 

frequencies. This enables two important advances over prior analog and other sequencing 

approaches. First, the signal requires no heuristic rescaling prior to background removal. 

Second, the standard error (a measurement of variability) associated with each SHAPE 

reactivity can be computed
28

. These standard errors are conveniently viewed as error bars on 

reactivity profile plots, automatically produced by ShapeMapper.

Mismatches comprise about 60% of the sequence mutation signal detected by SHAPE-MaP; 

deletions make up the other 40%. Many deletions cannot be located unambiguously with 

single-nucleotide accuracy, especially in regions of repeated or homopolymeric sequence. 

For typical RNAs, approximately 55% of detected deletions (22% of total mutations) align 

ambiguously. ShapeMapper automatically detects ambiguously aligned deletions (Fig. S1) 

and excludes them from analysis to yield better agreement between SHAPE-MaP and 

previously validated SHAPE experiments (Fig. S2).

All current information supports the view that the MaP approach recovers chemical probing 

data equally as well as prior gold standard capillary electrophoresis methods. The MaP 

approach was intensively validated using a test set of RNAs ranging in size from 75 to 3,000 

nucleotides
28

.

SHAPE-MaP has been recently used to analyze the entire HIV-1 and hepatitis C virus 

(HCV) RNA genomes (~9,200 and 9,650 nts)
28,31,32. The new models for these two RNAs 

recapitulate nearly all previously known and accepted functional motifs and, moreover, 

contain multiple new structural and functional elements including experimentally validated 

pseudoknots
28

 and other structures
31,32.

SuperFold algorithm—We recently developed a folding pipeline for modeling large 

RNAs
28

. This pipeline, now called SuperFold, is fully automated (Fig. 3). SuperFold takes a 

windowing approach to folding of large RNAs. For long RNAs, practical window size 

choices are roughly 1,200 nucleotides for a partition function calculation and 3,000 

nucleotides for a minimum free energy calculation. Dividing the folding of a large RNA into 

smaller segments allows modern multi-core workstations to model RNA structures in a 

modest amount of clock-time. SuperFold runs in three main stages (Table 4): partition 

function calculation, minimum free energy calculation, and structural analysis (Fig. 3). The 

partition function and minimum free energy structure calculation are implemented using 

RNAstructure
33

, which enables direct incorporation of SHAPE reactivity information
19–21

.

Two assumptions are made to model RNA folding in windows. The first is that RNA 

structure is predominately local in nature. A maximum pairing distance of 600 nts is 

currently implemented in RNAstructure. It is a practical, but imperfect, assumption that 

pairing does not occur outside this number of nucleotides
19,21. A consequence of this 

implementation is that improperly choosing the “ends” of an RNA will introduce 

(potentially) cascading effects on nucleotide pairing. To mitigate this effect, predicted 

structures 300 nucleotides from the 5′ and 3′ ends of a given window are removed. The 

second assumption is that the most stable structure will predominate despite potentially 
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poorly chosen 5′ and 3′ ends. SuperFold combines predicted pairs from overlapping 

windows and requires that base pairs occur in more than half of potential cases to be retained 

in a minimum free energy secondary structure model.

The partition function computed over a given RNA can be used to distinguish regions of an 

RNA that form well-defined structures from those that are likely to exist as an ensemble of 

structures
34

. SuperFold calculates the partition function in windows of 1200 nucleotides. 

Interactions within 300 nucleotides of the window 5′ and 3′ ends are removed. Pairing 

probabilities are then averaged across each window in which a given base pair is able to 

occur. Additional partition function calculations are performed using the true 5′ and 3′ ends 

to reduce de-weighting of the partition function at the ends of an RNA.

The partition function can also be used to identify helices that are most likely to be modeled 

correctly. Nucleotides with predicted pairing probabilities above 0.99 appear to be correct 

more than 90% of the time
35

. This observation is used to constrain the minimum free energy 

structure prediction using RNAstructure Fold in 3,000-nt sliding windows. Highly probable 

pairs, based on the partition function within a folding window, are constrained to be base 

paired. Nucleotides split by an overlapping window are forced to be single stranded. The 

combination of these two constraints mitigates the effects of inadvertently poorly chosen 

ends.

Identifying well-determined RNA structures—From the partition function of base 

pairing, a SHAPE data-informed Shannon entropy
36

 can be calculated. Analysis of the 

Shannon entropy of base pairing can be used to quantify the well-determinedness of an RNA 

conformation within a given region
28,35. Low SHAPE reactivity across a region of RNA is 

indicative of stable base pairing. Regions that have both low SHAPE reactivities and low 

Shannon entropy are likely to exist in a single structural state and have been found to be 

highly correlated with known functional RNA structures in both the HIV-1 and HCV RNA 

genomes
28,31. Regions are calculated as the median over 55-nt windows of Shannon entropy 

and SHAPE reactivity. Because these low Shannon entropy and SHAPE reactivity regions 

are calculated over (large) windows, base pairs may fall outside of strict boundaries. In 

SuperFold, these regions are discovered and then expanded to include nearby minimum free 

energy model helices that cross low SHAPE and low Shannon entropy boundaries to contain 

complete helical elements and to account for imprecise boundaries of well-determined 

regions.

Pseudoknots—The de novo discovery of RNA pseudoknots remains challenging. Several 

new pseudoknots were discovered in the HIV-1 RNA genome using a process that was not 

fully automated
28

. We have obtained good results using the ShapeKnots algorithm
20

 with 

700-nt windows in 50-nt steps. Pseudoknots that appear in a majority of windows are set 

aside for further analysis by an expert user for plausibility. Additional experimental 

validation or evolutionary support should then be sought because, in practice, false positive 

predictions are obtained with arbitrarily chosen 5′ and 3′ window boundaries. Once a 

pseudoknot has been located, the pseudoknot can be readily flagged in SuperFold.
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Overview of the Procedure

Here, we provide a detailed protocol for SHAPE-MaP and for subsequent data analysis 

using ShapeMapper and SuperFold. For simplicity, the Procedure focuses on a 

straightforward folding approach for interrogating native-like or deproteinized RNA with 1-

methyl-7-nitroisatoic anhydride (1M7). Adapting the Procedure for other RNAs, for in-cell 

conditions, and for other SHAPE reagents is discussed in Experimental Design. The key 

stages of the Procedure are as follows:

SHAPE modification of RNA—SHAPE electrophiles are added to the folded RNA (or 

virus or cell) and then incubated until the reagent has either reacted with RNA or degraded 

via hydrolysis with water (5 hydrolysis half-lives, Figs. 1b, c). Two control reactions are 

performed in parallel: a no-reagent control and a denaturing control. In the no-reagent 

control reaction, folded RNA is incubated with solvent only (typically DMSO for SHAPE 

reagents); this important control measures the intrinsic background mutation rate of reverse 

transcriptase under MaP conditions and also detects certain naturally occurring RNA 

modification events. In the denaturing control reaction, RNA is suspended in a denaturing 

buffer containing formamide and incubated at 95 °C prior to modification with SHAPE 

reagent. Nucleotides are modified relatively evenly in this step, and the resulting site-

specific mutation rates account for subtle sequence- and structure-specific biases in 

detection of adduct-induced mutations. Thus, a complete SHAPE-MaP experiment consists 

of three reactions: plus-reagent (+), minus-reagent (−), and denaturing control (DC).

The tagmentation (Nextera) library preparation used in this protocol requires that only 

double-stranded DNA (dsDNA), derived from the RNA that is being structurally 

interrogated, be present in the sample. It is thus critical that genomic DNA and template 

DNA from cellular and in vitro-transcribed samples, respectively, be completely removed 

prior to reverse transcription and subsequent library preparation steps. Cellular or viral 

RNAs that were obtained by gentle extraction to maintain secondary structure should be 

DNase-treated following SHAPE modification, prior to reverse transcription. For in vitro-

transcribed RNAs, a DNase treatment is conveniently performed immediately following in 
vitro transcription.

Mutational Profiling (MaP) by reverse transcription—After SHAPE modification of 

RNA, reverse transcriptase is used to create a mutational profile (MaP). This step encodes 

the positions and relative frequencies of SHAPE adducts as mutations in the cDNA 

sequence. Mutational profiling is efficient, with roughly 50% of SHAPE adducts detected as 

mutations in the cDNA
28

. The reverse transcription reaction conditions are the same for any 

RNA, but the researcher has two options for DNA primer type. RNAs that are small enough 

to be sequenced end-to-end in a single massively parallel sequencing read (read lengths up 

to 600 nts are currently possible) can be subjected to reverse transcription with standard 

sequence-specific DNA primers. Specific primers can also be used to probe a specific sub-

region of a large RNA (Fig. 4, Small RNA and Amplicon Workflows). Use of gene- or 

region-specific primers also makes it possible to analyze a specific, rare RNA in a complex 

mixture of RNAs. This is especially useful for in-cell studies. For analysis of large RNAs, 

the constituents of entire transcriptomes or of multi-component ribonucleoprotein or long 
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noncoding RNA assemblies, random primers facilitate even coverage of complex RNA 

states in a single experiment (Fig. 4, Randomer Workflow). Following mutational profiling 

with appropriate primers, one of these three workflows (Fig. 4) is then used for library 

construction.

Library construction and sequencing—The Small RNA Workflow is ideally suited 

for short RNAs or sub-regions of large RNAs that are sufficiently short to be completely 

sequenced by a single unpaired sequencing read or by two mated paired-end sequencing 

reads. Libraries prepared with this workflow reflect the strandedness of the original RNA. 

After reverse transcription with sequence-specific primers, purified cDNA is “tagged” with 

incomplete platform-specific adapters in a limited-cycle PCR reaction. The resulting dsDNA 

product is purified and further amplified in a second PCR reaction that completes the 

platform-specific adapters and adds sequences necessary for multiplexing (see Reagent 

Setup). After purification, sequencing libraries are of uniform size and each DNA molecule 

contains the entire sequence of interest (Fig. 6a).

The Amplicon Workflow is well suited for large, low-abundance RNAs or for sub-regions of 

large RNAs that cannot be sequenced end-to-end by a single sequencing read. After reverse 

transcription, purified cDNA is amplified via PCR with sequence-specific primers. The 

resulting dsDNA is then enzymatically fragmented and tagged with platform-specific 

adaptors and multiplexing indices. Sequencing libraries constructed in this way are of 

variable size; each molecule contains a fragment of the original amplicon (Fig. 6b). 

Information regarding the strand of origin is lost with this method. Typically, when the 

Amplicon Workflow is used to construct a sequencing library, reverse transcription is primed 

with sequence-specific primers. However, if the researcher wishes to generate a sequencing 

library for a specific region of an RNA that was initially converted to cDNA using random 

primers, the Amplicon Workflow allows for targeted “re-construction” of libraries.

The Randomer Workflow can be used to construct sequencing libraries when the RNA of 

interest is large (greater than ~500 nt) and reasonably pure; for example, in the case of a 

viral RNA genome. The Randomer Workflow also is appropriate for analysis of very 

complex systems including complete RNA transcriptomes. Researchers who wish to 

examine RNAs for which sequence directionality is unknown should use alternate, strand-

information preserving methods (not described in this protocol). After reverse transcription 

with appropriate random primers, purified cDNA is converted to dsDNA and then 

enzymatically fragmented and tagged with platform-specific adapters and multiplexing 

indices. The resulting sequencing library is of variable size, and each molecule corresponds 

to a fragment of the original RNA (Fig. 6c).

After construction of high-quality SHAPE-MaP libraries, the libraries are subjected to 

sequencing with a massively parallel sequencing instrument. This protocol describes 

preparation of libraries compatible with Illumina sequencing instruments. However, the MaP 

approach is fully compatible with any platform with a high per-nucleotide calling accuracy. 

To accurately recover nucleotide-resolution structural information, SHAPE-MaP requires 

high read depths across all regions of the RNA of interest.

