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Abstract
HIV virions assemble on the plasma membrane and bud out of infected cells using interac-

tions with endosomal sorting complexes required for transport (ESCRTs). HIV protease

activation is essential for maturation and infectivity of progeny virions, however, the precise

timing of protease activation and its relationship to budding has not been well defined. We

show that compromised interactions with ESCRTs result in delayed budding of virions from

host cells. Specifically, we show that Gag mutants with compromised interactions with ALIX

and Tsg101, two early ESCRT factors, have an average budding delay of ~75 minutes and

~10 hours, respectively. Virions with inactive proteases incorporated the full Gag-Pol and

had ~60 minutes delay in budding. We demonstrate that during budding delay, activated

proteases release critical HIV enzymes back to host cytosol leading to production of non-

infectious progeny virions. To explain the molecular mechanism of the observed budding

delay, we modulated the Pol size artificially and show that virion release delays are size-

dependent and also show size-dependency in requirements for Tsg101 and ALIX. We high-

light the sensitivity of HIV to budding “on-time” and suggest that budding delay is a potent

mechanism for inhibition of infectious retroviral release.

Author Summary

ESCRTs are implicated in cellular processes which require fission of budding membranes.
Likely the most studied of these processes is the HIV-ESCRT interactions. The canonical
view is that interference with ESCRT recruitment results in a late budding arrest of virions
at the plasma membrane and this mechanistic view of ESCRTs has shaped our under-
standing of their function in almost all cell biology. In this manuscript, we present a full
kinetic analysis of HIV virion release under all known mutations in Gag that affect HIV-
ESCRT interactions. Our data show that contrary to the canonical view, a defect in ESCRT
recruitment does not inhibit virion budding, however it creates a delay. We further show
that during budding delay, activated proteases release critical HIV enzymes back to host
cytosol, leading to budding of non-infectious progeny virions. We suggest that budding
delay is a potent mechanism for inhibition of infectious retroviral release and can be the
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basis for developing antiviral treatments which slow the budding process and therefore
disproportionally affect infectious retroviral release. We also suggest that such budding
delay may be one of the mechanisms underlying cellular innate immune responses which
inhibit the spread of retroviral infection.

Introduction
HIV incorporates an aspartic protease that requires homo-dimerization for activation and is
the target of numerous FDA approved inhibitors [1–3]. The monomeric form is encoded
within the immature virion as part of the Gag-Pol precursor which includes Matrix (MA), Cap-
sid (CA), Spacer Peptide 1 (SP1), Nucleocapsid (NC), Transframe (TF), Protease (PR), Reverse
Transcriptase (RT), and Integrase (IN) domains [4]. There are ~120 Gag-Pol proteins pack-
aged in each immature HIV virion along with ~2,000 Gag proteins. Gag and Gag-Pol are syn-
thesized from the same messenger RNA via a ribosomal slippage, therefore Gag has the same
N terminal sequence as Gag-Pol with MA, CA, SP1, NC, plus the Gag-specific Spacer Peptide 2
(SP2) and the unstructured p6 domain that is essential for budding of infectious virions [5–7].
Protease activation is vital for auto-processing of Gag-Pol, which in turn is essential for matu-
ration and infectivity of HIV virions [8,9]. The protease activity within Gag-Pol is highly regu-
lated and the release from its boundaries in Gag-Pol, especially the TF domain, substantially
increases its activity [10–12]. There are eleven canonical protease sites on Gag and Gag-Pol
precursors, and in vitro experiments using recombinant PR and HIV Gag as substrate, have
characterized the affinities of PR to these sites (from high to low affinity: SP1/NC, SP2/p6,
MA/CA, NC/SP2 and CA/SP1 sites) [4,13,14]. Once Gag is processed, the newly released CA
assembles within the virion cavity to form the HIV mature capsid which encapsidates the RNA
bound to Gag NC along with RT and integrase [7]. While the HIV protease has been studied
extensively, the mechanism and timing of its initial activation in vivo has remained elusive, and
the putative connection between protease activation and the endosomal sorting complexes
required for transport (ESCRTs), which support HIV budding [15], remains unexplored.

ESCRTs are implicated in cellular processes which require fission of budding membranes
and are shown to play a major role in multivesicular body formation [16], enveloped virus bud-
ding [15], cytokinesis [17–19], exosomal vesicle generation [20], and plasma membrane repair
[21]. Likely, the most studied of these processes is the impact of ESCRTs on HIV budding. The
unstructured p6 domain of Gag hosts two major ESCRT interaction motifs, PTAP and YP [22–
24]. The PTAP motif directly interacts with Tsg101 [25–28], and its mutation has a severe
effect on HIV virion infectivity. The YP motif interacts with ALIX [29–33]; ALIX also interacts
with the upstream Gag NC domain however the exact function of this interaction is still not
fully clear [34,35]. The PTAP and YP motifs are collectively known as HIV late domains;
indeed, many enveloped viruses interact with early ESCRTs through specific domains within
their matrix protein termed late domains [15]. The late domain terminology stems from the
observed phenotype of late budding arrest visualized by electron microscopy of budding
viruses with altered late domains [5,15,27,36,37]

