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Abstract

In the field of biomedical optics, optical scattering has traditionally limited the range of imaging 

within tissue to a depth of one millimetre. A recently developed class of wavefront-shaping 

techniques now aims to overcome this limit and achieve diffraction-limited control of light beyond 

one centimetre. By manipulating the spatial profile of an optical field before it enters a scattering 

medium, it is possible to create a micrometre-scale focal spot deep within tissue. To successfully 

operate in vivo, these wavefront-shaping techniques typically require feedback from within the 

biological sample. This Review summarizes recently developed ‘guidestar’ mechanisms that 

provide feedback for intra-tissue focusing. Potential applications of guidestar-assisted focusing 

include optogenetic control over neurons, targeted photodynamic therapy and deep tissue imaging.

Most vertebrate organisms, including humans, are optically turbid. Our cellular structures 

generally exhibit a heterogeneous refractive index. A spatially varying refractive index 

causes light to scatter, which prevents us from seeing beneath the first few layers of 

biological material, or from focusing visible radiation deep within biological tissue.

Wavelengths outside the optical spectrum, which scatter less through organic material, are 

widely available for probing deeper within biological organisms. For example, X-rays offer 

excellent resolution in computed tomography, and magnetic resonance imaging remains an 

invaluable tool for medical diagnosis. However, these well-known techniques offer a limited 

ability to control and manipulate cells or molecules. In contrast, a large suite of recently 

developed optical methods can now both probe and activate biochemical content using 

visible light. Example applications include the photochemical activation of drugs
1
, the 

photorelease of biomolecules
2
, stimulation of neural activity through optogenetic tags

3
 and 

imaging with fluorescent markers
4
. Similar insights may also help form images at 

unprecedented resolution
5
. However, optical scattering still restricts many of these advances 

to the outermost layers of tissue.
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When a beam of light enters skin, its photons bounce around so many times that after a 

certain distance (the transport mean free path (TMFP), l*), they face an equal probability of 

moving in any direction. This diffusion of an incident beam of light into a general ‘glow’ 

happens quite quickly in most biological tissue, typically at a depth
6
 of l* ≈ 1 mm. Until 

recently, most optical techniques for imaging deep within tissue would primarily utilize only 

unscattered (that is, ballistic) photons (for example, confocal imaging, two-photon 

microscopy
7
 and optical coherence tomography

8
). Because the number of ballistic photons 

decays exponentially with depth, the TMFP has long persisted as a supposedly impassable 

barrier for diffraction-limited imaging
9
.

Recently, researchers demonstrated that photons retain a significant amount of information 

after scattering many times through disordered material
10

, such as biological tissue
11

. 

Instead of throwing these seemingly randomized photons away, a host of new technologies 

now capture and extract information from multiply scattered light. By measuring the spatial 

phase profile of an optical field exiting tissue, one can computationally recover an ideal 

wavefront shape that, when sent back into tissue, will focus to a micrometre-scale spot. This 

optimization process closely relates to the principle of time reversal, which suggests that a 

beam of light may be guided backwards through a disordered medium to effectively ‘cancel’ 

its scattering effects.

Actively correcting random optical wavefront distortions is a common practice in 

astronomy
12

. By measuring how the atmosphere perturbs light from a ‘guidestar’ (that is, an 

approximate point source of light), adaptive optics (AO) systems adjust and sharpen images 

within most ground-based telescopes. The ‘wavefront-shaping’ technologies covered by this 

Review share a common foundation with the principle of AO, but extend operation into the 

biophotonic setting, where heavy optical scattering dominates. Correspondingly, instead of 

removing low-order aberrations to image ‘across’ distortion clearly, wavefront shaping aims 

for a generally more useful goal in the field of biology: to send light ‘into’ tissue, thereby 

forming a tight focus within.