Smola et al. Page 6

Nat Protoc. Author manuscript; available in PMC 2016 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



For a given RNA, SHAPE-MaP involves generation of sequencing data for RNA treated 

under three distinct experimental conditions: plus-reagent, minus-reagent, and denaturing 

control. For input into ShapeMapper, these samples can either be sequenced separately or 

sequenced together and deconvoluted using multiplexed barcodes (such as Illumina TruSeq). 

Sequencing reads should be output as FASTQ files, a format widely available with modern 

sequencing platforms.

Hit level and read depth requirements—As discussed in the initial SHAPE-MaP 

publication and by other investigators
24,37, the physical accuracy of an RNA structure 

probing experiment is tightly coupled to both the observed signal above background and to 

sequencing read depth, issues often overlooked for approaches that link chemical probing 

and massively parallel sequencing. To consistently and accurately model RNA structures, we 

recommend a “hit level” (total background-corrected signal per transcript nucleotide) of 

about 5 or greater, corresponding to a per-nucleotide read depth of about 1,000–2,000 given 

current SHAPE adduct-induced mutation rates
28

. This is substantially higher than the depths 

required to assess RNA expression levels, to perform ribosome profiling, or to enable 

genome assembly. In a SHAPE-MaP experiment, structure probing information is obtained 

for most nucleotides in a sequencing read. Given that sequencing reads of 100–600 or more 

nucleotides are now routine, these read-depth requirements are readily attainable using 

current technology. Multiple RNAs, each thousands of nucleotides long, can be sequenced at 

sufficient depth for accurate SHAPE-MaP structure modeling in a single run on a laboratory-

scale instrument.

Generation of SHAPE profiles with ShapeMapper—ShapeMapper is designed to run 

to completion with no user intervention following the set-up step. A simple user-edited 

configuration file informs ShapeMapper which RNA sequences are present in each file and 

which sequences correspond to the three experimental conditions. The configuration files 

also defines several global run parameters (Box 1). ShapeMapper uses a single Python script 

executed by the user to begin analysis and then runs each analysis stage in series. Several 

analysis stages rely on third-party programs (see Supporting Protocol 1 and Table 3), the 

most important of which is the sequence alignment software Bowtie2
38

, although any 

algorithm that supports gapped alignment could be substituted.

For short RNAs with high-quality SHAPE data (small standard errors), SHAPE reactivities 

can be fed directly into RNAstructure
33

 as soft constraints
19–21

 for structure modeling. For 

larger RNAs, the windowed folding strategy implemented in SuperFold is required.

Applications of SHAPE-MaP

MaP allows RNAs of virtually any size to be analyzed in a single experiment, facilitates 

rapid multiplexed library preparation, and permits fully automated data analysis. The effects 

of sequence polymorphism and co-existing ribosnitches
28

 can be evaluated and compared 

from single experiments provided the region under interrogation is completely sequenced in 

each read. The MaP experiment includes a DNA amplification step; therefore, RNAs present 

in scarce amounts or in complex mixtures can be examined. The MaP approach even enables 

probing of synthetic genetic polymers (XNAs), nucleic acid-like molecules with backbone 
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chemistries not found in nature
39

. In sum, any RNA that can be amplified by RT-PCR should 

be amenable to single-nucleotide resolution SHAPE-MaP analysis.

SHAPE-MaP reactivity information can be used in numerous informative ways. For large-

scale RNA structure analysis, three applications are especially useful. First, SHAPE 

reactivities, coupled with an estimate of how often regions form unique versus competing 

folds, can be used to identify regions that are likely structured
28,31. These highly structured 

regions appear to correlate strongly with functional motifs. Second, SHAPE reactivity data 

can be incorporated as a pseudo-free energy change term for RNA secondary structure 

modeling. In extensive validation experiments, this approach recovers 90% or more of 

accepted base pairs in well-characterized RNAs
21,28. Third, SHAPE reactivity data are ideal 

for visualizing changes in RNA structure as a function of diverse biological processes such 

as ligand binding
40,41, RNA folding and assembly

42–44
, and interaction with proteins

11,12,44, 

and for evaluating the complex effects of the cellular environment
15–17

. SHAPE-MaP 

experiments efficiently generate RNA chemical probing data across many thousands of 

nucleotides.

Alternative methods

There has recently been intense interest in linking RNA structure probing with readout by 

massively parallel sequencing
22–27

 and the reagents employed for structure probing have 

been extensively reviewed
4,6. The MaP strategy is unique because the site of chemical 

modification is recorded internal to the sequenced region. In other strategies, reverse 

transcription is blocked by the base modification and thus the terminus of the sequenced 

fragment corresponds to a site of chemical modification in the targeted RNA. These adduct-

terminated fragments are then prepared for massively parallel sequencing using approaches 

based on construction of conventional RNA-seq libraries. These methods all measure RNA 

modifications using single-stranded adaptor ligation, which is strongly influenced both by 

local sequence and structural effects and by many post-ligation library preparation steps
45

. 

In our laboratory, we found that two distinct approaches employing single-stranded adaptor 

ligation failed to maintain the quantitative relationship between SHAPE probing and 

underlying RNA structure
46

. In addition, many early methods used chemical or enzyme 

reagents that react with and report on only a subset of the four major RNA nucleotides. 

These data lead to notable blank spots in RNA structural information, and it is not known 

how to use such data to model large RNA structures with high accuracy.

In the MaP strategy, the reverse transcriptase enzyme reads through the sites of chemical 

adducts in an RNA: it does not matter where the cDNA begins or ends. MaP experiments 

therefore appear to be substantially impervious to the substantial sequence- and structure-

based biases introduced during construction of the libraries required for massively parallel 

sequencing. The MaP approach is also insensitive to single-strand breaks and background 

degradation and does not exhibit signal decay or drop-off with long cDNA products
28

, 

effects that result in significant noise for alternative sequencing-based strategies for 

detecting chemical modification of RNA.

The ability to recover RNA structure information accurately has the direct consequence that 

SHAPE-MaP reactivities make possible RNA secondary structure modeling using well-
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established and validated parameters
20,21. Based on analysis of a test set of small and large 

RNAs, SHAPE-directed secondary structure modeling recovers accepted base pairs with an 

overall sensitivity of 92% and a positive predictive value of 86%
28

. Structure probing 

approaches based on single-stranded adaptor ligation have met with limited success in data-

driven structure modeling. Most reports have not examined structure modeling 

accuracy
22,23,25,26,37, have reported low accuracies

24,27,37, or have focused on short 

RNAs
47

.

Advantages and limitations

MaP is a robust biochemical strategy for the quantification of extent of chemical adducts at 

individual nucleotides in nucleic acids
28,31,39,48. SHAPE-MaP equips any lab able to 

sequence DNA with the ability to probe nucleic acid structure at large scales and with 

nucleotide-resolution accuracy. Extensive validation experiments indicate that MaP enables 

nucleic acid probing experiments, read out by massively parallel sequencing, to reveal the 

underlying RNA structural information at the same high level of quantitative accuracy as 

prior highly labor-intensive approaches.

There are two fundamental physical requirements for successful SHAPE-MaP RNA 

structure interrogation. First, the RNA must be long enough to allow primer binding for 

reverse transcription. RNAs smaller than about 150 nucleotides are inefficiently recovered 

by the Randomer Workflow, and native (not in-vitro transcribed) RNAs smaller than about 

40 nucleotides are difficult to study even using the Small RNA Workflow. Second, there 

must be a sufficient number of RNA molecules in the sample to accurately measure 

chemical adduct-induced mutation rates. Exceptionally rare transcripts or structures may 

simply not produce sufficient signal to be accurately distinguished from background noise.

ShapeMapper enables the rapid, automated analysis of data from MaP experiments using 

current-generation massively parallel sequencing instruments. A typical MiSeq experiment 

can be analyzed in less than an hour. ShapeMapper is optimized for analyzing lab-scale MaP 

experiments (total FASTQ file size under about 40 Gb). Larger datasets should be run in 

batches.

The RNA structure modeling rules implemented in SuperFold have been benchmarked 

against experimentally validated large RNAs with well-defined secondary structures, 

primarily the structures of ribosomal RNAs
28

. The validations we have performed have been 

the most ambitious undertaken by any group to date. Although rRNAs make up a substantial 

fraction of the total mass of RNA in a cell, these RNAs may have overall structural features 

that are distinct compared to the diverse mRNAs, small RNAs, non-coding RNAs, and long 

non-coding RNAs that are also present in cells. Additionally, there are many functionally 

essential pairing interactions that are known to occur over thousands of nucleotides, outside 

the limits of current practical computational analysis
21,49.

Experimental design

Controls—Researchers new to RNA structure probing experiments may wish to include a 

positive control RNA in their experiments. We suggest using one of many well-structured 
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RNAs that fold robustly and have been previously examined with SHAPE-MaP
28

. This 

control can be spiked into samples, as long as it does not interact with the experimental RNA 

of interest.

RNAs and RNA folding—SHAPE-MaP may be applied to RNAs of any length or 

complexity; however, since SHAPE inherently probes the ensemble of RNA molecules 

present in the system of interest, conditions should be selected to ensure that the RNA 

sample is folded in a biologically relevant and informative state prior to probing. Depending 

on the experimental aims, researchers may choose to probe RNA transcripts synthesized in 
vitro, native transcripts gently isolated from cells or virions, entire transcriptomes in living 

cells, or a combination of these. Small, well-structured RNAs (for example, riboswitches 

and ribozymes) are generally amenable to in vitro transcription and refolding, while probing 

of large RNAs such as ribosomes should be performed using RNA extracted from cells 

under native-like conditions to preserve secondary and tertiary structure. Conditions for 

refolding many (but not all) in vitro-transcribed RNAs
7,50,51 and for extraction and 

purification of large, complex RNAs from virions and cells under non-denaturing conditions 

have been described
11–13,19,52 and will not be extensively detailed here. Generally, when 

extracting RNA from cells or virions,, the use of denaturants, divalent ion chelators, and 

elevated temperature should be avoided. Direct interrogation of RNA structure inside cells 

by SHAPE works well
14–17

. The protocol described here emphasizes simple folding 

procedures for interrogating relatively simple, in vitro-transcribed RNAs, but any procedure 

that folds an RNA into an informative state can be used, provided the pH is in the 7.4–8.3 

range.

SHAPE probing reagents—In this protocol, we emphasize the use of 1-methyl-7-

nitroisatoic anhydride (1M7)
18

, which is well validated for RNA structure analysis and 

modeling. Essentially identical approaches can be used with reagents 1-methyl-6-nitroisatoic 

anhydride and N-methyl-isatoic anhydride (1M6 and NMIA, respectively; Fig. 1c), and 

other reagents including DMS
48

. Reactions with 1M6 are selective for nucleotides in which 

one face of the nucleobase is available for stacking. NMIA is used to identify nucleotides 

that are undergoing relatively slow conformational changes. These reagent-specific 

reactivities can be used both to identify residues that participate in non-canonical 

interactions and to improve RNA secondary structure modeling
21,53. In addition, the MaP 

strategy can be used to follow time-resolved RNA processes, in 1-sec snapshots, using the 

benzoyl cyanide (BzCN) reagent
42,54,55. The modest solubility and rapid hydrolysis of these 

reagents make over-modification of RNA samples virtually impossible.

In-cell analysis—No significant changes are required to execute this protocol following 

in-cell SHAPE probing and extraction of total cellular RNA by standard methods. Although 

Spitale et al. suggested that well-validated SHAPE reagents (Fig. 1) are not suitable for in-

cell studies
14

, our extensive experience indicates that these SHAPE reagents work well in 

bacterial cells
15–17

 and in multiple mammalian cell lines, including human lymphoblastoid, 

human liver, and mouse stem cells (L. Lackey, A. Laederach, D.M. Mauger, M.J.S. and 

K.M.W., unpublished). For precise details regarding in-cell SHAPE probing, we refer 

interested researchers to the cited publications and provide a brief overview here. SHAPE 
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reagents (including 1M7) enter cells readily and without need for permeabilization. It is 

critical to ensure rapid, thorough mixing of the SHAPE reagent. For suspension cultures, 

simply adding a larger volume of cells to a smaller volume of SHAPE reagent is sufficient. 