Here we found that late budding arrest of HIV, due to mutations of its late domains, is tran-
sient. We have characterized the budding kinetics starting with Gag virus like particles (VLPs).
HIV Gag protein is sufficient for assembly of Gag VLPs with the same size as HIV virions [38].
Using Gag VLPs, we show that Gag with mutated PTAP (ΔPTAP) or YP (ΔYP) motif releases
out of plasma membrane with ~1 hour and ~20 minutes delay compared to WT, respectively.
To analyze the effect of the same mutations on VLPs incorporating both Gag and Gag-Pol, we
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generated a fully functional Gag.Pol vector that incorporates both Gag and Gag-Pol and is suf-
ficient for budding mature VLPs with similar efficiency to HIV-1 full-length virus. We show
that with an active protease, the Gag.Pol VLP budding is delayed when introducing ΔPTAP
and ΔYP mutations. Indeed, Gag.Pol VLPs with ΔPTAP mutation are released with ~10 hours
delay and are void of HIV RT and PR. Gag.Pol VLPs with ΔYP mutation are released with ~75
minutes delay, which results in significant reduction of RT and PR incorporation within
released VLPs. Budding of Gag.Pol VLPs with an inactive protease and either ΔPTAP or ΔYP
mutations is dramatically slowed down with similar sensitivity to the involvement of Tsg101
and ALIX. Using Gag proteins with multiple GFP fusions as cargo, we further show that bud-
ding is sensitive to the size of cargo proteins, and this effect is reproduced when a PR inactive
truncated Pol protein is used as cargo. Finally, modeling these data usingMonteCarlo simula-
tions show that the protease activation after complete assembly of HIV virions on plasma
membrane can quantifiably explain the loss of Pol specific proteins to host cell cytosol before
VLP release.

Results
Humanized HIV Gag protein expressed in cells supports production of VLPs with similar size
distributions as HIV virions [38]. We initiated our study by performing side by side compari-
son between budding of HIV Gag VLPs versus VLPs produced from the HIV-1 ΔR8.2 vector
(HIVR8.2) and its parental full length HIV-1 R9 vector (HIVR9). HIVR8.2 after budding incorpo-
rates all components of the virion except ENV proteins and the genomic RNA.

In contrast to HIVR9 and HIVR8.2 budding, Gag VLP release is not
sensitive to p6 alterations
In parallel experiments, budding of HIVR9 and HIVR8.2 were compared to Gag VLP release 24
hours after transfection. Using Gag domain mutagenesis, we observed that while HIV release
and maturation are affected by p6 late domain mutations, VLP production by Gag remains
almost unaffected (Fig 1A). Shown are the following mutations in Gag p6, HIVR9 and HIVR8.2:
ΔPTAP incorporate a 7LIRL10 instead of 7PTAP10 [6], ΔYP include 36SR37 instead of 36YP37
[31], and ΔPTAP. ΔYP has both PTAP and YP sequences altered (7LIRL10 plus 36SR37). 24
hours post-transfection, cells and VLPs were collected as described in Materials and Methods
and analyzed by immunoblotting using p24, ALIX and Tsg101 specific antibodies.

We found that incorporation of early ESCRTs in released Gag as well as HIVR9 and HIVR8.2

VLPs was sensitive to late domain mutagenesis; Tsg101 was fully sensitive to ΔPTAP mutation,
and ALIX was only slightly affected by ΔYP mutation (Fig 1A). ALIX migrates as two separate
bands with the upper band likely related to a post-translational modified form. We don’t know
yet at this stage the nature of this ALIX modification. ALIX background level corresponds to
exosome release (Fig 1A and 1B). As commonly reported, HIV virion release (here shown
HIVR9 and HIVR8.2) was detectably reduced under the ΔPTAP mutation in addition to a clear
defect in Gag processing. Also, a slight change in release and maturation profiles was observed
in ΔYP mutant HIVR9 and HIVR8.2.

In contrast to HIVR9 and HIVR8.2, production of Gag VLPs was only slightly affected by
mutations within p6 (Fig 1). Indeed, expression of Gag with alteration in late domains either as
humanized, non-humanized co-expressed with Rev or within R9 with an abrogated ribosomal
slippage leads to the same results (Fig 1B, 1C and 1D). Aside from interacting with the p6
domain, ALIX also binds to the NC domain and mutations affecting NC have recently been
implicated in HIV virion release [39]. We found that under NCΔC6S (replacement of each NC
cysteine by serine) plus ΔYP and ΔPTAP mutations, ALIX retention in released Gag VLPs is
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Fig 1. VLP release by Gag and HIV are differently sensitive to PTAP and YP inactivation. (A)Gag versus HIVR9 and HIVR8.2 expressions in 293T
cells and corresponding virion/VLP release. 200 ng of each construct was used for transfection, and samples were collected 24 hours post-transfection.
Mutations in primary binding sites of Tsg101 and ALIX (PTAP and YP, respectively) and the subsequent retention of Tsg101 and ALIX in the released
VLPs are shown. (B) Effect of Gag mutations on the yield of VLP release in 293T cells. 200 ng of each humanized Gag construct were used for
transfection, and samples were collected 24 hours post-transfection. Tsg101 and ALIX retention in VLPs is also shown. (C) Effect of Gag mutations on
the yield of VLP release in 293T cells by non-humanized Gag. 1 μg of each Gag construct plus 300 ng HIV Rev encoding vector were used, and samples
were collected 24 hours post-transfection. (D) Effect of Gag mutations on the yield of VLP release in 293T cells by non-humanized Gag in the context of
HIV. The ribosomal slippage site on Gag cDNA was inactivated by mutagenesis without changing the corresponding translated amino acids. 250 ng of
each GagΔFrameshift construct were used and samples were collected 24 hours post-transfection. Densitometry values correspond to the ratio of p24
in VLPs/Cells relative to WT values. All experiments were performed at least 3 times with similar results; specifically, the variability in the final
densitometry values is <0.05).