Recent work has adopted one of two guidestar-based strategies. In this Review, we classify 

these two strategies as using either a ‘feedback’ or ‘conjugation’ guidestar, and detail each in 

separate sections. Outside of the biological setting, an experimentalist can typically 

manipulate light on both sides of a scattering material, and thus does not usually need the 

assistance of a guidestar. Mosk et al. offer a thorough Review of wavefront shaping through 

non-biological disordered media
13

. This Review will focus on techniques that hold promise 

for controlling light inside in vivo tissue, where access is primarily limited to one side of the 

scattering material. Example guidestars for biological application include fluorescence 

markers
14,15, nonlinear optical particles

16
, photo-acoustic feedback

17–20
, ultrasound-enabled 

focusing
21–23

 and kinematic targets
24,25. Before discussing details about each wavefront-

shaping strategy, we first present a simple mathematical model to explain how to account for 

optical scattering using a properly designed wavefront.
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The propagation of light within tissue

First, it is helpful to break down the complex journey of a single photon through tissue into a 

discrete number of scattering events. Following this short discussion, we will replace our 

particle viewpoint with a wave model, which allows us to describe wavefront shaping more 

easily. We may characterize a homogeneous scattering medium by its scattering mean free 

path l, which specifies the average distance travelled by a photon between two scattering 

events. A typical value for l in tissue is 100 µm (ref. 6). When imaging tissue samples 

thicker than l, conventional microscopes will also capture scattered photons, which 

deteriorate image quality. Techniques like confocal and multiphoton excitation microscopy 

filter out scattered photons, thereby allowing imaging beyond one scattering mean free path.

Although these techniques have transformed biomedical imaging over several decades, 

confocal and multiphoton microscopes still face challenges when operating beneath the 

tissue TMFP depth, l* = l/(1 − g) ≈ 1 mm (refs 9,26). The distance l* depends on both the 

mean free path l and an anisotropy parameter, g ≈ 0.8–0.98, which takes into account the 

forward-scattering nature of tissue (Fig. 1a). The TMFP depth matches previously derived 

penetration upper limits for imaging methods that rely on ballistic photons
6,7,9. Although 

several recent techniques have improved ballistic photon collection using spatial field 

correlations
27

 or combined spatial and coherence gating
28

, many elastically scattered 

photons remain significantly beyond one millimetre. As the effects of tissue absorption are 

minimal until centimetre-scale depths
29

, an ideal technique would account for, as opposed to 

block, multiply scattered photons.

Accurate models of highly scattered light in this deep, diffusive regime exist. Diffuse optical 

tomography
30,31 and fluorescence molecular tomography

32
 can computationally reconstruct 

limited-resolution images of macroscopic structure well beyond several TMFP. However, 

their resolution deteriorates with imaging depth
6
. Furthermore, such techniques do not take 

into account the effects of interference, which is the hallmark of coherent light. As we will 

see, correlations within a complex optical field preserve a relationship between all possible 

paths that light can follow while scattering. By mapping out the relative optical phase 

difference between each path, it is possible to control coherent light, deep within tissue, at 

the diffraction limit.

It is now convenient to treat light as a wave, which, for simplicity, we assume is coherent. A 

monochromatic optical wave field, u(r), propagates through a linear scattering material with 

a variable index of refraction, n(r), following the scalar wave equation ∇2u(r) + k2n2(r) u(r) 

= 0. Here, k = 2π/λ denotes the wavevector and λ is the optical wavelength. Often, one has 

discrete control over N spatial degrees of freedom of an optical ‘input’ field, ua, before it 

enters a scattering sample, typically using a spatial light modulator (SLM, Fig. 1). In this 

scenario, it is useful to define the input field as a row vector ua that contains N complex 

entries. A limited numerical aperture, or the diffraction limit, allows unambiguous 

discretization of ua into a vector using the Nyquist–Shannon sampling theorem.

We now consider an arbitrary ‘target’ plane of interest at a depth L within a scattering 

sample (Fig. 2a), where we hope to focus light. We may spatially discretize this target plane 
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into M entries with a spacing of λ/2n. In many wavefront-shaping experiments, this plane is 

external to the scatterer and contains an M-pixel detector. Although in practice both input 

and target fields typically exist along two spatial dimensions, for simplicity we will 

primarily consider each field along one dimension. Once discretized, the forward-

propagating input field vector ua now connects to the optical field at the target plane ub 

through the matrix equation uaT = ub. Here, we define scattering between the input and 

target planes, caused by an inhomogeneous refractive index in the wave equation, using a 

transformation matrix T with N × M complex entries. If light at our embedded target plane 

is primarily forward-travelling, as in the case of highly anisotropic scattering, then T is the 

well-known transmission matrix
33

. Deep within tissue, where scattering becomes isotropic, 

the total target field includes contributions from all scatterer regions. However, a linear 

relationship will still connect the total field at both planes. Although not included here for 

simplicity, any reflected light may also be modelled within the 2N × 2M ‘scattering’ 

matrix
34,35. Finally, for graphical clarity we adopt the convention of multiplying T from the 

left, with a row vector, to denote light propagating into tissue (Fig. 2a). We will use column 

vectors to denote light propagation in the opposite direction (Fig. 2b).