Adherent cells are modified by adding SHAPE reagent directly to cells in fresh growth 

media, followed by swirling the tissue culture plate or flask to allow thorough mixing. The 

pH should be maintained in the 7.4–8.3 range. The recommended final concentration of 

SHAPE reagent is 10 mM.

There are critical experimental and biophysical advantages to using the fast-reacting and 

extensively validated 1M7 SHAPE reagent for in-cell RNA structure probing. First, 1M7 

reacts over a period of roughly 2 minutes before being consumed by hydrolysis
15,18. This 

time frame nicely balances experimental ease of use with a biologically relevant time scale. 

Second, because 1M7 auto-inactivates within a few minutes, it is not necessary to add 

potentially harsh quenching agents. This feature allows intact RNA and RNA-protein 

complexes to be recovered from cells
17

. Third, 1M7 is relatively insensitive to trivial and 

non-biological features of a solution like divalent ion concentrations
18

. This means that, 

using 1M7, SHAPE reactivities for in-cell versus extracted or cell-free RNAs can be 

compared directly
15–17

, as can experiments performed in virus particles or in crystals, which 

is not true for slower reacting reagents. Finally, because 1M7 is well-validated for SHAPE-

directed secondary structure modeling, this reagent also makes it possible to model novel 

RNA structures in vivo
16,17,31.

Random priming—Conventionally, random hexamers have been used to prime cDNA 

synthesis; however, these primers lead to wildly unbalanced sequencing coverage of RNAs 

that is exacerbated in RNAs with a low fraction or uneven distribution of G and C 

nucleotides. To resolve this challenge, we use randomized 9-mer primers (Fig. 5)
28

. These 

primers perform better than shorter random primers for all RNAs we have evaluated. For 

sequences in which GC content is low or unevenly distributed, we use “LNA+” primers
28

. 

These primers omit cytosine to disfavor guanosine binding, contain 2,6-diaminopurine to 

favor binding to uracil, and include locked nucleic acid monomers (Fig. 5) to increase 

affinity. We recommend using LNA+ primers when the median GC count of 15-nt sliding 

windows along the length of the RNA sequence of interest is less than seven; otherwise, we 

recommend the use of randomized 9-mer primers.

SuperFold options and advanced features—Several options can be used to modify 

SuperFold operation (Box 2). A full explanation of command line options is available in the 

README file. For example, the number of processors available to SuperFold should be set 

using the flag “—np”. This number is typically four or more on a desktop workstation.

Known pseudoknots can be included in the SuperFold structure prediction using a user-

generated file, PKREGION, a tab-separated file with one nucleotide pair entered on each 

line. Nucleotide pairs included in this file will be forced to be single stranded during 

partition function and fold calculations. These pairs are added manually during the 

consensus structure generation step (Fig. 3). Similarly, nucleotides that are known to be 

single stranded (from complementary biological experiments) can be forced to be single 

stranded using a SSREGION file.
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Use of a .map file alone means that RNA secondary structure modeling will be performed 

using the ΔGSHAPE pseudo-free energy change term for reactivities based on the well-

validated 1M7 SHAPE reagent. This approach generally yields high-quality secondary 

structure models
19,20. It is also possible (and recommended) to incorporate data from 

“differential”, or three-reagent, SHAPE experiments
21

 by incorporating the results of 

probing with 1M6 and NMIA, using a .mapd file.

MATERIALS

REAGENTS

A complete list of reagents necessary for all three workflows is listed below. Depending on 

the workflow, not all reagents are required.

RNA at a concentration of 5 μM in 10 mM HEPES, pH 8.0 CRITICAL: RNA must be 

prepared, stored, and manipulated in an RNase-free environment. For best results, reagents 

should be of highest possible quality and reserved for RNA use only. RNA can be stored at 

−20 °C for at least 6 months. Avoid repeated freeze-thaw cycles. The 5 μM concentration is 

convenient for in vitro studies; however, much lower concentrations of RNA can be probed 

using the Small RNA and Amplicon workflows.

Sodium chloride (NaCl; 5 M, Life Technologies, cat. no. AM9760G)

Magnesium chloride (MgCl2; 1 M, Life Technologies, cat. no. AM9530G)

Potassium chloride (KCl; 2 M, Life Technologies, cat. no. AM9640G)

Tris, pH 8.0 (1 M, Life Technologies, cat. no. AM9850G)

HEPES (Fisher Bioreagents, cat. no. BP310-500)

EDTA, pH 8.0 (0.5 M, Life Technologies, cat. no. AM9260G)

Formamide, highly deionized (Life Technologies, cat. no. 4311320)

Manganese chloride (MnCl2; 1 M, Fisher Bioreagents, cat. no. BP541-100)

DMSO, anhydrous (Sigma-Aldrich, cat. no. 276855) CAUTION: DMSO readily passes 

through skin and latex gloves, and can facilitate bodily absorption of dissolved substances. 

Avoid direct contact.

1-methyl-7-nitroisatoic anhydride (1M7; synthesis is described in Refs.
18,56) CRITICAL: 

1M7 should be stored in a desiccator at 4 °C. When properly stored, 1M7 is stable for at 

least a year.

Dithiothreitol (DTT; Fisher Bioreagents, cat. no. BP172-5)

Turbo DNase Reaction Buffer (10×, Life Technologies, cat. no. AM2238)

Turbo DNase (2 U/μl, Life Technologies, cat. no. AM2238)

RNeasy Mini Kit (Qiagen, cat. no. 74104)

Deoxynucleotide triphosphates (dNTPs; 10 mM each nucleotide, New England Biolabs, 

cat. no. N0447S)
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SuperScript II reverse transcriptase (200 U/μl, Life Technologies, cat. no. 18064-014)

Reverse transcription primer (custom synthesis)

Random nonamers (New England Biolabs, cat. no. S1254S)

LNA+ primers (custom synthesis)

Q5 Reaction Buffer (5×, New England Biolabs, cat. no. M0493S)

Q5 Hot Start High-Fidelity DNA Polymerase (2,000 U/ml, New England Biolabs, cat. 

no. M0493S)

Step 1 PCR primers; (Integrated DNA Technologies, custom synthesis; see Reagent 

Setup and Tables 1–2)

Step 2 PCR primers; (Integrated DNA Technologies, custom synthesis; see Reagent 

Setup and Tables 1–2)

Amplicon PCR primers; use of a primer design tool such as Primer-BLAST
38,57 is 

recommended to reduce off-target primer binding (Integrated DNA Technologies, 

custom synthesis) PureLink PCR Micro kit (Life Technologies, cat. no. K310250)

Tagment DNA Buffer (Illumina, cat. no. FC-131-1024)

Amplicon Tagment Mix (Illumina, cat. no. FC-131-1024)

Nextera XT PCR Master Mix (Illumina, cat. no. FC-131-1024)

Nextera XT Index 1 Primers (Illumina, cat. no. FC-131-1002)

Nextera XT Index 2 Primers (Illumina, cat. no. FC-131-1002)

Agencourt AMPure XP beads (Beckman Coulter, cat. no. A63880)

Absolute ethanol (Fisher Bioreagents, cat. no. BP2818-500)

NEBNext Second Strand Synthesis Reaction Buffer (10×, New England Biolabs, cat. 

no. E6111S)

NEBNext Second Strand Synthesis Enzyme Mix (New England Biolabs, cat. no. 

E6111S)

Qubit dsDNA High Sensitivity assay kit (Life Technologies, cat. no. Q32854)

Bioanalyzer High Sensitivity DNA kit (Agilent Technologies, cat. no. 5067-4626)

REAGENT SETUP

3.3× Folding Buffer—(333 mM HEPES, pH 8.0; 333 mM NaCl; 33 mM MgCl2) This 

solution is suitable for refolding many in vitro-transcribed RNAs. The buffer components, 

ionic strength, and ion type can all be varied to produce the desired probing conditions, 

provided the buffer concentration exceeds the final SHAPE reagent concentration and the 

pH is in the 7.4–8.3 range. This solution is stable at room temperature for at least 6 months.

10× Denaturing Control Buffer—(500 mM HEPES, pH 8.0; 40 mM EDTA) 

CRITICAL: This buffer must be free of contamination by divalent ions such as Mg2+ that 
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will cause rapid RNA degradation when heated. This solution is stable at room temperature 

for at least 6 months.

5× MaP Pre-Buffer—(250 mM Tris, pH 8.0; 375 mM KCl; 50 mM DTT; 2.5 mM each 

dNTP) This solution is stable for months at −20 °C but is intolerant of freeze-thaw cycles. 

Storage of small aliquots at −20 °C is recommended. Discard after five freeze-thaw cycles.

2.5× MaP Buffer—(125 mM Tris, pH 8.0; 187.5 mM KCl; 15 mM MnCl2; 25 mM DTT; 

1.25 mM dNTPs) Prepare this solution immediately prior to use by combining equal 

volumes of 5× Map Pre-Buffer and 30 mM MnCl2. Make fresh before each use; oxidation of 

manganese renders this solution useless within hours.

Modified RT-PCR primers for generating Illumina sequencing libraries for 
small RNAs or sub-regions of large RNAs (Small RNA Workflow)—After reverse 

transcription, PCR is performed in two steps; see Table 1 and Table 2 for appropriate 

sequences. The first PCR step is performed using Step1Fwd and Step1Rev primers, where 

[RNA-specific] is a 15-nt to 20-nt sequence specific to, and in the same sense as, the RNA of 

interest and [RT primer] is an appropriate antisense sequence (this is typically the same 

sequence as the reverse transcription primer; it may be an RNA-specific sequence if random 

primers were used). A randomized 5-nt sequence immediately 5′ to the RNA-specific 

sequence is required for optimal cluster identification on Illumina instruments.

The second PCR step is performed using the “universal” primers UniFwd and UniRev, where 

[Barcode] is a 6-nt sequence identifier to enable sample multiplexing. These primers do not 

require complementarity to the RNA of interest; a single set can be purchased and used with 

any RNA. Note that the reverse complement of the [Barcode] sequence will be read by 

Illumina sequencers and used for demultiplexing. Thus, it is important to use the reverse 

complement of the [Barcode] sequence when configuring the sequencing run.

EQUIPMENT

Microcentrifuge tubes (1.7 ml)

Reaction tubes (0.65 ml)

Thin wall 96- or 24- well PCR plates (>200 μl capacity per well)

Programmable thermal cycler

96-well plate magnetic stand (Life Technologies, cat. no. AM10027)

Qubit Fluorometer CRITICAL: Accurate quantitation of low DNA concentrations is very 

difficult using common UV absorption spectrometers. Use of a fluorescence-based assay 

(for example, Qubit) is strongly recommended.

Agilent 2100 Bioanalyzer
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Computational requirements

ShapeMapper, available from www.chem.unc.edu/rna/software.html (see Supplementary 

Note 1 for installation instructions). Sample data (for the E. coli 16S rRNA and a TPP 

riboswitch) are available through the Sequence Read Archive, SRP052065.

SuperFold, available from www.chem.unc.edu/rna/software.html (see Supplementary Note 2 

for installation instructions). Sample data (for the E. coli 16S rRNA) are included with 

SuperFold.