doi:10.1371/journal.ppat.1005657.g001
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further abrogated and a reduction in TSG101 retention was observed in Gag NCΔC6S VLPs
(Fig 1B), however, none of the amino acid substitutions and/or truncations had a marked
effect on Gag VLP release (see also S1A, S1B and S1C Fig). The observations related to Gag
versus HIVR8.2 VLP release were confirmed by pulse/chase 35S-labeling experiments (S2A Fig).

The Tsg101/ALIX engagement-independent release of Gag VLPs was tested on different cell
types with no major changes in the VLP release except for the apparent cell type specific NC
effect (S3 Fig). Plasma membrane binding requirement was tested by G2A mutation [40]
which abrogated VLP budding (S1A Fig).

CHMP4 and VPS4 are retained in released Gag VLPs in absence of
functional p6 late domains and VPS4 is essential for release of Gag
VLPs
Given that compared to HIVR9 and HIVR8.2, Gag VLP production 24 hours post-transfection
shows differential dependence on late domains, we set out to test the requirements of higher
ESCRT factors in release of Gag VLPs. To investigate ESCRT recruitment (Tsg101, ALIX,
CHMP4b, and VPS4A) to budding Gag VLPs, we used HA-tagged forms under tight control of
their expression levels along with Gag NC and/or p6 mutants (Fig 2A). We found that Gag
VLPs were released with similar yield even when recruitment of Tsg101 and ALIX were com-
promised due to p6 and/or NC mutations, however surprisingly these VLPs retained both
CHMP4b and VPS4A independently of p6 and NC alterations that are inhibiting the early
ESCRTs recruitments. Fluorescently tagged ESCRT-III components have been previously
localized within budding wild type Gag VLPs, however not in the presence of p6 mutations
[41]. Even if our observation is based on a mild over-expression, it clearly shows that ESCR-
T-III and VPS4 have the potential to be recruited independently of ESCRT-I/ALIX.

We further tested the requirement for VPS4 engagement in production of VLPs with com-
promised interactions with early ESCRTs. To this end, we expressed a dominant negative
VPS4 (ΔE228Q) during production of HIV Gag VLPs. As shown in Fig 2B, the expression of
VPS4ΔE228Q had a substantial negative effect on all Gag VLP production which confirms a
requirement for VPS4 in eventual Gag VLP production.

Gag VLP release is delayed when p6 domains are altered
While our data show that Gag VLPs with compromised interactions with Tsg101 and ALIX
were released with similar efficiencies 24 hours post-transfection, we further investigated the
effect of these interactions on the kinetics of Gag VLP production. Shown in Fig 3 is the VLP
production comparing WT, ΔPTAP, ΔYP, Δp6 and control ΔG2A. U2OS cells were used for
both immunoblotting and microscopy (left and right panels, respectively). Our analysis shows
that the kinetics of VLP release is delayed by ~20 minutes (ΔYP) to ~1 hour (ΔPTAP and Δp6)
which is consistent with the similar VLP release observed 24 hours post-transfection (see also
Supporting Information section).

To confirm that the Gag variants detected in VLPs using immunoprobing indeed originate
from VLPs produced by cells, we visualized the released VLPs by total internal reflection
microscopy (TIRF) on individual cells. Using TIRF and Gag p6 variants fused to mCherry, we
followed the assembly and release of VLPs in live cells. We confirmed the similar VLP assembly
on cellular plasma membrane between all Gag variants, and 12 hours post-transfection, we arti-
ficially detached the cells to visualize released VLPs as described in Materials and Methods.
VLPs were indeed observed immobilized on the cell-free surface accordingly as shown in Fig 3
(left panels).
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Humanized Gag-Pol vector preserving the ribosomal slippage produces
VLPs that mature similarly to HIV VLPs
Having established that the HIV Gag VLPs with abrogated interactions with Tsg101 and ALIX
are delayed in their release, we set out to investigate the discrepancy in budding of HIV versus
Gag VLPs. Upon transfection in cells, the HIVR9 or HIVR8.2 express Gag along with Gag-Pol