If a point source sequentially shifts across the input plane, then scattering will cause the 

target optical field to fluctuate. We mathematically express an input field containing a point 

source in its ith discrete location as ua = δi, where we define δi as the ith unit vector. For any 

discrete input location xa, this particular input field satisfies ua[xa = i] = 1 and ua[xa ≠ i] = 0. 

The ith resulting target field is the matrix product δiT = ti, where ti denotes the ith 

transmission matrix row. Scattering almost always results in a random field with a grainy 

appearance, called speckle. If the medium is sufficiently thick and turbid, then the embedded 

speckle field’s spatial variations approach a correlation distance of λ/2n (that is, the speckle 

becomes ‘fully developed’
36

). In this limit, each discrete element of ti approaches a complex 

random variable with a circularly symmetric Gaussian distribution, which is not correlated 

with its neighbours. If the medium is also thick enough to satisfy L ≫ l, then light is in the 

multiple-scattering regime
37

. Here, a small change in the input wavefront (for example, a 

shift to input unit vector δi+1) will produce a nearly uncorrelated, yet still fully developed, 

target speckle field. At such depths, it thus becomes fair to approximate each element of the 

transmission matrix as an uncorrelated random variable.

Remaining sources of correlation within T, caused for example by energy conservation and 

a finite thickness, are of both practical application and ongoing theoretical interest
38

. One 

form of correlation, termed the ‘memory effect’
37

, helps computational imaging techniques 

recover objects hidden behind thin, scattering layers
39,40 such as tissue

41
. However, these 

methods require a finite separation between scatterer and object, and thus cannot directly 

focus or image to a plane embedded within tissue. The high anisotropy of tissue offers a 

second useful form of correlation that allows scanning across an embedded plane over a 

limited range
42

.

Wavefront shaping using feedback guidestars

The transmission matrix model informs us of the amplitude and phase of light at an 

embedded target plane, given an arbitrary input field. If the complex matrix T is known, then 
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we can also invert a scattering system to create any desired target field using a specifically 

designed input field (for example, to focus within tissue). We may express this input field 

solution mathematically by computing a matrix inverse, ua = ubT−1 (or a pseudo-inverse for 

rectangular T). If T is unitary, then we can equivalently apply a conjugate transpose, ua = 

ubT*. Although this is typically not an equivalent operation, conjugation closely 

approximates inversion when the scattering and detection system has minimal loss
43

. In 

practice, combining both matrix inversion and conjugation into one operator helps overcome 

experimental noise
44

. Given an SLM to define the input field, we may apply the following 

three steps to overcome optical scattering. First, scan through N different orthogonal input 

fields on the SLM and measure each resulting complex target field. For example, if each 

input field is the ith unit vector δi, then each target field is the ith matrix row ti. 

Interferometry is typically required to measure the complex target field. Next, construct the 

transmission matrix T from the N measured target fields (that is, place each ti into the ith 

row of T). Finally, solve the above inverse matrix equation to create any desired target field 

ub, by wavefront shaping with the SLM.

Transmission matrix measurement and inversion can deliver arbitrary images through 

disordered materials
33,44–46

. It is also possible to measure the scattering response of 

reflected light in a similar fashion
47

. Although this is an elegant way to overcome optical 

scattering, measuring each target speckle field ti from within tissue is practically 

challenging. One experimental technique uses the photo-acoustic effect
17

 (Fig. 3a). Here, 

light at an embedded plane induces an ultrasound signal through localized thermal 

expansion
48

. This time-varying ultrasound response, detected with an external transducer, 

offers an indirect estimate of local light intensity along one scatterer dimension. Linearly 

translating the detector system, while scanning through SLM patterns at each unique 

location, builds up a full transmission matrix (Fig. 3b). If the experimental goal is to form a 

single focus, however, it is not necessary to measure the entire transmission matrix.