Unix-based operating system such as Linux (listings available at distrowatch.com)

Unix utility “make” (needed for building ShapeMapper modules)

Unix utility “gcc” (needed for compiling one ShapeMapper module)

Unix utility “g++” (needed for compiling two ShapeMapper modules)

Python 2.7, available at www.python.org/download/releases/2.7

Python module numpy, version 1.4 or greater, available at www.numpy.org

Python module matplotlib, available at matplotlib.org (ShapeMapper validated with 

matplotlib version 1.3.1)

Bowtie2
38

, available at bowtie-bio.sourceforge.net/bowtie2/index.shtml

Python module httplib2, available at github.com/jcgregorio/httplib2 (optional: only 

needed if rendering secondary structure images)

RNAstructure
33

 text interfaces, version 5.6 or later, available at rna.urmc.rochester.edu/

RNAstructure.html

Raw sequencing reads in uncompressed FASTQ format (if multiplexed, each barcoded 

sample should have its own file, and barcodes should not be present in the sequence reads). 

These files are generated by the sequencing instrument.

DNA sequences in FASTA format corresponding to each RNA of interest

Hardware (32 or 64 bit computer running Linux or OS X (10.6 or greater); 4 GB RAM; 

see Equipment setup)

Note: Many of the required Python libraries are installed by default on modern *NIX 

terminals.

PROCEDURE

RNA folding (30 minutes)

We describe simple folding conditions suitable for many small in vitro-transcribed RNAs. 

Gently extracted RNAs from viruses or cells should generally not be denatured and refolded. 

For such samples, skip to step 5.

1. Add 10 pmol RNA (Small RNA Workflow) or 500 ng (Amplicon and Randomer 

Workflows) in 12 μl sterile H2O to a 0.65-ml reaction tube.
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2. Incubate the RNA at 95 °C for 2 minutes, then place immediately on ice for at least 

2 minutes.

3. Add 6 μl 3.3× Folding Buffer and mix thoroughly by pipetting.

4. Allow the RNA to fold at the desired temperature (typically 37 °C) for 20 minutes.

RNA modification (30 minutes)

5. Aliquot 1 μl of 100 mM 1M7 [for the (+) 1M7 reaction] and 1 μl of neat DMSO [for 

the (−) reaction] into separate 0.65-ml reaction tubes.

6 Add 9 μl of folded RNA from step 4 to the (+) and (−) reaction 

tubes, mix vigorously by pipetting, and incubate at desired 

temperature for five 1M7 hydrolysis half-lives (approx. 75 sec at 

37 °C).

CRITICAL STEP: Add RNA solution to smaller reagent volume to ensure thorough, rapid 

mixing. It is important to thoroughly mix the reaction components immediately after 

addition of RNA. Add RNA to one reaction, mix, and begin incubation before moving on to 

the next reaction.

7 After the reaction has proceeded to completion, place the reaction 

tubes on ice while performing the denaturing control reaction (steps 

8–11).

8 Add 5 pmol RNA (from step 4) in 3 μl sterile water, 5 μl 100% 

formamide, and 1 μl 10× Denaturing Control Buffer to a 0.65-ml 

reaction tube. Mix well.

9 Incubate at 95 °C for 1 min to denature the RNA.

10 Aliquot 1 μl 100 mM 1M7 into a clean 0.65-ml reaction tube for the 

denaturing control (DC) reaction.

CRITICAL STEP: Do not pre-incubate the SHAPE reagent at 

95 °C. At elevated temperatures, the competing hydrolysis reaction 

proceeds quickly; moisture in the tube can reduce the effective 

concentration of SHAPE reagent.

11 Add 9 μl of denatured RNA to the DC reaction tube, mix well, and 

incubate at 95 °C for 1 minute. Place the DC reaction tube on ice 

while preparing the G-25 spin columns.

12 Bring the total volume of each sample to 50 μl with RNase-free 

water and purify the RNA from the (+), (−), and DC reactions. For 

RNAs longer than 200 nucleotides, use separate RNeasy Mini 

columns. For RNAs shorter than 200 nucleotides, use separate G-25 

spin columns. In each case, follow the manufacturer’s instructions.

PAUSE POINT: The modified RNA can be stored at −20 °C for at 

least 6 months.
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DNase Treatment (1 hour)

CRITICAL: Steps 13–15 are optional for in vitro-transcribed RNAs that were treated with 

DNase after transcription. However, DNase treatment is critical for RNAs isolated from cells 

as genomic DNA contamination may alter apparent mutation rates.

13 For RNA isolated from cells or virions, bring each sample (from 

step 12) to a total volume of 88 μl with RNase-free water and 

assemble the components for DNase treatment as follows:

Component Amount (μl) Final concentration

Modified RNA 88

Turbo DNase buffer (10×) 10 1×

Turbo DNase (2 U/μl) 2 0.04 U/μl

14 Incubate the DNase reaction at 37 °C for 30 minutes.

15 Purify RNA from the DNase reaction using individual RNeasy Mini 

spin columns for each sample, according to the manufacturer’s 

instructions.

Reverse Transcription (4 hours)

16 This step can be performed using option A or option B depending 

on the type of primers used for reverse transcription. For the Small 

RNA and Amplicon Workflows, use option A; for the Randomer 

Workflow, use option B. See the ‘Overview of the Procedure’ 

section of the Introduction for further information on the 

workflows.

A. Reverse transcription with specific primers

i. Add 10 μl of (+), (−), and DC RNA (from step 12; step 

15 if DNase treatment was performed) to separate 

0.65-ml reaction tubes. To each tube, add 1 μl of 2 μM 

reverse transcription primer. Incubate at 65 °C for 5 

minutes and then cool on ice.

ii. Add 8 μl of MaP Buffer to each tube. Mix well and 

incubate at 42 °C for 2 minutes.

iii. Add 1 μl of SuperScript II reverse transcriptase to each 

tube and mix well. Proceed immediately to step 17.

CRITICAL STEP: Reaction conditions have been 

optimized for SuperScript II reverse transcriptase only. 

Other reverse transcriptase enzymes and derivatives 

have not been tested and should not be used.

B. Reverse transcription with random primers
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i. Add 10 μl of (+), (−), and DC RNA (from step 12; step 

15 if DNase treatment was performed) to separate 

0.65-ml reaction tubes. To each tube, add 1 μl of 200 

ng/μl random primers. Incubate at 65 °C for 5 minutes 

and then cool on ice.

CRITICAL STEP: At least 50–100 ng of RNA per 

reverse transcription reaction is required. Reverse 

transcription under MaP conditions is less efficient 

than under standard conditions.

ii. Add 8 μl of MaP Buffer to each tube. Mix well and 

incubate at 25 °C for 2 minutes.

iii. Add 1 μl of SuperScript II Reverse Transcriptase to 

each tube and mix well.

CRITICAL STEP: Reaction conditions have been 

optimized for SuperScript II reverse transcriptase. 

Other retroviral reverse transcriptase derivatives have 

not been tested and should not be used.

iv. Incubate the reaction at 25 °C for 10 minutes, then 

proceed immediately to step 17.

17 Incubate the reaction tubes at 42 °C for 3 hours.

18 Heat the reactions to 70 °C for 15 minutes to inactivate SuperScript 

II Reverse Transcriptase. Place on ice or hold at 4 °C.

PAUSE POINT: The reverse transcriptase product can be kept at 

4 °C overnight.

CRITICAL STEP: If cDNA is to be converted to dsDNA via 

second-strand synthesis (Randomer Workflow), keep reverse 

transcription product cold (but not frozen). Second-strand synthesis 

requires the annealed RNA-DNA hybrids produced during reverse 

transcription be intact.

19 Purify cDNA from the (+), (−), and DC reactions using separate 

G-50 spin columns, according to the manufacturer’s instructions.

PAUSE POINT: The purified cDNA can be stored at −20 °C for at 

least a year.

Library Preparation (2–5.5 hours; 45 min-1.5 hours hands-on time)

20 This step can be performed using option A, option B, or option C 

depending on the RNA size and type of primers used for reverse 

transcription. For the Small RNA Workflow, use option A; for the 

Amplicon Workflow, use option B; for the Randomer Workflow, use 

option C.
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A. Small RNA Library Preparation.

i. In a thin-walled PCR plate, set up Step 1 PCR for each 

experimental condition as tabulated below; see Tables 

1 and 2 for appropriate primer sequences. To reduce 

errors during pipetting, prepare a master mix of all 

reaction components except cDNA. Combine cDNA 

and master mix in the PCR plate.

Component Amount (μl) Final concentration

Q5 Reaction Buffer (5×) 10 1×

dNTPs (10 mM each) 1 0.2 mM each

Forward primer (25 μM) 1 0.5 μM

Reverse primer (25 μM) 1 0.5 μM

cDNA (from Step 19) 5

Q5 Hot-Start DNA 
Polymerase (2 U/μl)

0.5 0.02 U/μl

Nuclease-free water 31.5

Final 50 (for one 
reaction)

ii. Place the PCR plate in a pre-heated thermocycler and 

cycle through the following program:

CRITICAL STEP: Be sure to calculate an appropriate 

annealing temperature based on the RNA-specific 

primer sequences being used. The NEB online 

annealing temperature calculator (http://

tmcalculator.neb.com) works well.

Step Denature Anneal Extend

1 98 °C, 30 s

2–6 98 °C, 10 s 65 °C, 30 s 72 °C, 20 s

7 72 °C, 2 min

iii. Purify the Step 1 PCR product from the (+), (−), and 

DC reactions using separate PureLink PCR Micro spin 

columns, according to the manufacturer’s instructions. 

Elute in 10 μl H2O.

iv. In a thin-walled PCR plate, set up Step 2 PCR for each 

experimental condition as tabulated below. To reduce 
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errors from pipetting, prepare a master mix of all 

reaction components except Step 1 PCR product and 

barcoded UniFwd primer. Combine master mix, Step 1 

PCR product, and UniFwd primer in the PCR plate.

CRITICAL STEP: Unique barcode sequences must be 

used for each (+), (−), and DC sample. Be sure to 

carefully record barcode indices for each sample.

Component Amount (μl) Final concentration

Q5 Reaction Buffer (5×) 10 1×

dNTPs (10 mM each) 1 0.2 mM each

UniFwd primer (25 μM) 1 0.5 μM

UniRev primer (25 μM) 1 0.5 μM

Purified Step 1 PCR 
product

10

Q5 Hot-Start DNA 
Polymerase (2 U/μl)

0.5 0.02 U/μl

Nuclease-free water 26.5

Final 50 (for one 
reaction)

v. Place the PCR plate in a pre-heated thermocycler and 

cycle through the following program:

Step Denature Anneal Extend

1 98 °C, 30 s

2–26 98 °C, 10 s 65 °C, 30 s 72 °C, 20 s

27 72 °C, 2 min

vi. Allow Agencourt AMPure XP beads to reach room 

temperature on the benchtop. Vortex thoroughly 

immediately before use.

vii. Remove PCR plate from thermocycler and add 45 μl 

of Agencourt AMPure XP beads to each reaction well. 

Pipette up and down 10 times to thoroughly mix, then 

incubate at room temperature for 5 minutes without 

shaking. TROUBLESHOOTING

viii. Place PCR plate on 96-well magnetic stand for 2 

minutes or until the supernatant has cleared, then 

carefully remove and discard supernatant.
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ix. With the plate still on the magnetic stand, add 200 μl 

of freshly prepared 80% ethanol to each well. Do not 

attempt to resuspend the beads. Incubate for 30 

seconds, then remove and discard ethanol.

x. Repeat step ix twice. Use a 10-μl pipette tip to remove 

any ethanol remaining at the bottom of each well.

xi. With the plate still on the magnetic stand, allow beads 

to air dry for 15 minutes.

xii. Remove the plate from the magnetic stand. Add 17 μl 

H2O to each well. Pipette up and down 10 times to 

mix well, then incubate at room temperature for 2 

minutes

xiii. Place the plate on the magnetic stand for 2 minutes or 

until supernatant has cleared.

xiv. Carefully remove 15 μl of DNA-containing 

supernatant from each well and place in separate, 1.7-

ml microcentrifuge tubes.

xv. Proceed to step 24.