Fig 2. Gag VLP release can bypass ESCRT-I/ALIX for recruitment of ESCRT-III/VPS4. (A) ESCRT-III/VPS4 is retained within released
VLPs independently of ESCRT-I/ALIX recruitment. The ESCRT proteins, Tsg101, ALIX, CHMP4b, and VPS4A, were co-expressed as HA-
tagged ORFs along with the Gag variants in 293T cells as indicated. Their retention in released VLPs indicates their recruitment during VLP
budding. (B) Expression of dominant negative VPS4 inhibits VLP release by Gag. 293T cells were transfected two times successively at 24
hours interval with HA tagged VPS4 either wild type (WT) or dominant negative E228Q (EQ) then with the Gag variants as indicated. Cells and
VLPs were collected 24 hours post-Gag transfection. All experiments were performed 3 times with similar results.

doi:10.1371/journal.ppat.1005657.g002
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and all other HIV co-factors aside from ENV for HIVR8.2. We chose to generate a system that
only express Gag and Gag-Pol proteins for more accurate comparison with Gag to investigate
whether the observed differences between Gag and HIV VLPs can be sufficiently explained by
the packaging of Gag-Pol. We constructed the Gag plus Gag-Pol open reading frames in a sin-
gle encoding cassette using humanized Gag and preserving the HIV ribosomal slippage (S4A
Fig); the Gag plus Gag-Pol VLPs produced are referred to as “Gag.Pol”. We further generated
variants of Gag.Pol by mutating p6 as described for Fig 1 (ΔPTAP, ΔYP, and ΔPTAP. ΔYP),
with either active (PRwt) or inactive protease (PRΔD25N; [42]). As shown in Fig 4A, expres-
sion of these plasmids in absence of any HIV accessory protein, promoted the production of
VLPs incorporating both Gag and Gag-Pol proteins, and Gag processing was only observed in
VLPs with PRwt. PRwt VLPs release and mature similarly to HIV virions (Fig 4B, WT lanes).
Gag.Pol with ΔPTAP and ΔYP mutations resulted in formation of VLPs with defects in terms
of VLP yield and maturation (Fig 4). Interestingly, PRΔD25N VLPs showed dramatic release
defect in all p6 mutants (Fig 4A). Over-expression of ALIX substantially rescued the matura-
tion defect due to ΔPTAP mutation (Fig 4A), as commonly reported.

Immunoprobing for Gag and Pol domains indicates that ΔPTAP VLPs are devoid of any
detectable RT, while an average of 70% RT loss is observed in ΔYP VLPs (Fig 4A and 4B and
S5 Fig). The RT loss is reversed in ΔPTAP VLPs by over-expression of ALIX as shown in Fig
4A. Interestingly, we observed that while ΔPTAP mutation induces identical RT loss in both
Gag.Pol and HIV VLPs, the RT loss induced by ΔYP mutation in Gag.Pol VLPs is not occur-
ring in HIVR9 and HIVR8.2 (Fig 4B). These data suggest the potential engagement of an HIV
effector(s) missing in the minimal Gag.Pol system, that is likely capable of supporting ALIX
function in the context of ΔYP mutation.

There is a reduction in the amount of incorporated RT within Gag.Pol p6 mutants when
compared to incorporated RT in WT Gag.Pol. We hypothesized that delayed VLP release in
addition to activation of PR before closure of the VLP neck would result in Pol auto-processing
and subsequent diffusion of Pol products back to the host cytosol. Indeed, PR was also lost
equivalently to RT in Gag.Pol p6 mutants, and follows the same profile in HIVR9 and HIVR8.2

ΔPTAP variants (Fig 4B). Supporting the notion of a race between VLP neck closure and PR
activation, we also found that WT Gag.Pol showed a ~25% RT loss when compared to ΔPR
Gag.Pol (S5C Fig). Based on the yields of Gag.Pol VLP production (comparing both PRwt and
PRΔD25N to Gag VLPs), we suspected a longer delay in release of Gag.Pol VLPs with altered
p6 compared to Gag VLPs.

Gag.Pol VLP release is substantially delayed when p6 is altered
VLP release kinetics of Gag.Pol variants were analyzed as shown in Fig 5. As expected, Gag.Pol
VLPs budded out at a slower rate compared to Gag VLPs, likely due to the Pol cargo size. To
this end, all delays related to p6 mutations were extended in time. Unlike Gag VLPs, which
were released with a constant delay measured with respect to the cytosolic Gag concentration,
the delay in Gag.Pol VLPs did not follow the same curve as the cytosolic fraction. These kinet-
ics indicates the occurrence of parallel processes during Gag.Pol VLPs production.

Interestingly, in the context of PRwt (Fig 5A, top panels), we observed that the appearance
of mature p24 versus p55 precursor and related products (p48 and p41) were not necessarily

Fig 3. Gag p6 alteration delays Gag VLP release. Kinetics of VLP release by Gag in U2OS cells with either p6 wild type or inactivated as indicated,
western blot kinetics are shown where 200 ng of each Gag construct was used for transfection; both Cells and VLPs were collected at 1 hour
intervals and immunoprobed using p24 antibody (left panels), Single cell imaging 12 hours post-transfection of mCherry fused Gag constructs as
indicated was performed using TIRF microscopy, images were captured before and after cell detachment to visualize released VLPs (right panels).
All experiments were performed 3 times with similar results.

doi:10.1371/journal.ppat.1005657.g003
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synchronized. Indeed, ΔYP mutation shows a delay in release of mature VLPs however their
production does not continue to the same extent as for WT, instead, it saturates earlier while
budding follows with VLPs enriched with Gag precursors. ΔPTAP mutation releases VLPs
with mainly Gag precursors, especially Gag p48, and with a substantial delay. To test the effect
of packaging full length Pol we performed kinetics on PRΔD25N (Fig 5A, bottom panels) with
p6 mutations. VLP production kinetics in Gag.Pol PRΔD25N with p6 mutants were all signifi-
cantly affected, strongly suggesting the importance of early ESCRT engagement (both Tsg101
and ALIX) when large cargo is loaded. Importantly, in any case, no full abrogation of VLP
release was observed under any p6 mutation.