If we are just concerned with the value of the target field ub[c] at one fixed target location xb 

= c within tissue, we do not need to multiply our input field with the entire transmission 

matrix. Instead, we must only consider the cth column of the transmission matrix and 

compute an inner product. We use a bar to distinguish this cth column as the column vector 

t̄c. We may determine the scalar target field formed at location c by any input field vector ua 

with the inner product, uat̄c = ub[c] (Fig. 3c). Here, we see that only the N values within t̄c 

are needed to map fully the scattering relationship between the input plane and the field at 

the cth embedded target location. Just like measuring and conjugating the transmission 

matrix to undo scattering across the entire target plane, measuring and computing the 

conjugate transpose of t̄c enables focusing at the target point xb = c. This is clear if we set 

 in the above inner product, such that , which is the maximum possible 

normalized amplitude at target location c.

Matching our procedure to measure T, one may determine t̄c by scanning through 

orthogonal SLM patterns
10,49. Now, however, only a single pixel detector records the target 

field. Or, instead of cycling through orthogonal SLM patterns, feedback between the single 

detector and the SLM (for example, with a genetic or hill-climbing algorithm) encourages 
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speedy maximization of delivered light intensity
35,50. With either approach, the ideal SLM-

shaped input field remains the conjugated transmission matrix column vector
51

 , and the 

focal spot brightness increases linearly with the number of conjugated optical modes
10

.

For most biological experiments, it is not possible to embed a physical detector (for 

example, a photodiode) into tissue to measure t̄c. Similar to indirectly measuring the 

transmission matrix, one may instead use a signal that is correlated with localized light 

intensity to provide SLM feedback
52

. We refer to this mechanism as a ‘feedback guidestar’, 

of which there are several varieties (Fig. 3c–e). One of the first demonstrations of 

overcoming scattering with a feedback guidestar used a fluorescent bead embedded within a 

disordered material. A feedback algorithm that connected the fluorescence intensity 

(detected outside the material) to an input-shaping SLM experimentally enhanced the 

fluorescent excitation by a factor of 20 or more
14,53.

A fluorescent guidestar often requires invasive positioning and fixes light delivery to a single 

location. A moveable ultrasound focal spot, which frequency-shifts light
54

 through refractive 

index modulation and scatterer displacement, offers a non-invasive feedback alternative
55

. 

Because ultrasound scatters weakly in tissue, it provides a useful mechanism for extracting 

optical information from an embedded target plane. Alternatively, instead of sending in 

ultrasound and detecting modulated light, an externally measured photo-acoustic signal also 

indicates the local strength of internal light, as mentioned earlier. Standard photo-acoustic 

‘guidestar’ feedback originates from a single spot, and is limited to the acoustic 

resolution
18,19. Nonlinear photo-acoustic feedback

20
 helps to focus near the optical 

resolution limit (5–7 µm, Fig. 3d), although not yet within thick biological tissue.

It is also possible to create guidestar-like feedback by monitoring the two-photon 

fluorescence signal generated directly inside a scattering sample
56,57 (Fig. 3e). Or, one may 

track the coherent interference of backscattered light from different sample layers
58,59. 

These two examples achieve feedback with optical mechanisms that are also shared by other 

biomedical imaging modalities: two-photon excitation microscopy and optical coherence 

tomography (OCT), respectively. Next, we briefly detail how AO techniques, which are also 

used to improve two-photon excitation imaging and OCT performance, apply to wavefront 

shaping with feedback guidestars.

As explained previously, AO is the imaging complement of wavefront shaping: the former 

passively removes aberrations after light has propagated from an object of interest, whereas 

the latter actively shapes light so that it can pass through an aberrative medium (for example, 

to form a focus). In early applications, AO applied similar feedback algorithms to measure 

and correct image distortions caused by the atmosphere
12

 or the eye’s lens
60

. Later, AO 

microscopes applied fluorescence feedback to remove low-order aberrations from ballistic 

light
61

. As with wavefront shaping, AO does not necessarily require a specific physical 

feedback guidestar. Systems may also apply feedback from two-photon
62

 or fluorescent
63 

image intensities. In addition to removing image aberrations, AO microscopes also 

commonly correct for distortions within their illumination path
64

. This closely matches the 

goal of wavefront shaping. Furthermore, recent AO microscopes now also correct for 

complex image distortions caused by non-ballistic light
57,65–67

.
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Although conceptually similar, three key differences help distinguish guidestar-based 

wavefront shaping from AO techniques. First, many AO set-ups focus light into a guidestar 

from the input side (for example, laser guidestars in astronomy and ophthalmology). 