B. Amplicon Library Preparation.

i. In a thin-walled PCR plate, set up a PCR amplification 

for each experimental condition as tabulated below. To 

reduce errors from pipetting, prepare a master mix of 

all reaction components except cDNA. Combine 

cDNA and master mix in the PCR plate.

Component Amount (μl) Final concentration

Q5 Reaction Buffer (5×) 10 1×

dNTPs (10 mM each) 1 0.2 mM each

Step1Fwd primer (25 μM) 1 0.5 μM

Step1Rev primer (25 μM) 1 0.5 μM

cDNA (from Step 19) 5

Q5 Hot-Start DNA 
Polymerase (2 U/μl)

0.5 0.02 U/μl

Nuclease-free water 31.5

Final 50 (for one 
reaction)

ii. Place the PCR plate in a pre-heated thermocycler and 

cycle through the following program:
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Step Denature Anneal Extend

1 98 °C, 30 s

2–31 98 °C, 10 s 65 °C, 30 s 72 °C, 20 s

27 72 °C, 2 min

iii. Purify the PCR product from the (+), (−), and DC 

reactions using separate PureLink PCR Micro spin 

columns, following the manufacturer’s instructions. 

Elute in 10 μl H2O.

iv. Analyze PCR products by agarose gel electrophoresis 

or Bioanalyzer 2100.

CRITICAL STEP: PCR reactions should produce a 

single band of the expected size. Reaction conditions 

should be optimized to achieve pure reaction products. 

Gel purification is recommended when off-target 

products cannot be avoided.

v. Quantify the PCR product from each reaction and 

create dilutions of 0.2 ng/μl.

vi. Thaw Amplicon Tagment Mix, Tagment DNA Buffer, 

Nextera PCR Master Mix, Nextera XT Index 1 

Primers, and Nextera XT Index 2 primers on ice. 

Allow the Neutralize Tagment Buffer to reach room 

temperature on the benchtop. Ensure that all reagents 

are thoroughly mixed and free of precipitates before 

proceeding.

vii. For each (+), (−), and DC sample, set up the 

fragmentation and tagging reaction as follows:

Component Amount (μl) Final concentration

Tagment DNA Buffer 10

dsDNA from step 20B(v) 
(0.2 ng/μl)

5 0.05 ng/μl

Amplicon Tagment Mix 5

Final 20 (for one 
reaction)

viii. Mix thoroughly, then seal the plate and place in a pre-

heated thermocycler and run the following program:

Step Incubate
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1 55 °C, 5 min

2 10 °C, hold

ix. As soon as the samples reach 10 °C, remove plate 

from the thermocycler and add 5 μl of Neutralize 

Tagment Buffer. Mix well and incubate at room 

temperature for 5 minutes to neutralize the 

tagmentation reaction.

x. For each (+), (−) and DC condition, assemble the 

Nextera PCR as follows and mix thoroughly.

CRITICAL STEP: Unique barcode sequences must be 

used for each (+), (−), and DC sample. Be sure to 

carefully record barcode indices for each sample.

Component Amount (μl) Final concentration

Tagmented DNA (from 
step 20 B(ix))

25

Nextera PCR Master 
Mix

15

Index 2 Primer 5

Index 1 Primer 5

Final 50 (for one 
reaction)

xi. Seal the PCR plate, place in a preheated thermocycler 

and cycle through the following program:

PAUSE POINT: The PCR reaction can be left 

overnight at 10 °C or stored at 2–8 °C for up to two 

days.

Step Denature Anneal Extend

1 72 °C, 3 min

2 95 °C, 30 s

3–14 95 °C, 10 s 55 °C, 30 s 72 °C, 30 s

15 72 °C, 5 min

xii. Perform steps 20A(vi–xiv)

C. Randomer Library Preparation. Use this option if random 

primers were used during reverse transcription.
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i. For each (+), (−), and DC sample, adjust the volume 

of cDNA from step 19 to 68 μl with nuclease-free 

H2O. Set up the second strand synthesis reaction as 

follows:

Component Amount (μl) Final concentration

Diluted cDNA 68

NEBNext Second Strand 
Synthesis Reaction 
Buffer (10×)

8 1×

NEBNext Second Strand 
Synthesis Enzyme Mix

4

Final 80 (for one 
reaction)

ii. Incubate second-strand synthesis reaction in a 

thermocycler at 16 °C for 2.5 hours.

iii. Purify dsDNA from the second-strand synthesis 

reaction using a PureLink PCR Micro spin column, 

according to the manufacturer’s instructions. Elute in 

10 μl H2O.

PAUSE POINT: The purified dsDNA can be stored at 

−20 °C for at least 6 months.

iv. Quantify the dsDNA from each reaction and create 

dilutions of 0.2 ng/μl. CRITICAL STEP: Accurate 

quantitation of low DNA concentrations is difficult 

with many commercial UV instruments. Use of a 

fluorescence-based assay (Qubit) is strongly 

recommended.

TROUBLESHOOTING

v. Perform steps 20A(vi–xiv).

Quality control and sample dilution (2 hours)

21 Measure the library concentration using a Qubit fluorometer or 

other high-sensitivity assay.

TROUBLESHOOTING

22 Evaluate the library size distribution using an Agilent 2100 

Bioanalyzer according to the manufacturer’s instructions. Libraries 

generated with the Small RNA Workflow should appear as a single, 

well-defined peak. Libraries generated with the Amplicon 

Workflow should exhibit a lower size limit around 250 bp and an 

upper length corresponding to the input amplicon. Libraries 
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generated with the Randomer Workflow should exhibit a length 

distribution between approximately 250 and 1500 bp (Fig. 6).

TROUBLESHOOTING

23 Calculate library molarity using either option A (Smal RNA 

workflow) or option B (Amplicon workflow or Randomer 

workflow). Current Illumina instruments require library 

concentrations of at least 2 nM.

A. For Small RNA Workflow libraries.

i. Calculate the molecular weight of dsDNA based on 

the input RNA sequence, then add 81,000 g/mol to 

account for adaptor sequences. Use this final 

molecular weight and the mass concentration from 

step 21 to calculate the concentration (in nM) of the 

library.

B. For Amplicon and Randomer Workflow libraries.

i. Estimate the average size of the library using the 

Bioanalyzer. Convert the mass concentration from step 

21 to molarity using the following equation: (1500/

avg. size in base pairs) × (mass concentration) = nM 

concentration

Sequencing (1–8 days depending on the sequencing platform)

24 Sequence libraries on an Illumina or other sequencer according to 

the instrument instructions.

CRITICAL STEP: Configure the sequencer to produce 

demultiplexed, adaptor-trimmed, FASTQ-formatted output.

TROUBLESHOOTING

ShapeMapper analysis (~35 minutes)

25 Prepare run (steps 25–29) Create and descriptively name a folder 

with space available for the intermediate files generated by 

ShapeMapper. These intermediate files are about 1.5 times the size 

of the input sequencing reads. This folder will be referred to as the 

“RUN” folder.

26 Check that no spaces are present in the path to this directory (the 

perl script that calls Bowtie2 fails if spaces are present).

27 Copy or move uncompressed FASTQ sequencing read files (.fastq) 

from step 24 into the RUN folder. Example data are available at the 

Sequence Read Archive, SRP052065.
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28 Create a FASTA-formatted sequence file (.fa) for each target 

sequence of interest. If analyzing the example data, copy the 

sequence files from the ShapeMapper folder into the RUN folder. 

Note that:

The first line of each FASTA file is the “>” character followed by a 

sequence name; the following lines are DNA sequence.

The filename must exactly match the sequence name after the “>” 

character.

There should be no space between the “>” character and the 

sequence name.

Use “T”, not “U”, in sequences. Use all capital letters for sequence.

29 Copy the EXAMPLE.cfg file provided with ShapeMapper into the 

RUN folder and give the file a new name.

30 Edit the configuration file using a text editor (steps 30–35). See Box 

1 for an example configuration file). If the FASTQ files produced 

by the sequencing platform are likely to contain poor quality base-

calls at the beginning of reads (for example, those sometimes 

produced by the HiSeq or NextSeq instruments), set the 

“windowSize” parameter to “3”. This will allow the “trimPhred” 

stage to use a windowed average base-call quality score instead of a 

single base-call cutoff.

31 If paired-end sequencing was performed, set the “alignPaired” 

parameter to “True”

32 If random priming was performed and cDNA libraries were 

prepared without using Nextera kits, set the “randomlyPrimed” 

parameter to “on” and the “primerLength” parameter to the length 

of the primers. ShapeMapper will then ignore mutations occurring 

within primerLength+1 nucleotides on the 3′ end of reads (since 

differences between random primers and native sequence do not 

correspond to sites of SHAPE modification). If tagmentation 

(Nextera kit) was used, the “randomlyPrimed” parameter should be 

set to “off” even if random primers were in fact used in reverse 

transcription. The Nextera protocol involves enzymatic cleavage of 

DNA ends, so computational removal of primer regions is not 

necessary.

33 If cDNA libraries were prepared using a Nextera kit, we 

recommend setting the “maxInsertSize” to 800 (this corresponds to 

the Bowtie2 “–maxins” parameter). Otherwise, the default value of 

500 is appropriate.

34 Add sample names followed by alignment targets to the 

“[alignments]” section. If FASTQ filenames do not follow Illumina 
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naming convention, specify full filenames using the alternative 

syntax shown.

35 Specify the samples that should be combined into reactivity profiles 

in the “[profiles]” section. Profile names are user-specified.

36 Execute ShapeMapper (steps 36–38) Open a command line 

terminal.

37 Browse to the RUN directory.

38 Start ShapeMapper. On a local machine, run the command 

ShapeMapper.py yourfile.cfg, where “yourfile.cfg” is the 

name of the configuration file.

Alternatively, to submit to a load sharing facility (LSF), run the command bsub −q day 

−n 6 −o run.out −R span[ptile=6] ShapeMapper.pyyourfile.cfg

This command may vary depending on the specific cluster configuration.

Expected output—Information about run progress or failure will be written to “log.txt”

Reactivity profiles will be written to the “reactivity_profiles” subfolder within the output 

folder (Table 3). Images of each profile, showing SHAPE reactivity versus nucleotide 

position, are also written to this folder (Fig. 7).

Images of the read depth versus nucleotide position for each RNA will be produced (Fig. 

10). Histograms of mutation rates, read depths, SHAPE reactivities, and standard errors 

(useful for experiment troubleshooting) will be produced (Fig. 11B).

Intermediate files for each analysis stage will be written to disk (Table 3).

CRITICAL STEP: Analysis of the example ShapeMapper data requires 20 min on a 12-core, 

2.93 GHz Dell C6100 server. This is a typical run-time for target RNAs less than 100,000 

nucleotides and for the amount of data generated from a single MiSeq sequencing 

instrument run. Larger datasets or longer target sequences increase the run-time.

SuperFold analysis

39 To model RNA structure, use the .map or .mapd file generated by 

ShapeMapper (see Box 3 for a description of file formats) in 

SuperFold by typing the command: SuperFold.py 16SrRNA.map

SuperFold is typically run with default settings for folding window sizes.

Expected outcome—Three folders are created, called “fold_”, “partition_”, and 

“result_”, each underscore is followed by the name of the input .map file and a short 

signature created from a MD5 hash of the flags.

The parameters used to fold the RNA and the status of the run are written to the log file in 

the results directory.
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Intermediate partition function calculations are written to the “partition” directory. These are 

useful for troubleshooting. If the run completes successfully, these can be deleted. 

Intermediate folds are written to the “fold” directory. These are also useful for 

troubleshooting. If the run completes successfully, these can be deleted.

Shannon entropy and SHAPE analyses, partition function arcs, and expanded regions are 

written to the results directory.