Effect of Gag-cargo on VLP release
Our data show that p6 mutations create a delay in production of HIV Gag.Pol VLPs, which in
turn results in premature activation of PR and diffusion of Pol components from budding
VLPs. Also, the delay in VLP release was longer than the one measured for HIV Gag VLPs. To
further dissect the mechanistic basis of the observed delay, we hypothesized that the delay
length is associated with cargo size defined as domains added after HIV Gag protein, which are
naturally present as Pol within HIV.

Our observations in budding kinetics of Gag.Pol VLPs demonstrated that when protease
activation is inhibited and VLPs incorporate the full length Gag-Pol protein, the kinetics of
VLP release is further delayed and becomes strongly dependent on early ESCRTs. These obser-
vations suggest a dependence of VLP release on cargo size. To evaluate the influence of cargo
size on VLP production, we artificially fused GFPs in frame and in tandem to Gag C-terminus
(in these experiments, every expressed Gag is in tandem with GFPs). We found that indeed
VLP release by Gag-GFPx variants is proportionally reduced depending on cargo length (x = 1,
2 or 3 GFPs). The p6 late domain mutation directly dictates the efficiency based on the severity
of p6 alterations (Fig 6). These observations were confirmed by pulse/chase 35S-labeling experi-
ments (S2B Fig).

We further confirmed that intact Gag p6 is required for efficient VLP production with large
cargo through rescue of p6 mutant Gag-3x.GFP VLP release by co-transfection of Gag with wt
p6 (Fig 7A).There is a predominant impact for PTAP and at lower extent for YP.

We further modulated the cargo size using Pol truncations in the context of PRΔD25N for
maintaining the integrity of Pol cargo. Experiments were performed both under physiological
frame shifted expression of Gag.Pol along with Pol proteins expressed in frame with Gag which
resulted in 10 fold increase of Pol incorporation in released VLPs. Under both conditions, we
observed the same effect of p6 late domain mutations on VLP release (Fig 7B). In both cases,
VLP production is negatively affected depending on the length of cargo and nature of p6
alteration.

In the context of truncated Gag.Pol with wild type protease, VLP production profile is more
complex as deletions in Pol also influence timing of PR activation, as shown for Pol truncations

Fig 4. Gag p6 alteration induces the loss of Pol products due to delayed VLP release. (A) 250 ng of
each Gag.Pol variants as indicated were used for transfection. Cells and VLPs were collected 24 hours post-
transfection. Both Cells and VLPs were immunoprobed as indicated, respectively. Gag.Pol variants as
indicated, with either active PR (in black) or inactive PR (in red), show distinct maturation profiles. Levels of
incorporated RT are shown by immunoprobing the released VLPs. As control, ALIX is used to rescue the
Gag.Pol ΔPTAPmutant. (B) Transfections were done using 250 ng of each vector, and samples were
collected 24 hours post-transfection. Both Cells and VLPs were analyzed as indicated, respectively. Similar
to the minimal Gag.Pol vector, HIVR9 and HIVR8.2 are sensitive to Tsg101 involvement via the PTAP site
however contrary to Gag.Pol they are almost insensitive to ALIX interaction via the YP site. All experiments
were performed 5 times with similar results, except for the R9-related panels that were processed two times
with identical outcome.

doi:10.1371/journal.ppat.1005657.g004
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(S4C Fig). The effect of p6 alteration on VLP release by Gag.Pol full length was similar to our
findings above, however, in both cases of “in frame” or “frame shift” expression of Gag-Pol, PR
activation appeared to be tightly regulated by Pol C-terminus, likely the IN domain. Indeed,
when IN is deleted, PR was activated before VLP budding and this activation accounted for a
substantial loss in VLP yield. This premature activation of Gag.Pol PRwt ΔIN (deletion of IN
domain) seems likely to occur before Gag.Pol clusters on the plasma membrane as a ΔG2A
mutation of the same Gag.Pol constructs showed exactly the same profile of PR premature pro-
cessing. These findings are in line with the absence of VLP release when Gag-Pol full length is
expressed in frame due to drastic delay of Gag-Pol VLP production (S4B Fig).