Significant scattering precludes the ability to focus light directly into a guidestar within 

tissue. This gives rise to our list of inventive feedback mechanisms (Table 1). Second, a 

wavefront correction map in AO can remove aberrations over a finite area known as the 

isoplanatic patch
68

. The isoplanatic patch beneath 1 TMFP in tissue is limited to several 

square micrometres or less. This limits the relevance of one optimal input wavefront to a 

specific target location. Finally, the number of parameters (and hence measurements) 

required to fit an AO aberration map is typically small. An AO transmission matrix contains 

of the order of N ≈ 102 modes. In contrast, deep-tissue guidestars require many more 

measurements to map accurately the N ≈ 105 or more independent optical modes in the 

diffusive regime
13

.

Time reversal and phase conjugation

Feedback guidestar techniques measure the scattering response of tissue sequentially over 

time. Unfortunately, accurate focusing can require millions of unique measurements, and the 

scattering response of in vivo tissue changes on a sub-second timescale
69,70. To overcome 

this time constraint, a helpful strategy would involve measuring the scattering response of 

tissue in a parallel manner. By adopting the principle of time reversal, or ‘optical phase 

conjugation’ (OPC), it is possible to refocus light to a guidestar spot from a single snapshot.

To outline the principle of OPC, let us assume that an ideal guidestar emits a monochromatic 

optical wave with frequency ω. At any position r and time t within the scatterer, we may 

express this emitted scalar field as u(r, t) = Re{A(r) exp[i(φ(r) − ωt)]}. Here, A specifies the 

field amplitude and φ defines its spatially varying phase. Given propagation within a lossless 

medium, the wave equation remains time-invariant. For any forward-propagating field u(r, t) 
that is scattering out of the medium, there also exists a wavefunction u′ = u(r, −t) that will 

precisely retrace the path of u back through every scattering interaction to its original 

guidestar location. If the constant phase lines for u must satisfy φ(r) = ωt, then the constant 

phase lines of u′ must satisfy φ(r) = −ωt. It is clear the phase lines of u′ also satisfy the 

relation −φ(r) = ωt.The left-hand side of this equation represents the spatial phase conjugate 

of u. We can therefore ‘time reverse’ an arbitrary field u back into its original guidestar spot 

by conjugating its spatial phase, and then allowing it to continue travelling ahead in time.

To describe OPC within our linear algebra framework, we represent the light emerging from 

the target plane’s guidestar as ūb, where the bar denotes a column vector. We assume time-

reversal symmetry to express its transformation to the input plane as ūa = Tūb. Light 

propagating from the target to input plane, as a column vector, now multiplies into our 

transmission matrix from the right (Fig. 2b,d). In practice, sample absorption and a limited 

detection aperture prevent collection of the complete guidestar field35. Despite this 

challenge, the following phase-conjugation strategy can still be used to focus light into 

tissue. First, create a discrete point source of light at a specific location xb = c within tissue: 

ūb = δc̄, the cth unit column vector. Next, capture the resulting scattered field at the input 

plane: ūa = Tδ̄
c = t̄c, the cth column of T (Fig. 4a). Finally, phase-conjugate the detected 
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field into  and send the conjugate-transposed field back towards the target plane: 

. This conjugated field re-focuses to a discrete spot at the guidestar origin (Fig. 

4b). Incomplete measurement and imperfect conjugation of t̄c also typically introduces a 

finite background field ε. Note this expression closely matches the final result of our 

previous ‘feedback guidestar’ strategy. Here, OPC directly measures and conjugates the 

vector t̄c, whereas feedback from the target plane determines the elements of  in sequence.

Several experimental techniques are available to implement OPC. Early work used a 

deformable mirror to display the conjugate map of distorted light from a guidestar, which 

corrected for atmospheric turbulence
12

. Typical deformable mirrors can only reshape a small 

number of low-order optical modes. Similarly early experiments also tested holograms for 

conjugating light through fixed distortions
71,72. Unlike a deformable mirror, holograms can 

record and modify millions of wavefront modes. Nonlinear optical phenomena may also act 

like a ‘conjugate mirror’
73

 to conjugate light through dynamic distortions
74

. Examples 

include stimulated Brillouin scattering, multiple-wave mixing and the photorefractive 

effect
75,76. Although these approaches offer quick response times, the analog nature of 

nonlinear techniques precludes the ability to adjust their conjugation maps computationally.