Text files reflecting Shannon entropy, partition function calculations, and minimum free 

energy structure (.ct format) are written to the results directory.

Secondary structure graphics and connectivity files for Shannon entropy/SHAPE regions are 

written to the regions subdirectory inside the results directory.

Timing

RNA folding and modification

Steps 1–12, 1 hour

DNase treatment

Steps 13–15, 1 hour

MaP reverse transcription

Steps 16–19, 4 hours (~1 hour hands-on time);

Small RNA workflow

Step 20A, 2 hours (~ 45 min hands on time);

Amplicon workflow

Steps 20B(i–v), 2 hours (~1 hour hands-on time); steps 20B(vi–xii), 2.5 hours (~1 hour 

hands-on time)

Randomer workflow

Steps 20C(i–iv), 3 hours (~30 min hands-on time); step 20C(v), 2.5 hours (~1 hour 

hands-on time)

Quality control and sample dilution

Steps 21–23, 2 hours (~1 hour hands-on time)

Sequencing

Step 24, 1–8 days depending on the sequencing platform.

Run ShapeMapper

Steps 25–38, 1 hour for example dataset (~15 minutes hands-on time)

Run SuperFold

Step 39, 1 hour or more depending on RNA size (~10 minutes hands-on time)
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Troubleshooting

Troubleshooting tips for common SHAPE-MaP errors are outlined in Table 5.

Troubleshooting tips for common ShapeMapper errors are outlined in Table 6.

Troubleshooting tips for common SuperFold errors are outlined in Table 7.

ANTICIPATED RESULTS

SHAPE-MaP allows measurement of RNA flexibility at single-nucleotide resolution for 

most nucleotides in an RNA. The experiment yields highly reproducible and quantitative 

information that enable accurate structure modeling and examination of RNA-ligand, RNA-

RNA, and RNA-protein interactions. Successful completion of this experimental protocol 

yields deep sequencing libraries (Fig. 6) that are interpreted using automated post-

sequencing processing using ShapeMapper to yield final SHAPE reactivities (Figs. 7 & 8). 

These SHAPE reactivities provide a starting point for modeling RNA secondary structure 

using SuperFold, which is optimized for long sequences (2000 nucleotides and much longer, 

but also works well for modeling shorter RNAs (Figs. 12 and 13). Distinct experimental 

workflows are optimized for probing small, low-abundance, or complex mixtures of RNA. 

Here we briefly present representative results obtained with two of the three workflows, the 

Small RNA and Randomer Workflows.

A SHAPE profile for the aptamer domain of the TPP riboswitch was readily obtained using 

the Small RNA Workflow. Using these data, secondary structure modeling for this 

riboswitch RNA improved from a base pair prediction accuracy of 73%, obtained using a 

nearest-neighbor thermodynamic algorithm alone, to 96%, using SHAPE-directed 

modeling
28

. Observed reactivities correspond closely to those expected based on the local 

nucleotide flexibilities for the ligand-bound RNA (Fig. 8a,c). Reactive nucleotides fall in 

conformationally flexible single-stranded regions, especially the L3 loop and the J2-4 and 

J3-2 strands. Overall, relatively few nucleotides are reactive by SHAPE, consistent with the 

highly constrained conformation of this RNA. SHAPE-MaP also reveals fine differences 

corresponding to changes induced upon binding by the TPP ligand (Fig. 8b,d). Ligand 

interactions induce a large structural organization in the L5 loop and in the J3-2 elements in 

the ligand-binding pocket.

Large RNAs like the bacterial small and large ribosomal subunit RNAs (16S and 23S, 

respectively) are readily examined by applying the Randomer Workflow to total E. coli RNA 

(Fig. 9). Using random primers, both RNAs can be studied simultaneously with fully 

automated analysis involving approximately 3 days of hands-on experimental effort. The 

major post-processing requirement is that the per-nucleotide hit level be sufficiently high to 

permit full recovery of the underlying SHAPE data. In general, the hit level should be 5 or 

greater, corresponding to a read depth of 1–2,000
28

.

The 23S rRNA subunit alone represents ~2,900 nucleotides of SHAPE reactivity 

information after computational data processing (Fig. 9a). Comparing the SHAPE 

reactivities for domain IV of the 23S rRNA with the accepted sequence covariation-derived 
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structural model (Fig. 9b–c) shows good agreement. Regions involved in canonical base 

pairs have low SHAPE reactivity, indicating that they are structurally constrained. 

Conversely, single-stranded loop and bulge regions have high SHAPE reactivity, indicating 

structural flexibility. Because of the inherent scalability of the MaP approach, these data – 

spanning several thousand nucleotides – are as accurate at single-nucleotide resolution as are 

data from a short RNA, like the TPP riboswitch.

After the ShapeMapper analysis is complete, the rendered SHAPE reactivity profiles provide 

an clear view of the general success of an experiment (.pdf files in the “reactivity_profiles” 

folder). A successful experiment should have only a small number of negative gray bars 

(indicating no-data points), and small error bars (Fig. 7a).

The majority of SHAPE-MaP experiments are strikingly successful. The data obtained are 

reproducible, robust, correlate well with previous, well-validated approaches for SHAPE 

readout
28

, enable consistent high-accuracy RNA structure modeling
21

 and recover detailed 

information about structural ensembles
48

. In our laboratory, it is routine for full biological 

replicates, performed months apart by different individuals, to yield identical experimental 

results, within narrow error limits
28

. However, when problems do occur, the SHAPE 

reactivity profiles, along with other ShapeMapper outputs, provide important clues for 

troubleshooting and identifying potential causes.

The most common cause of a failed SHAPE-MaP experiment is insufficient sequencing 

depth. SHAPE-MaP cDNA libraries sequenced to low depths do not produce high-

confidence SHAPE reactivity profiles (as evidenced by large error bars, Fig. 7b) and, 

consequently, do not enable accurate structural modeling (see Figure 3 in the original 

SHAPE-MaP publication
28

). We recommend sequencing to read depths above about 2,000 

for each experimental condition to obtain high-confidence SHAPE reactivities and accurate 

structure models.

Read depths can be assessed directly by examining the profiles produced by ShapeMapper. 
For experiments using the Small RNA Workflow, a relatively flat depth profile is desirable 

and typically achieved (Fig. 10a). A depth profile with bumps or steps indicates possible off-

target or non-specific primer binding. Enzymatic fragmentation and tagging (Nextera) 

results in lower read depth near the transcript ends due to the inability of the enzymes to 

cleave near the ends of a double-stranded DNA. In addition, read-depth profiles for libraries 

prepared in this way often exhibit a spikiness that likely results from sequence preferences 

during the fragmentation step. The Amplicon Workflow results in relatively flat profiles in 

the middle of a transcript (Fig. 10b), whereas the Randomer Workflow typically produce less 

even depth profiles (Fig. 10c) due to the differential efficiency of primer binding. Regions of 

low read depth, even if embedded in areas of high median read depth, do not produce 

reliable reactivity profiles by SHAPE or any other structure probing approach. Specially 

designed primers can improve or smooth the distribution of read depths for RNAs with AU-

rich regions (Fig. 5)
28

.

ShapeMapper produces multiple histograms useful for distinguishing successful from 

problematic experiments. For example, a successful experiment will show that the vast 
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majority of nucleotides have read depths above 2000 (Fig. 11a, center panel); whereas an 

unsuccessful experiment (Fig. 11b, center panel) may have low overall sequencing depth. A 

successful SHAPE-MaP experiment also requires sufficient levels of SHAPE modification 

above background, efficient reverse transcription, and the absence of DNA contamination. In 

a successful experiment (Fig. 11a, right panel), reactivities are mostly positive, and the 

standard errors are smaller than most of the reactivities. Successful experiments are 

characterized by mutation rates in the no-reagent sample between 0 and 0.2%, a strong shift 

toward higher mutation rates in the plus-reagent sample, and a slight shift in the denaturing 

control sample (Fig. 11a, left panels). An example of low mutation above background, likely 

due to low levels of SHAPE modification, is illustrated in Fig. 11d, left panel. A noisy 

SHAPE reactivity profile (for example, Fig. 7b) is also indicative of a failed experiment.

The SuperFold analysis pipeline provides a solution to another challenge in analyzing large 

RNAs: automated visualization of secondary structures (Fig. 13). Two separate visualization 

approaches are implemented in SuperFold: (i) circle plots, which provide an impartial 

model-free view of secondary structure and enable rapid visualization of pseudoknots, and 

(ii) traditional secondary structure diagrams available through the Pseudoviewer
58

 web 

service. Connectivity (.ct) and XRNA (http://rna.ucsc.edu/rnacenter/xrna/) files are provided 

that can be used as input to other structure visualization programs.

A melded Shannon entropy and SHAPE analysis (Fig. 12) is particularly useful for 

identifying regions of an RNA that have well-determined folds and for identifying parts of 

an RNA that merit detailed follow up analysis for function. Three different examples of 

expected output are shown: the E. coli thiamine pyrophosphate aptamer domain, the entire 

16S rRNA, and the entire HIV-1 RNA genome (Fig. 12). Regions that contain both low 

Shannon entropy and low SHAPE reactivity appear to be highly likely to harbor functional 

elements
28,31. After expanding low Shannon entropy/SHAPE regions to include overlapping 

minimum free energy helices, almost the entirety of the TPP riboswitch and ribosomal 

RNAs are comprised of low Shannon entropy/low entropy regions (Fig. 12, purple shading), 

consistent with their known roles as RNAs whose function requires a specific well-defined 

fold. In contrast, the HIV-1 RNA genome has regions with low Shannon entropy and low 

SHAPE reactivity and also many regions that are predicted not to form well-defined 

structured states (Fig. 12c). Pairing probability arcs illustrate a relatively simple set of 

probable base pairs (derived from the partition function) for the TPP riboswitch and the 16S 

rRNA (Figs. 12a and 12b, see green arcs). In contrast, the HIV-1 RNA genome features both 

well-determined structural motifs and regions where the probability of formation of a single 

stable structure is low (Fig. 12c).

In sum, SHAPE-MaP and the ShapeMapper and SuperFold pipelines yield quantitative 

nucleotide-resolution RNA structural information, enable accurate secondary structure 

modeling, identify well-determined regions within large RNAs, facilitate discovery of novel 

functional RNA motifs, make possible deconvolution of sequence polymorphisms in a single 

experiment, detect diverse effects of ligand and protein binding, readily allow analysis of 

low-abundance RNAs, and scale gracefully from short RNAs to transcriptome-wide 

analyses, including in cells. We anticipate that SHAPE-MaP will contribute to deep 

understandings of the relationships between RNA structure and function.
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Box 1

Example ShapeMapper configuration file

## ShapeMapper stages to run

buildIndex = on

trimReads = on

alignReads = on

parseAlignments = on

countMutations = on

pivotCSVs = on

makeProfiles = on

foldSeqs = off

renderStructures = off

## Global run options. Only important parameters are shown.

# trimReads options

minPhred = 20

windowSize = 1

minLength = 25

# alignment options

maxInsertSize = 500

# countMutations options

randomlyPrimed = on

primerLength = 10

minMapQual = 30

## Specify which RNAs are present in each pair of FASTQ files.

## FASTQ file sample names on left, comma-separated alignment

## target sequence names on right.

[alignments]

3 = 16S

2 = 16S, TPP_riboswitch

7 = 16S

1 = TPP_riboswitch
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4 = TPP_riboswitch

# Alternative syntax (specify full FASTQ # filenames)

more_16S: additional_16S_rx_R1.fastq, additional_16S_rx_R2.fastq = 16S

## Specify which files correspond to the three experimental conditions

## (SHAPE-modified, untreated, and denatured control) and name each

## reactivity profile to be output.

[profiles]

name = TPP riboswitch

target = TPP_riboswitch

plus_reagent = 1

minus_reagent = 2

denat_control = 4

name = Small subunit ribosome

target = 16S

plus_reagent = 3, more_16S

minus_reagent = 2

denat_control = 7
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Box 2

Command line flags to modify how SuperFold runs individual stages

Flag [input] Description

–help Displays available flags with descriptions.