Simulations of Gag.Pol VLP release
Kinetics of Gag.Pol VLP release were analyzed using a Gellipsie stochastic algorithm [43] as
detailed in Materials and Methods. This analysis incorporated a) the VLP release rates, b) pro-
tease activation kinetics, and c) diffusion of protease byproducts out of the open VLPs on the
plasma membrane. The simulated data were fitted into the experimental data extracted from
Gag.Pol VLP kinetics as shown in Fig 8A. Simulations allowed separation of the three underly-
ing processes. As shown in Fig 8A, the delay in release of VLPs behaves along a poissonian
curve with average delay times for WT, ΔYP and ΔPTAP alterations of 5 min, 75 min and 620
min, respectively. The delay in release of Gag.Pol PRΔD25N is substantially longer. During the
simulations, the rates of protease activation and diffusion of protease byproducts were held
constant while various p6 alterations were analyzed with varying VLP release rates; these rates
are shown in Fig 8B. All together, the simulations support our hypothesis that a delay in release
of VLPs, all other events constant, results in substantial loss of Pol associated enzymes from the
VLPs.

Discussion
Three major points emerge from our results: i) Late domain mutations of HIV Gag result in
transient delay of virion release from the plasma membrane. ii) HIV protease is activated fol-
lowing full assembly of virions on the plasma membrane and delays in virion release result in
loss of Pol associated enzymes to the cell cytosol and budding of non-infectious virions. iii)
Size of cargo attached to the C-terminus of Gag modulates the speed and requirements for
early ESCRT factors during HIV budding. While small cargo sizes rely mostly on Tsg101,
larger cargo sizes are similarly dependent on both Tsg101 and ALIX for efficient VLP budding.

We show that alteration of Gag p6 late domains do not inhibit the release of HIV VLPs but
rather result in delayed release. We characterized this effect for both VLPs that package HIV
Gag only and for VLPs packaging both Gag and Gag-Pol (Gag.Pol). For the Gag.Pol VLPs, the
delay ranges from ~70 minutes for the ΔYP mutants that lose proper interaction with ALIX to
more than 10 hours for the ΔPTAP mutants which completely lose Tsg101 recruitment. Since
the assembly of VLPs takes approximately 45 minutes, a ~10 fold delay in release of the

Fig 5. Kinetics of Gag.Pol processing and VLP release in U2OS cells. (A) The expression of Gag and Gag-Pol proteins are shown in
cytosol along with their detection in released VLPs. 300 ng of each Gag.Pol construct were used for transfection. The top panels show
Gag.Pol VLP production under WT as well as shown p6 mutations. The bottom panels show similar experiments using Gag.Pol
PRΔD25N. The densitometry values plotted correspond to the band density on the immunoblotting. Gag and Gag-Pol were
immunoprobed using p24 antibody. For accuracy, when Gag was partially processed, the quantified Gag p55 precursor is referred to the
addition of p55, p48 and p41 bands. The color scheme: Gag p24 indicates full processing of the Gag and is shown in Red, the p41/48/55 is
shown in dark blue to indicate cytosolic fraction and light blue to indicate the VLP fraction. (B) HIV VLP release is more sensitive to PTAP
than to YP inactivation. 250 ng of each construct were used for transfection, and samples were collected at 4 hours intervals starting 8
hours post transfection. All experiments were performed 2 times with similar results.

doi:10.1371/journal.ppat.1005657.g005
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budding VLP will result in a substantial accumulation of ΔPTAP VLPs at the cell surface when
analyzed 12 to 24 hours post-transfection. ΔYP mutation has a much shorter delay of ~70 min-
utes and therefore would result in lesser fold increase in budding VLPs at the cell surface.
Importantly, these accumulation levels of VLPs are consistent with the observed phenotypes of
HIV late domain mutagenesis [5,27,15]. Interestingly, we observed that a pool of budding Gag.

Fig 6. Gag cargo size dictates the requirement for p6. (A) The size of cargo fused to Gag was artificially modulated using tandemGFP proteins.
Kinetics of VLP release in 293T cells of Gag with various number of tandemGFPs (n = 0, 1, 2 and 3) is shown. 200 ng of each Gag construct were used for
transfection, and samples were collected at 8 hours intervals for 24 hours post-transfection. Release of Gag shows increased sensitivity to YP and PTAP
mutations in presence of larger cargo sizes. (B) Densitometry values of the panels on (A) which correspond to the ratio of p24 in VLPs/Cells. All
experiments were performed 3 times with similar results.

doi:10.1371/journal.ppat.1005657.g006
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Fig 7. Gag cargo size is dependent on p6 for VLP release. (A) Rescue of VLP release from Gag-cargo with p6 mutations through
expression of Gag p6 variants. 200 ng of each construct were used to transfect 293T cells; samples were collected 24 hours post-
transfection. (B) Expression in 293T cells of natural cargo (Pol) truncations, depicted on the schematic representation (top panel),
reproduced the samemolecular phenotype as the artificial cargo (GFP) in terms of strict requirement of p6 for efficient VLP release
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Pol and HIV VLPs undergo cellular endocytosis especially when release is slowed down due to
p6 alteration; indeed, specifically inhibiting endocytosis substantially rescued the yield of VLP
release by late domain mutants, especially for large cargo driven by Gag (Gag.Pol and HIVR8.2)
(S6 Fig).