The first OPC experiment to focus light through thick biological tissue involved using a 

hologram to record and conjugate the scattered field
11

. Shortly thereafter, focusing through 

tissue was achieved with digital optical phase conjugation (DOPC), which 

interferometrically measures an optical field on a digital detector, and then creates its phase 

conjugate using a pixel-to-pixel matched SLM
77

. A similar strategy can compensate for and 

combine multiple beams within an optical fibre
78

. Here, unlike early phase-conjugation 

work with deformable mirrors, DOPC uses a modern SLM that contains several million 

individually addressable elements. Thus, DOPC may compensate for complex optical 

transformations that involve millions of propagation modes, such as diffusive scattering in 

tissue
13

. Furthermore, unlike analog holograms, DOPC can digitally correct for minor setup 

misalignments
79

 and can in principle shape either continuous or pulsed beams of arbitrary 

power.

Wavefront shaping with conjugation guidestars

With direct access to the target plane, OPC can measure and conjugate arbitrary fields 

through ex vivo tissue
11

. Without access, for instance during an in vivo experiment, OPC 

requires an effective ‘conjugation guidestar’that can emit light for subsequent refocusing. 

Fluorescent excitation within the retina is one of the first conjugation guidestars applied in a 

biological context
80

. Here, a focused beam stimulates a small incoherent light source at the 

retina, which is externally measured to compensate for aberrations. Embedded fluorescent 

microspheres
81

 and proteins
82,83 serve as similar conjugation beacons in AO microscopy. It 

is also possible to implement conjugation-based correction using coherence gating
84

 or 

OCT
85

. Here, we review recent extensions of this early conjugation work into the regime of 

wavefront shaping, where wavefront distortions arise from deep within tissue. We 

summarize our list of conjugation guidestars in Table 1.
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The first guidestar for conjugation-based focusing through turbid media used the nonlinear 

second-harmonic generation signal from a nanoparticle
16

. Shortly thereafter, Vellekoop et al. 
conjugated light from a fluorescent marker embedded beneath 0.5 mm of tissue

15
 (Fig. 4c). 

Although the conjugated spot sizes of these techniques may approach the diffraction limit, 

both nonlinear and fluorescent guidestar signals originate from a fixed, spatially confined 

spot. Furthermore, their emission signals tend to be weak, and thus require long exposure 

times (≥1 s).

Focused ultrasound offers a conjugation guidestar that may be easily moved to different 

positions (Fig. 4d). As discussed in the context of feedback guidestars, a confined ultrasound 

focus can frequency-shift light at a defined spot within in vivo tissue
86

. Several experiments 

detected and phase-conjugated the ultrasound-modulated wavefront scattered from this finite 

spot (also termed a ‘virtual source’)
21–23

. The resolution of early time-reversed 

ultrasonically encoded (TRUE) demonstrations was fixed by the size of the ultrasound focus 

(25–50 µm). Although increasing the ultrasound frequency shrinks this spot size, it also 

decreases the number of photons modulated from deep within the tissue, thus presenting a 

trade-off between resolution and depth
87

. A potential solution to this resolution trade-off is 

iterative TRUE
88–90

, whereby a feedback loop between the conjugated and detected fields 

can experimentally shrink the focus spot size by a factor of three (Fig. 4d).

Instead of improving TRUE focusing resolution with iterative feedback, one may also adopt 

a statistical approach known as the time reversal of variance-encoded light (TROVE)
91

. 

Conceptually, the relatively large TRUE focus modulates many optical speckles. The 

modulated field emerging from the tissue is thus a superposition of weighted optical fields, 

each originating from a unique location within the ultrasound spot. Standard TRUE simply 

detects and conjugates this entire superposition. Alternatively, through a series of 

measurements and application of Gaussian statistics, TROVE computationally decomposes 

this superposition back into its individually weighted components. By conjugating the 

appropriate component, it is possible to refocus to a single optical mode (that is, a focal spot 

one speckle wide, Fig. 4d, bottom). In combination with recent methods to perform TRUE 

over timescales of <10 ms (ref. 92), TROVE concepts may help establish a translatable, 

optical diffraction-limited guidestar for in vivo use.

