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Abstract

A novel, mixed-ligand chiral rhodium(I1) catalyst, Rho(S-NTTL)3(dCPA), has enabled the first
enantioselective total synthesis of the natural product piperarborenine B. A crystal structure of
Rho(S-NTTL)3(dCPA) reveals a “chiral crown” conformation with a bulky dicyclohexylpheny!l
acetate ligand and three N-naphthalimido groups oriented on the same face of the catalyst. The
natural product was prepared on large scale using rhodium-catalyzed bicyclobutanation/copper-
catalyzed homoconjugate addition chemistry in the key step. The route proceeds in ten steps with
an 8% overall yield and 92% ee.
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Mixing Ligands: A new mixed-ligand chiral rhodium(ll) catalyst, Rhy(S-NTTL)3(dCPA), has
enabled the first enantioselective total synthesis of the natural product piperarborenine B. Key to
the synthesis is a rhodium-catalyzed bicyclobutanation/copper-catalyzed homoconjugate addition
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for complex cyclobutane synthesis. The natural product was prepared on 400 mg scale and 8%
overall yield.
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piperarborenine B

Truxillate and truxinate natural products exhibit diverse biological activities. These
molecules and their derivatives display potential as therapeutic leads in areas including
oncology, neurology, infectious diseases, and respiratory diseases.["] Despite the significant

- [2] . .
number of natural lead compounds, the underrepresentationl™ of cyclobutane-containing
drugs is a reflection of an area in organic chemistry where concise, general and
stereoselective methods for cyclobutane synthesis are still needed.

Piperarborenine B, a cyclobutane-containing natural product isolated from Piper
arborescens, has exhibited activity against P-388, A-549, and HT-29 cancer cell lines (ICsq =
0.13, 1.4, and 2.4 uM, respectively).l’] Other cyclobutane-containing natural products such
as incarvillateine, ("] pauferrol A" and the synthetic SB-F1-26[° have also exhibited
exciting biological activities, with the cyclobutane core proving to be an essential feature.

There are several ways to access truxillate and truxinate natural products, but most are
focused on the preparation of compounds with symmetrical cyclobutane cores. The
photochemical [2+2] reaction has factored significantly in the total synthesis of symmetrical
truxillic acid and related derivatives,[7] including elegant solutions from crystal
engineering[S] and advances from redox photocatalysis.[g] Alternatively, truxinic acid
derivatives have been formed in modest diastereoselectivity by [2+2] photocycloaddition in
flow.[lol However, direct photodimerization is extremely limited for the construction of
cyclobutane natural products where the core is chiral and the alkene precursors are non-
equivalent such as the compounds displayed in Figure 1.5

In recent years, catalytic C—H activation methods have factored prominently in the
elaboration of cyclobutane natural products.[ll] Recently, Baran has shown that racemic tri-
and tetrasubstituted cyclobutanes can be prepared from disubstituted cyclobutanes through
sequential arylation and vinylation reactions,[lzl using directing groups and catalytic
conditions originally developed by Daugulis**" 131 and also popularized by Chen.[**]
Baran’s synthesis of piperarborenine B showcased sequential cyclobutane C(sp3)-H
activation to construct the unsymmetrical truxillate core. This approach provided racemic
piperarborenine B in 7% overall yield in 7 steps.

Several enantioselective approaches to unsymmetrical cyclobutane cores have been
described in recent years.[">~%] Tang has reported the synthesis of the initially assigned
structures of pipercyclobutanamide A and piperchabamide G via Rh(l)-catalyzed conjugate
addition of arylboronic acid to a cyclobutenoate derived from enantiospecific cyclopropane
ring expansion.I*®] Rh,(5 5-MEPY),-catalyzed cyclopropanation was used to set the
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stereochemistry of the core in 80% ee. This study revised the assignments to the six-
membered ring isomers chabamide and nigramide F, respectively.