Our results rationally explain the infectivity assays previously reported on progeny virions
lacking engagement of ESCRTs. Specifically, infectivity experiments using HIVR8.2 pseudo-
typed with VSV-G have shown that VLPs produced by HIVR8.2 ΔYP have a decreased infectiv-
ity of approximately 50% compared to wild type HIVR8.2 while HIVR8.2 ΔPTAP VLPs are non-
infectious [44]. While these results could also indicate an alternate effect on particle release, a
mismatch between released VLPs and their infectivity has been previously reported [45]. Anal-
ysis of the Gag.Pol VLP release kinetics suggests that activation of the protease is occurring
immediately after completion of VLP assembly followed by Pol-associated enzymes diffusion
out of VLPs in p6 mutants. The rates of PR activation and Pol product diffusion would result
in the loss of all Pol enzymes ~60 minutes post-assembly as the VLPs remain open. Also, our
analysis indicates that the VLP release times are distributed along a poissonian curve with an
average of 5 minutes for WT, 70 minutes for ΔYP and 10 hours for ΔPTAP. This distribution
of budding times correlates with percentage of Pol products lost in released ΔYP VLPs com-
pared to WT VLPs. The ΔPTAP mutation which has a ~10 hours delay does not show Pol
product incorporation.

HIV Gag protein alone is capable of budding from the plasma membrane. We found that
Gag still efficiently buds out under severe p6 mutations but with delay at the cell surface for
periods of ~20 minutes to ~1 hour. There is some minimal endocytosis of VLPs assembled
under mutated Gag compared to Gag.Pol and HIVR8.2 VLPs, as shown in S6 Fig. The observed
reduction of VLP release due to endocytosis is in agreement with a balance between fast bud-
ding and endocytosis of delayed VLPs. Prior to our observations it was shown that HIV Gag
with mutated or even deleted p6 releases VLPs from cells [46–49]. These observations were
interpreted as related to an ESCRT-independent release of Gag VLPs. In the context of HIV,
the mismatch between the levels of VLP release and infectivity was also investigated as an indi-
cation of ESCRT-independent budding process and/or budding through intracellular vesicles
and exocytosis [48]. Here, our data indicate that HIV virions defective in ESCRT recruitment
mainly bud out from the plasma membrane but with proportional delays according to the
severity of p6 late domain alterations. Aside from the mutations within the p6 domain, we
have conducted extensive mutations within the NC domain of Gag. We found that in the con-
text of Gag expression, VLP budding is independent of NC engagement with ALIX and/or
indirectly Tsg101.

Interestingly, using a slight over-expression of CHMP4 and VPS4, we observed the incorpo-
ration of these proteins within released VLPs even in the context of severe p6 and NC muta-
tions, and expression of VPS4DN markedly reduced the efficiency of VLP release. Engagement
of Tsg101 and ALIX during the HIV budding is generally assumed to allow the recruitment of
downstream ESCRT-III proteins which polymerize at the neck of the budding VLPs before
release [15,50–54]. Based on our finding, we hypothesize direct recruitment of ESCRT-III and
VPS4 to the neck of budding VLPs defective in early ESCRT engagement. To this end, we

(bottom panels). 250 ng of each Gag construct were used for transfection; samples were collected 24 hours post-transfection. All
experiments were performed 3 times with similar results.

doi:10.1371/journal.ppat.1005657.g007
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believe that, if this hypothesis is correct, the neck diameter formed in budding Gag VLPs is
small enough to allow effective Tsg101/ALIX-independent CHMP recruitment and VLP
release. In vitro, direct recruitment of CHMPs onto negatively curved membranes has been
recently observed [55]. We cannot however rule out the possibility that ESCRT-III and VPS4
would be recruited in a Tsg101/ALIX-independent mechanism, possibly through engagement
with AMOT and Nedd4 ubiquitin ligases [55–60]. In case of Gag.Pol and HIV VLP production,
the Tsg101/ALIX-independent effective CHMP recruitment is substantially delayed due to the
large cargo (Pol). We hypothesize that incorporation of Gag-Pol results in wider neck diame-
ters. This hypothesis can rationally explain the different VLP release delays with altered p6
accordingly. The timing of recruitment of ALIX into HIV and EIAV has been investigated
using Gag VLPs [61,62], based on our results we suggest that the recruitment may also be sensi-
tive to cargo and therefore the recruitment should be further investigated in HIV virions incor-
porating both Gag and Gag-Pol. Finally, it is also possible that Tsg101/ALIX-independent
CHMP recruitment to the neck of budding VLPs is naturally occurring, however, when Tsg101
and/or ALIX are involved during the CHMP recruitment, the process is faster and functions at
maximum velocity to promote fast VLP release which promotes infectivity.