Even without ultrasonic frequency encoding, multiple measurements of a time-varying 

optical field can still lead to a sharp, phase-conjugated focus within tissue. Two recent works 

(TRAP
24

 and TRACK
25

) demonstrate this concept using a kinematic target embedded 

within a scattering material. First, a scattered field is measured when the target is absent 

from a volume of interest (u0 in Fig. 4e). Second, a different scattered field is measured after 

the target has moved into the volume (u1). Subtracting the first field from the second and 

conjugating the result will focus to the target location ([u1 − u0]* in Fig. 4e). An immediate 

application of the TRAP/TRACK principle is for in vivo flow cytometry. From two 

measurements of one ‘guidestar’ cell in motion, one may conjugate light to a tight focal 

spot. It is then possible to monitor the passage of any subsequent cells, for example, within 

the vein of interest, via external detection (Fig. 4e, bottom). Acquiring a sequence of speckle 

measurements may also help compute an image of such an embedded moving object, as 

recently considered in ref. 93.
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Experimental development

Before achieving widespread biological application, guidestar techniques must first address 

tissue motion (Fig. 5). Any unknown change in scattering response between guidestar signal 

measurement and wavefront playback is a source of error. Macroscopic effects, like 

heartbeat and blood flow, are the primary cause of tissue movement. Even with an ideal 

playback wavefront, a sharp focus will quickly spread into random speckle during in vivo 
conjugation

69
. Studies indicate a system response time of less than 50 ms is needed to 

overcome movements in unconstrained tissue, or several seconds when the tissue is 

immobilized (that is, pinched)
69,70.

A select number of current setups, using either digital feedback
49

 or nonlinear optical 

conjugation
92

, operate within a 50 ms time window. An integrated detector and SLM
94

, 

along with feedback algorithms that account for the temporal dynamics of the scattering 

medium
95,96, may lead to system response times below 1 ms. If the tissue sample can fit 

within an optical cavity, all-optical feedback can execute wavefront shaping at extremely 

fast, sub-microsecond timescales
97

.

In parallel with increased speed, future wavefront-shaping technologies hope to push their 

focusing depth below one centimetre (that is, into the macroscopic regime
6
). At such depths, 

optical absorption becomes a limiting factor. Fluorescent and nonlinear guidestars with 

improved efficiencies will help overcome signal-to-noise ratio challenges. Models predict 

that ultrasound guidestars, which become attenuated at large depths, may currently extend to 

centimetre depth scales
87,98.

The computational nature of most recent wavefront-shaping work is one of its strongest 

assets. Mirroring the field of computational imaging, co-designed measurement and post-

processing strategies can overcome experimental challenges. Examples include quick 

transmission matrix measurement without a reference beam
99

, overcoming large amounts of 

experimental noise
50,100, shrinking the OPC focus width

91
, and the related notion of a 

‘computational’ guidestar, created through a combination of multiple measured fields exiting 

the tissue (for example, TRAP/TRACK).

Finally, most of the guidestar techniques reviewed here achieve refocusing with 

monochromatic light. The spectral dependence of optical scattering introduces additional 

degrees of freedom for wavefront control
101,102. The related ability to temporally 

recompress an optical pulse using time reversal, as already well-studied with ultrasound
103

, 

may also greatly enhance focused energy confinement. Although several recent 

electromagnetic implementations show promising benefits for spectral/temporal 

control
104–108

, few achieve this control from just one side of the scattering material, which 

most biological settings require.

Biological applications

A variety of applications await both feedback and conjugation guidestar focusing in tissue. 

Many of these applications fall into one of two categories: energy delivery and information 

extraction. A well-established example from the former category is photodynamic therapy, 
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whose goal is to illuminate a diseased body region that contains a pre-administered 

photosensitizing drug. Applications include treatment of dermatological and ophthalmic 

disease, as well as solid tumors
1
. Highly concentrated optical power can also directly ablate 

tissue
109

 or power implanted devices
110

. Photodynamic therapy, tissue ablation and power 

delivery currently suffer from limited optical control at directly accessible tissue regions 

(that is, less than one TMFP from the surface). A guidestar-based focus offers micrometre-

scale optical control that can extend down multiple TMFP into the body, thereby possibly 

enabling new treatments.