–ssRegion [.txt file] Forces nucleotides in the user-supplied file SSREGION to be single 
stranded. See SuperFold readme for file format description.

–pkRegion [.txt file] Models structure around pseudoknotted base pairs in the supplied 
PKREGION file. See SuperFold readme for file format description.

–np [int] Sets the number of processors (NP) available to SuperFold. Default: 2.

–SHAPEslope [float] SHAPE pseudo-free energy slope used for structure modeling. Value 
optimized in previous work

19,20. Default: 1.8 kcal/mol.

–SHAPEintercept [float] SHAPE pseudo-free energy slope used for structure modeling. Value 
optimized in previous work

20
. Default: – 0.6 kcal/mol.

–differentialFile [.txt file] User-supplied differential SHAPE file calculated from NMIA-1M6. Refines 
ΔGSHAPE energy function

21
.

–differentialSlope [float] Sets the pseudo free-energy slope for the differential SHAPE reactivity 
values. Default: 2.1 kcal/mol.

–trimInterior [int] Number of nucleotides to trim from interior partition function and fold 
calculations. Default: 300.

–partitionWindowSize [int] Length of the partition function window size. Default: 1200 nucleotides.

–partitionStepSize [int] Spacing between partition function windows. Default: 100 nucleotides.

–foldWindowSize [int] Length of the Fold window size. Default: 3000 nucleotides.

–foldStepSize [int] Spacing between Fold windows. Default: 300 nucleotides.

–drawSS Include secondary structure diagrams for expanded regions of low SHAPE 
and Shannon entropy using the Pseudoviewer

58
 web service.
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Box 3

SuperFold file formats

Examples of file formats are included with the SuperFold executable. Descriptions of the 

formats are provided here.

Map file. A “.map” file is required to run SuperFold. This file is created automatically in 

the Results folder of ShapeMapper. The .map file is a tab-separated text file with four 

columns: Nucleotide number, SHAPE reactivity, Standard error, and Sequence. SHAPE 

reactivity and standard error values set to −999 are interpreted as no data.

MapD file. For three-reagent “differential” SHAPE folding, a “.mapd” file is required. In 

a differential experiment, the Python program differenceByWindowMap.py generates a 

differential SHAPE-MaP file (.mapd) from two .map files that report reactivities using 

the 1M6 and NMIA reagents. Use of the .mapd file in SuperFold results in incorporation 

of differential SHAPE reactivity into the SHAPE free energy term
21

. The .mapd file is a 

tab-separated text file with five columns: Nucleotide number, Differential SHAPE 

reactivity, Standard error, Sequence, and Z-factor. SHAPE reactivity and standard error 

values set to −999 are ignored.
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Figure 1. 
SHAPE chemistry and useful SHAPE reagents. (a) SHAPE reagents react preferentially 

with the 2′-hydroxyl groups of conformationally flexible RNA nucleotides
7
. (b) Quenching 

of SHAPE reagents via hydrolysis. (c) Overview of the three most useful SHAPE reagents. 

1M7 is the workhorse SHAPE reagent; its reactivity with RNA measures local nucleotide 

flexibility
7,8,18 1M6 and NMIA are selective for nucleobases that have one face available for 

stacking and that achieve a reaction-competent conformation on a slow timescale, 
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respectively. Together, 1M6 and NMIA can be used to detect non-canonical and tertiary 

interactions in RNA
53

 and to increase the accuracy of secondary structure modeling
21

.
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Figure 2. 
Overview of SHAPE-MaP and ShapeMapper. (a) RNA is treated with a SHAPE reagent that 

reacts at conformationally dynamic nucleotides. (b) Specialized reverse transcription 

conditions – the MaP strategy – allow the polymerase to read through chemical adducts in 

the RNA and to record the site as a nucleotide non-complementary to the original sequence 

in the cDNA. (c) The resulting cDNA is processed through one of three workflows (Fig. 4) 

and subjected to massively parallel sequencing. ShapeMapper then (d) aligns sequenced 

reads back to the target sequence, (e) calculates mutation rates, and (f) generates SHAPE 
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reactivity profiles. SHAPE reactivities can be used to model secondary structures, visualize 

competing and alternative structures, and quantify any process that modulates local 

nucleotide RNA dynamics.

Smola et al. Page 42

Nat Protoc. Author manuscript; available in PMC 2016 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Overview of the SuperFold pipeline. (a) User-defined input files. Only the “.map” file is 

required. Optional files allow for modeling of tertiary interactions and pseudoknots, and 

inclusion of differential SHAPE reactivities
21

 in the energy function. (b) Partition function 

calculation. Calculations are performed using overlapping 1,400-nt windows; positions 

within 300 nucleotides of window end sites are not used in the calculation. The partition 

function for the full-length RNA is the average across each window in which a given base 

pair is able to occur. (c) Windowed folding. Base pairs with 99% probability are used as 

pairing constraints in a minimum free energy calculation in windows of 4,000 nts. (d) 

Structure visualization. A consensus structure is generated by requiring that base pairs 

identified during windowed folding (step c) occur in greater than one-half of windows. A 

Shannon entropy analysis is used to identify well-determined regions, and the partition 

functions of probable base pairs are plotted as arcs across the RNA.
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Figure 4. 
Overview of workflows useful for converting RNAs modified with SHAPE reagents into 

libraries compatible with massively parallel sequencing. RNAs are modified with a SHAPE 

reagent and subjected to reverse transcription under MaP conditions, during which adduct-

induced mutations are recorded in the cDNA strand. One of three workflows is then used to 

construct high-quality libraries for sequencing and recovery of the SHAPE chemical probing 

information.
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Figure 5. 
Random primer design. Nonamers used for randomly-primed reverse transcription. LNA+ 

primers are recommended for RNAs with high or uneven GC content. Uridine and 2,6-

diaminopurine (DAP) nucleotides form three hydrogen bonds that increase primer affinity 

for target RNA. Locked nucleic acids also increase the stability of primer-RNA duplexes.
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Figure 6. 
Representative library size distributions as a function of workflow. (a) Bioanalyzer 

electropherogram of a TPP riboswitch library produced with the Small RNA Workflow. The 

small peak to the left of the major product is unconverted Step 1 PCR product. (b) A library 

(solid line) constructed from a single amplicon (dashed line) via the Amplicon Workflow. 

The library contains some DNAs slightly larger than the original amplicon because 

platform-specific adaptors are added to near-full length fragments. (c) A library (solid line) 
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constructed via the Randomer Workflow. The sizes of dsDNA produced by second-strand 

synthesis (dashed line) set the upper limit on the library size.
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Figure 7. 
SHAPE-MaP reactivity profiles for the E. coli 16S rRNA. Reactivities below 0.4 are colored 

black, between 0.4 and 0.85 orange, and above 0.85 red. Gray bars indicate missing data 

points (corresponding to a background mutation rate above 5%, or read depth below 10). 

Error bars indicate standard errors. (a) High-quality reactivity profile. Shown is the final 

SHAPE reactivity profile for a portion of the 16S rRNA generated by comparing plus-

reagent, minus-reagent, and denaturing control experimental samples with median read 

depths of 46,047, 36,704, and 22,531, respectively. (b) Poor-quality reactivity profile. The 

RNA is the same as that used to generate data shown in panel a but was sampled at median 

read depths of 647, 623, and 661 in the three experiments.
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Figure 8. 
Nucleotide-resolution interrogation of RNA structure and ligand-induced conformational 

changes for the TPP riboswitch aptamer domain. (a) SHAPE profile produced using the 

Small RNA Workflow. (b) Difference SHAPE profile illustrating conformational changes 

induced in the TPP riboswitch upon ligand binding. (c) SHAPE-MaP reactivities 

superimposed on the structure
59

 of the ligand-bound TPP riboswitch. Red, orange, and black 

correspond to high, moderate, and low reactivities, respectively, and correspond to 

reactivities shown in panel a. (d) Visualization of ligand-induced conformational changes on 

the TPP riboswitch structure. Reactivity changes (orange and blue) are the same as shown in 

panel b.
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Figure 9. 
Representative SHAPE-MaP reactivity profile obtained using the Randomer Workflow. (a) 

SHAPE reactivities across the entire E. coli 23S rRNA obtained in a single experiment. (b) 

Expanded view of SHAPE reactivities for Domain IV of the 23S rRNA. (c) Accepted 

secondary structure of Domain IV colored by SHAPE reactivity. Reactive nucleotides 

(orange and red) occur predominantly in single-stranded regions.
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Figure 10. 
Read depth profiles. (a) Read depths obtained from an experiment using a single pair of 

directed primers (the Small RNA Workflow) against E. coli 5S rRNA, a short RNA. (b) 

Read depths obtained from an experiment targeting a specific region of a long noncoding 

RNA with the Amplicon Workflow. (c) Read depths obtained for the 16S rRNA from E. coli 
using the Randomer Workflow. Profiles for plus reagent (red), minus reagent (green), and 

denaturing control (blue) are shown for each workflow.
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Figure 11. 
Troubleshooting, showing example data from the E. coli 16S rRNA. (a) Successful 

experiment. Failed experiments due to: (b) Low read depths. (c) Mislabeling of plus-reagent 

and minus-reagent samples. (d) Low levels of modification or mutation rates above 

background.
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Figure 12. 
SuperFold analysis. Results from three RNAs: (a) TPP riboswitch, (b) E. coli 16S rRNA, 

and (c) HIV-1 RNA genome. SHAPE profiles are shown in black (as the median over a 51-nt 

window) relative to the global median; Shannon entropies are brown. Median SHAPE 

reactivities and Shannon entropies are shown on the same scale in all panels. Arcs illustrate 

base pairing probabilities with highly probable pairs emphasized in green. Manually added 

pseudoknots in the HIV-1 RNA are plotted as black arcs. Regions with both low SHAPE 

reactivity (corresponding to high levels of RNA structure) and low Shannon entropy 

(reflecting a well-determined structure) are emphasized with blue shading. Note that the TPP 

riboswitch and ribosomal RNAs are almost entirely comprised of low SHAPE/low entropy 

regions, whereas the HIV-1 RNA genome alternates between regions of well-determined 

structure and those without.
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Figure 13. 
Secondary structure models for well-determined regions. (a) Predicted TPP riboswitch 

structure in its ligand-bound state. (b) 5′ domain of the E. coli 16S ribosomal RNA. (c) A 

well-determined structure within the HIV-1 RNA genome, containing a pseudoknot and the 

3′ trans-activation response (TAR) element.
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Table 1

Primer sequences for simple RNA-specific library construction.

Primer name Sequence (5′-3′) Purpose Comments

Step1Fwd 5′-GAC TGG AGT TCA GAC GTG TGC TCT 
TCC GAT CTN NNN N [RNA-specific]-3′

Appends partial Illumina 
adaptor to the 5′ end of the 
amplicon.

[RNA-specific] is a 15–20 nt 
sequence specific to, and in the same 
sense as, the RNA of interest.

Step1Rev 5′-CCC TAC ACG ACG CTC TTC CGA TCT 
NNN NN [RT primer]-3′

Appends partial Illumina 
adaptor to the 3′ end of the 
amplicon.

[RT primer] is an appropriate 
antisense sequence, typically identical 
to the reverse transcription primer.

UniFwd 5′-CAA GCA GAA GAC GGC ATA CGA GAT 
[Barcode] GTG ACT GGA GTT CAG AC-3′

Completes the Illumina adaptor 
on the 5′ end of the amplicon.

[Barcode] is a 6 nt sequence identifier 
to enable sample multiplexing. See 
Table 2 for barcode sequences.