Recently, our group has introduced a modular new approach to chiral cyclobutane synthesis
involving tandem Rh(ll)-catalyzed enantioselective ‘bicyclobutanation’[21]/Cu(l)-catalyzed
homoconjugate addition of a-cinnamyl-a-diazoesters (Scheme l).[zz' 23] |nspired by the
unique bioactivities of a number of cyclobutane-containing natural products, we sought to
demonstrate the power of our strategy for enantioselective synthesis of unsymmetrical
cyclobutanes. Additionally, we realized this would potentially enable rapid diversification of
complex cyclobutanes for SAR studies. Herein, we report the first enantioselective total
synthesis of piperarborenine B (1). Critical to the synthesis was the development of a new,
chiral Rh(ll)-carboxylate complex that catalyzes the key bicyclobutanation step with high
enantioselectivity and turnover number. Additional key aspects of the synthesis include
improved ‘on water’ conditions for cyclobutane C—H activation and a streamlined route that
was used to produce the natural product on 400 mg scale in only one week from
veratraldehyde.

Retrosynthetically, we envisioned the a-truxillate core of 7 arising from a Baran late stage
C—H activation using a properly installed directing group. The stereotriad 5 would be
constructed using our previously developed enantioselective bicyclobutanation/
homoconjugate addition chemistry. The required diazoester 3 would arise from
commercially available veratraldehyde using a Tsuji-Trost allylation in a key step.

The synthesis commenced by developing a synthesis of the diazoester (3). Several efficient
routes to the compound were developed (see supporting information). In the most time and
scale efficient route (Scheme 3), veratraldehyde was treated with vinylMgBr to provide a
vinyl alcohol that was shown to be an effective substrate for an ‘on water” Tsuji-Trost
allylation of tert-butyl acetoacetate using Pd(OAc), (2 mol %), PPh3 (10 mol %), and
adamantoic acid (10 mol %).1**] Treatment of ketoester 2 with p-ABSA, and NaOH in a
mixture of acetonitrile/H,O provided the desired diazoester 3 in 47% yield over three steps.
This three step process for diazoester synthesis was accomplished in one day and represents
an efficient new strategy for a-allyl-a-diazoester synthesis.

Recently, our groupl??l and that of Davies®'] have described complementary catalyst
systems for enantioselective bicyclobutanation. Our system provides access to fert-butyl
bicyclobutane carboxylates that can be combined /n situ with Grignard reagents to produce
functionalized, enantiomerically enriched cyclobutanes.[zzl In our previous work, we
described Rhyo(S-NTTL), as an effective catalyst for bicyclobutanation in terms of
enantioselectivity and yield. However, our efforts to apply this catalyst produced the
bicyclobutane intermediate 4 in only 84% ee (Scheme 4). Screening efforts with other
symmetrical catalysts were unsuccessful (see Sl for full optimization table).

Recently, our group described the mixed-ligand Rh(Il)-catalyst, Rho(S-PTTL)3(TPA), a
dirhodium paddlewheel complex that is substituted by three chiral ligands and one achiral
. 251 ., - . . . . . .

ligand.[””] This catalyst displayed superior results in certain enantioselective
cyclopropanation, cyclopropenation and indole functionalization reactions. Our
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computational and crystallographic studies showed that it adopts a “chiral crown’
conformation, where the A~phthalimido groups are all presented on the same face. In the
bicyclobutanation of 3, Rhy(S-PTTL)3(TPA) gave the bicyclobutane 4 in a promising 60%
ee. We speculated that replacing TPA with a ligand that makes non-covalent contacts
between the chiral ligand and substrate may be beneficial to asymmetric induction. We
further speculated that a large achiral ligand may rigidify the chiral crown arrangement of
the chiral ligands. Accordingly we designed a new mixed-ligand Rh(ll)-catalyst, Rhy(S
NTTL)3(dCPA), which contains a bulky dicyclohexylphenylacetate group (dCPA) as the
achiral ligand. A crystal structure of Rhyo(S-NTTL)3(dCPA) revealed that the chiral crown
conformation was conserved with the bulky dCPA ligand. As shown in Figure 2, the N-
naphthalimido groups are oriented on the same face of the catalyst with the sterically
demanding fert-butyl groups on the opposite face blocking reactivity on the bottom face of
the catalyst. Indeed, this new mixed-ligand complex gave 92% ee and 79% yield of the
bicyclobutane. With this optimal catalyst in hand, we used it in the key step in a one-pot
bicyclobutanation/homoconjugate addition sequence to assemble the core of piperarborenine
B. Hence, treatment of diazoester 3 with 0.1 mol % Rhy(S-NTTL)3(dCPA) at -=78 °C in
toluene followed by cuprate addition using CuBreSMe,, PPh3, and 2-methyl-1-
propenylmagnesium bromide in THF provided the desired trisubstituted cyclobutane 5in
69% yield, 92% ee and 4:1 dr after kinetic protonation with BHT.