Delivering energy to specific neurons within the brain can also help uncover how they 

communicate. When illuminated with sufficient light, optogenetic markers may activate or 

deactivate various physiological processes
3
. However, precise control over which neurons 

are optically activated is highly desired — inefficiencies and residual heating are a current 

limitation
111

. Initial demonstrations suggest that guidestar-based focusing may improve both 

the resolution and penetration depth of current optogenetic excitation techniques
67,112,113. 

Furthermore, it may also assist with the joint goal of localizing fluorescence emitted from 

active neurons, potentially with subwavelength precision
114

. Although DOPC currently 

images arbitrary fluorescent structure at limited resolution
23

, the above list of alternative 

goals will likely precede any significant improvement to its imaging performance. Finally, 

apart from exciting and detecting functionalized cells, shaped wavefronts can also 

manipulate particles within a scattering material
66,115. Such optical manipulation within 

thick tissue may offer new tools for the active control of cellular and subcellular functions. 

In summary, guidestar-based methods can now successfully overcome turbidity to focus 

light deep within tissue. We will see many exciting biological applications over the next 

several years, which will likely grow in both number and impact as their technological 

foundation continues to develop.
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Figure 1. Principle of wavefront shaping
a, An unmodified coherent beam of light travels one mean free path (l) with minimal 

scattering into tissue. A fraction of beam directionality is preserved up to the transport mean 

free path length, l*. b, By wavefront-shaping the incident field with an SLM, it is possible to 

focus within tissue beyond l*.
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Figure 2. Matrix model of scattering in tissue
a, Forward optical scattering into tissue (distance L, input to target plane). b, Reverse optical 

scattering out of tissue (target to input plane). c, Transmission matrix model for forward 

scattering. A discrete input point source at position 3 sets ua[xa] = δ3, the third unit vector. 

The target field is then t3, the third transmission matrix row. d, Matrix model for scattering 

from an embedded guidestar point, which sets ūb[xb] = δ̄
4 (column vector). Assuming time-

reversal symmetry, the input plane field becomes t̄4, the fourth transmission matrix column.
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Figure 3. Feedback guidestars
a, Measuring the optical transmission matrix. Rows of T are sampled by scanning one 

transparent pixel across an input SLM and detecting each target field. From within tissue, an 

external transducer obtains indirect measurements via the photo-acoustic effect. b, Compiled 

together, these photo-acoustic measurements form an optical transmission matrix
17

. c, 

Feedback guidestar matrix model, with measurements from one discrete location within 

tissue, ub[3]. d, Photo-acoustic feedback measured via an ultrasound transducer optimizes 

light delivery to a tight focus
20

. e, Fluorescence feedback, such as two-photon fluorescence 

(2PF). After optimization, 2PF feedback focuses light through L = 1 mm of brain tissue
56

. 

Figure reproduced with permission from: e, ref. 56, OSA.
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Figure 4. Conjugation guidestars
a, Matrix model and set-up for detecting an embedded guidestar field. Light from target field 

spot δ̄3 forms the speckle field t̄3 at the input plane camera. b, Matrix model and set-up for 

conjugation guidestar focusing. SLM-shaping an incident wavefront into conjugate field 

refocuses to δ3. c, Fluorescent conjugation guidestar experiment (0.2 µm bead), with 

resulting focus and conjugate phase map
15

. d, Ultrasound conjugation guidestar 

experiments. iTRUE sharpens the conjugated spot size
90

 by a factor of three. TROVE 

reduces the focal spot width
91

 from 31 µm to 5 µm. e, Kinematic target conjugation 

guidestar experiments (TRAP/TRACK). The resulting focus enables particle counting
25

. 

Figure reproduced with permission from: c, ref. 15, AIP; e, ref. 25, OSA.
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Figure 5. Tissue motion dims an OPC focus
a, Diagram of OPC decorrelation experiment, where wavefront shaping forms a tight focus 

through pinched, in vivo mouse tissue. b, Focusing light through partially immobilized 

dorsal skin. Both the speckle autocorrelation (g2(t), black) and OPC focal spot intensity 

(F(t), red) decay in magnitude over the course of several seconds, with fitted curves. c, In 

unconstrained skin, decorrelation occurs on a much faster (sub-second) timescale. Figure 

reproduced with permission from ref. 70, OSA.
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