UniRev 5′-AAT GAT ACG GCG ACC ACC GAG ATC 
TAC ACT CTT TCC CTA CAC GAC GCT 
CTT CCG-3′

Completes the Illumina adaptor 
on the 5′ end of the amplicon.
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Table 2

Barcode sequencesa for simple two-step library construction

Indexb [Barcode] [Barcode] reverse compliment

1 5′-CGTGAT-3′ 5′-ATCACG-3′

2 5′-ACATCG-3′ 5′-CGATGT-3′

3 5′-GCCTAA-3′ 5′-TTAGGC-3′

4 5′-TGGTCA-3′ 5′-TGACCA-3′

5 5′-CACTGT-3′ 5′-ACAGTG-3′

6 5′-ATTGGC-3′ 5′-GCCAAT-3′

7 5′-GATCTG-3′ 5′-CAGATC-3′

8 5′-TCAAGT-3′ 5′-ACTTGA-3′

9 5′-CTGATC-3′ 5′-GATCAG-3′

10 5′-AAGCTA-3′ 5′-TAGCTT-3′

11 5′-GTAGCC-3′ 5′-GGCTAC-3′

12 5′-TACAAG-3′ 5′-CTTGTA-3′

13 5′-TTGACT-3′ 5′-AGTCAA-3′

14 5′-GGAACT-3′ 5′-AGTTCC-3′

15 5′-TGACAT-3′ 5′-ATGTCA-3′

16 5′-GGACGG-3′ 5′-CCGTCC-3′

18 5′-GCGGAC-3′ 5′-GTCCGC-3′

19 5′-TTTCAC-3′ 5′-GTGAAA-3′

20 5′-GGCCAC-3′ 5′-GTGGCC-3′

21 5′-CGAAAC-3′ 5′-GTTTCG-3′

22 5′-CGTACG-3′ 5′-CGTACG-3′

23 5′-CCACTC-3′ 5′-GAGTGG-3′

25 5′-ATCAGT-3′ 5′-ACTGAT-3′

27 5′-AGGAAT-3′ 5′-ATTCCT-3′

a
Oligonucleotide sequences © 2007–2013 Illumina, Inc.

b
Index numbers are assigned by Illumina; indices 17, 24, and 26 not available.
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Table 3
ShapeMapper stages

The initialization stage is directly executed by the user; all subsequent stages are launched automatically from 

the ShapeMapper.py script. “RUN” indicates the path to the folder from which ShapeMapper was executed, 

which should contain FASTA reference sequences, raw sequencing reads, and a configuration file. “conf” 

indicates configuration file parameters. “*” is a wildcard character indicating multiple names.

Stage Script/executable name Output files/directories

Initialization and configuration 
file; verification/loading

ShapeMapper.py, parseConfigFile.py, conf.py RUN/log.txt: file that logs pipeline stage execution 
and error messages.
RUN/temp: folder that stores subprocess standard out 
and standard error streams during execution (can be 
deleted after run completion). RUN/output: folder 
that will store the bulk of the pipeline output. RUN/
output/*: subfolders that will store the output from 
each pipeline stage.

Quality trimming trimPhred RUN/output/trimmed_reads/*.fastq: sequencing reads 
trimmed left-to-right at the site of the first average 
phred score below conf.minPhred over a window of 
length conf.windowSize with resulting read lengths 
greater or equal to conf.minLength.

Sequence alignment preparation bowtie2-build (third party)
38 RUN/output/bowtie_index/*: Bowtie2 reference 

sequence indices.

Sequence alignment bowtie2 (third party)
38 RUN/output/aligned_reads/*.sam: aligned sequence 

files, one file for each line in configuration file 
section “[alignments]”.

Alignment parsing and 
ambiguously aligned deletion 
identification

parseAlignment RUN/output/mutation_strings/*.txt: parsed and 
simplified alignments.

Mutation counting countMutations, pivotCSV.py RUN/output/counted_mutations/*.csv: mutation 
counts and read depths written to comma-separated 
files, one file for each line in configuration section 
“[alignments]”.
RUN/output/counted_mutations_columns/*.csv: the 
same files arranged in column format.
These files also contain the total mismatch count, 
total deletion count, and total unambiguously aligned 
deletion count.

Reactivity profile creation and 
standard error calculation

generateReactivityProfiles.py (uses matplotlib – 
third party)

RUN/output/reactivity_profiles/*.tab: the most 
detailed output, containing mutation rates, depths, 
reactivities, and standard errors in tab-delimited 
columns.
RUN/output/reactivity_profiles/*.shape: simple 
SHAPE reactivity file, tab-delimited columns with 
nucleotide numbers in the first column and 
reactivities in the second, no-data positions indicated 
by −999.
RUN/output/reactivity_profiles/*.map: SHAPE 
reactivity file including standard errors and 
nucleotide sequence.
RUN/output/reactivity_profiles/*_histogr ams.pdf: 
histograms of mutation rates, read depths, and 
reactivities that are useful for troubleshooting.
RUN/output/reactivity_profiles/
*_depth_and_reactivity.pdf: read depth profile, 
mutation rate above background profile, and 
reactivity profile images.

Structure modeling Fold (part of RNAstructure – third party)
33 RUN/output/folds/*.seq: reference sequence files in 

the format required by RNAstructure. RUN/output/
folds/*.ct: structure models, one file for each line in 
configuration file section “[folds]”.
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Stage Script/executable name Output files/directories

Structure drawing pvclient.py (custom client for the Pseudoviewer 
web service – third party)

58
RUN/output/folds/*.eps: postscript image files for the 
lowest predicted free energy structure colored by 
SHAPE reactivity, for each RNA specified in 
configuration section “[folds]”
RUN/output/folds/*.xrna: XRNA files for each lowest 
predicted free energy structure, which can be 
manually edited if desired.
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Table 4
SuperFold stages and output files

The initialization stage is executed by the user using the Superfold.py executable. RNAtools.py contains 

companion classes used by SuperFold. Output directories are named after the input .map file and appended 

with a hash of the input flags, allowing the user to run multiple jobs within the same directory without 

encountering conflicting file names. All command line parameters are stored in the log file within the results 

directory.

Stage Script/executable Output files/directories

Initialization Superfold.py
RNAtools.py

results_RNAname_hash/: A results directory with the name of the .map 
file and a cryptographic hash. All results files will be placed in this 
directory. log_result*.txt: log file detailing the status of the run.

Partition function calculation partition (RNAstructure)
ProbabilityPlot
(RNAstructure)
batchSubmit.py

Partition_RNAname_hash/: intermediate files from the windowed partition 
function calculation will be placed here.

Minimum free-energy (MFE) 
calculation

Fold (RNAstructure)
batchSubmit.py

fold_RNAname_hash/: intermediate files from the MFE calculation will be 
placed here.

Figure drawing pvclient.py
PyCircleCompare.py
drawArcRibbons_simple.py

Analysis files are placed in the results folder: Shannon entropy/SHAPE 
analysis, partition function arcs, and circle plots and secondary structure 
diagrams of Shannon entropy/SHAPE regions. Text files for use in a 
plotting program are also created here.
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Table 5

SHAPE-MaP Troubleshooting

Step Problem Possible cause Solution

20A(vii) Low library yield Size selection too stringent Use a 1:1 or 1.2:1 ratio of beads to sample.

20C(iv) Low dsDNA yield Poor cDNA yield from reverse 
transcription

Use more RNA; do not exceed 5 μg.

Increase the RT primer concentration by 10-fold. For the Randomer 
Workflow this will result in shorter sequencing libraries.

21 Low library yield Failed Step 1 or Step 2 PCR Optimize PCR conditions for each reaction individually before 
performing them in sequence.

Some RNAs amplify better with a different ratio of cycles between 
Steps 1 and 2. Perform PCR using 20 cycles of Step 1 and 10 cycles 
of Step 2.

22 Extra peaks observed in 
Small RNA Workflow 
library

Non-specific primers Redesign the [RNA-specific] and [RT primer] sequences of Step 1 
primers with an online tool such as Primer-BLAST to avoid off-
target binding. Test primers by performing Step 1 PCR for 25–30 
cycles and verifying product on a gel or Bioanalyzer chip.

Low Step 1 PCR input Increase the number of Step 1 cycles to 20, reduce Step 2 PCR to 
10 cycles.

Incomplete conversion of Step 
1 product to Step 2 product

Reduce the number of Step 1 cycles or carry less Step 1 product 
through to Step 2 PCR.

24 Few reads align to RNA 
of interest

Non-specific primers Redesign PCR primers (Small RNA and Amplicon Workflows, see 
above); optimize RNA purification (Randomer Workflow).
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Table 6

ShapeMapper Troubleshooting

Problem Possible cause Solution

No output files produced. Missing pipeline binaries, file 
permissions not set correctly, 
missing files, incorrectly-
formatted configuration file, or 
out of memory.

Ensure executable binary files trimPhred, parseAlignment, and 
countMutations are present in the ShapeMapper directory (see section 
on installing ShapeMapper).
Check the log file (log.txt) in the run directory for details of the error. 
If running in a load sharing facility-enabled cluster computing 
environment, also check the output of the submitted job, which will 
display errors due to file permissions or memory issues that cannot be 
captured in the ShapeMapper log file.

Noisy reactivity profiles. Incorrectly labeled samples, low 
read depths, poor signal above 
background (low RNA 
modification rate or cDNA 
mutation rate in SHAPE-
modified sample), or DNA 
contamination.

Check mutation rate and depth histograms in RUN/output/
reactivity_profiles to determine cause.

Missing samples. Unbalanced sequencing library 
sample loading or failed PCR.

Quantify missing samples with a high-sensitivity assay and 
resequence. Redesign directed primers if necessary. Increase the 
amount of RNA in reverse transcription and increase the amount of 
first-strand cDNA in PCR.

Uneven read depth or regions of 
low depth.

RNA degradation, poor primer 
binding, or low RNA 
concentration.

Sequence using longer reads; use Nextera kits (if using the Illumina 
platform); use more RNA in reverse transcription; use a battery of 
paired PCR primers instead of random primers. For RNAs with 
regions of high AU-content, consider using the LNA+ random primers 
(Fig. 5).

No reactivity profiles produced, 
even though alignment files (./
output/aligned_reads/*.sam) are 
present.

Sample name(s) in the 
“[profiles]” section of the 
configuration file do not exactly 
match the name(s) given in the 
FASTA reference sequence files 
(.fa).

Fix errors in the configuration file and rerun the 
generateReactivityProfiles stage.

Pipeline run incomplete, but no 
error message or unhelpful error 
message in the log file.

Out-of-memory error or other 
error that ShapeMapper does not 
currently identify.

Check the output from the ShapeMapper.py script itself, in addition to 
the log file (log.txt). Check the contents of the subfolders in the ./
output/directory in order of module execution (Table 3). The first 
folder in which some or all of the expected output files are missing, 
blank, or empty indicates the stage that failed.
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Table 7

SuperFold Troubleshooting

Problem Possible cause Possible solution

Error message: “Program X not 
found in the path”.

RNAstructure command-line tools not 
available to SuperFold.

Make RNAstructure accessible by adding it to the shell path.

Error message: “DATAPATH not 
set…”

RNAstructure DATAPATH is not set. Use the export command to set the variable DATAPATH to 
the location of the RNAstructure data tables (see hardware 
setup).

Error message: “Unexpected 
character in…”.

Misformatted constraint file. Check the input files for extra spaces or special characters.

Error message: “pK region file 
incorrectly…”.

Misformatted constraint file. Check pseudoknot constraint file for formatting. See the 
example file.

No base pairs are found in the 
partition function.

Crash in the program partition gives 
empty output.

Set the –partitionWindowSize flag to 1200 and rerun 
SuperFold. Depending on the sequence, a large SHAPE 
penalty can cause partition to malfunction with large window 
sizes.
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