In order to set the desired stereochemical relationship of the cyclobutane ring, kinetic
protonation with a bulky proton source was required. BHT was an effective proton source
providing the desired diastereomer in 4:1 dr.[ZZ] An even higher 6:1 dr was obtained with the
sterically demanding 2,6-di(adamantan-1-yl)-4-(fert-butyl)phenol, but unfortunately this
high selectivity was poorly reproducible upon scale up. For this reason, BHT was chosen for
large scale synthesis of the enantiomerically enriched cyclobutane 5, which was prepared in
gram quantities.

We next sought to install the amide directing group to facilitate subsequent Pd-catalyzed C—
H activation. The carboxylate functionality was unveiled by an ozonolysis/Pinnick oxidation
sequence. First, vinylcyclobutane 5 was treated with Og in the presence of 1,3,5-
trimethoxybenzene, an additive found to suppress over-oxidation of the electron-rich 1,2-
dimethoxyphenyl group. After reductive quench with PPhg, the aldehyde intermediate was
oxidized to the carboxylic acid by Pinnick oxidation. The crude carboxylic acid was used in
a HATU-enabled coupling with 2-(methylthio)aniline to install the desired directing group
providing cyclobutane 6 in 66% yield, along with an additional 14% yield of a separable
diastereomer derived from the minor diastereomer of 5.

Initial attempts at C—H activation using known conditions[lza] (Ar-1, Pd(OAC), AgyCOs3,
tertBuQH, 75 °C) provided the arylated product in 45% yield and incomplete conversion of
starting material. Gratifyingly, we discovered that the yield was significantly improved by
running the reaction ‘on water."[%°] Thus, the combination of 3,4,5-trimethoxyiodobenzene,
Pd(OAc),, PivOH, and KoCO3 on water gave the desired cyclobutane 7 in 69% yield. These
conditions avoid the use of Ag>COs3 and also proceed considerably faster with full
consumption of starting material after 12 h (as opposed to 45% yield and 80% conversion
after 36 h in ter-BuOH at 75 °C). Running the reaction neat led to a slightly diminished
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56% yield. Interestingly, microwave heating at 100 °C resulted in 55% yield with incomplete
conversion after only 20 minutes but was not further investigated due to scalability
limitations of our microwave reactor.

The directing group was removed by converting to the Bocamide followed by hydrolysis
with lithium hydroperoxide. [21[27] The remaining zert-butylester monoacid was treated
with TFA to afford the diacid 8. The synthesis of piperarborenine B was completed by

dihydropyridinone addition to /n situ generated diacyl chloride in 75% yield (Scheme 6).

In conclusion, the highly efficient, enantioselective total synthesis (8% overall yield) can be
completed in only one week to produce 400 mg of the natural product, piperarborenine B.
Key features include a new protocol for a-allyl-a-diazoester synthesis that can be completed
in one day while avoiding unstable intermediates. A new mixed-ligand Rh(Il)-catalyst was
designed, synthesized and demonstrated to be effective for the key bicyclobutanation step in
92% ee with only 0.1 mol % of the catalyst. This catalytic enantioselective reaction can be
employed in a one-pot bicyclobutanation/homoconjugate addition cascade to establish the
cyclobutane core. ‘On water’ conditions for cyclobutane C—H activation were found to be
particularly effective in forming the truxillate core. The use of aqueous media factored
prominently in this total synthesis with two steps conducted ‘on water’ (Tsuji-Trost
allylation and C—H activation) and three other steps conducted in aqueous/organic mixtures.
The reported route is especially modular featuring several points of derivatization that can
enable straightforward synthesis of enantiomerically enriched analogues.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 2.
X-ray crystal structure of Rhy(SNTTL)3(dCPA).
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Bicyclobutanation/homoconjugate addition strategy for enantioselective cyclobutane
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Retrosynthetic strategy for the enantioselective synthesis of piperarborenine B.
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An efficient route to the substituted diazoester, 3.
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Scheme 6.
Completion of piperarborenine B.
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