In line with the above, we found that ESCRT engagement during VLP budding grows more
critical by addition of cargo to the Gag C-terminus. We have measured the kinetics of release
for Gag.Pol VLPs with inactivated protease. The Pol protein has a large protein mass (150 kDa)
and, in absence of processing, the full length Pol incorporates within the VLP. We found that
under these conditions, Gag.Pol VLP production is similarly sensitive to Tsg101 as well as
ALIX interactions as shown with ΔPTAP and ΔYP p6 mutants. These results are surprising
since typically Tsg101 is the primary interaction during HIV VLP budding, however they agree
with the increased importance of ALIX when the budding neck diameter is large like during
cytokinesis [17,19,63]. Also, while Gag VLPs can still release efficiently even in the absence of
functional late domains, addition of artificial cargos (GFPs in tandem) at the Gag C-terminus
inhibits the VLP release in a cargo length-dependent manner. While these Gag-GFP experi-
ments demonstrate the concept of cargo dependent ESCRT requirements, it does not directly
reflect on effect of Pol in HIV-1 budding since the Gag-Pol comprises only 5–10% of Gags in
the forming HIV virion. The rescue experiments with co-expression of Gag and GagΔp6-
3xGFP are the closest comparison to the role of Pol in HIV budding. These experiments dem-
onstrate efficient release of GagΔp6-3xGFP VLPs only when co-expressed with Gag which has
a functional late domain. All these observations together support the mechanistic role of
ESCRTs in accelerating the closure of budding VLPs with large necks, and that cargo size is the
primary regulatory factor that dictates the early ESCRT requirement level.

Compared to the minimal Gag.Pol system, when HIVR8.2 PRΔD25N VLP release is tested
(Fig 5), full length Pol (large cargo) release is more sensitive to PTAP integrity than to YP. We
hypothesize that there is an HIV factor that is absent in the Gag.Pol and is promoting the effi-
cient VLP release in absence of functional PTAP/YP sites. This factor is likely acting to mimic
some of the Tsg101/ALIX function in accelerating ESCRT-III recruitment and/or promoting
Pol packaging before PR activation.

The activation of HIV protease immediately post-assembly on plasma membrane is sup-
ported by some experimental evidence suggesting that increased packaging of Gag-Pol results
in premature activation of PR [64]. Rapid maturation of HIV VLPs within 1 minute post-

Fig 8. Simulation of Gag.Pol release kinetics. (A) Simulated curves (solid) fitting the experimental data (scatter) are
shown for WT, ΔYP and ΔPTAP conditions of Gag.Pol PRwt and Gag.Pol PRΔ. Histograms show the distribution of
delay times for each condition. (B) The number of Pol proteins attached to Gag (Blue) and cleaved but confined in the
VLP (Red) are shown for three separate single VLP simulations.

doi:10.1371/journal.ppat.1005657.g008
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release has also been reported [65], although our results predict at least 30 minutes delay
between release and full maturation. Also, processing was shown to be essential for HIV VLP
release [60], however the rate of HIV assembly is not affected by PR inactivation [66].

The observed kinetics of Gag precursor release from budding virions analyzed using com-
puter simulations support activation of PR immediately post-virion assembly. Early biochemi-
cal characterization of PR cleavage sites showed that Gag and Gag-Pol SP1/NC and SP2/p6
sites are the first to get cleaved by PR [67]. Therefore, if the VLP neck closes before PR activa-
tion (as for WT p6 VLPs), soluble PR-containing fragments are trapped within the VLP and
continue processing which results in virion maturation. In the case of delayed neck closure, sol-
uble PR-containing fragments diffuse to host cytosol and the progeny virions produced lose
Pol products based on the severity of p6 alteration. In agreement with our model (Fig 9),
ΔPTAP and to lesser extent ΔYP VLPs are enriched mainly of Gag p48 and p41 forms, accord-
ingly, clearly suggesting a loss of PR activity in these released VLPs.

The first report identifying the importance of the PTAP sequence within Gag p6 used RT
activity within the released HIV virions as a measure of viral fitness [6]. In these pioneering
experiments, HIV ΔPTAP virions lost RT activity, however, inactivation of PR restored RT
activity within released HIV ΔPTAP virions. Our data explain this observation as shown in Fig
4 and demonstrates that this phenotype is due to delayed release of ΔPTAP PRΔ VLPs with
intact Pol domains.

All together, our observations suggest that the engagement of early ESCRTs during HIV
budding is obligatory for speeding up the closure of budding virions and release of fully formed
particles before the HIV protease activation occurs, which is fundamental for safeguarding the

Fig 9. Products of Gag.Pol processing by PR during VLP production. Among cleavage sites in Gag and Gag-Pol, the SP1/NC and SP2/p6 sites are
the most rapidly cleaved by PR [67]. If the neck closes under normal conditions (WT p6), soluble PR-containing fragments are trapped in VLPs and
continue processing the remaining cleavage sites on Gag and Gag-Pol, which leads to release of mature virions. In the case of delayed neck closure,
soluble PR-containing fragments diffuse to host cytosol and progeny virions are devoid of Pol products (ΔPTAP and to lesser extent ΔYP VLPs). PM,
plasmamembrane.

doi:10.1371/journal.ppat.1005657.g009
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infectivity of progeny HIV virions. Other viruses and cellular processes whose cargo are not as
time sensitive may forego some interactions with ESCRTs therefore possibly explaining the
diverse requirements of ESCRTs in these processes [68,69].

Our observations show that ‘budding delay’ is a potent mechanism for inhibition of infec-
tious retroviral release and suggest that this mechanism can be used for developing antiviral
treatments that would not block ESCRT-dependent cellular processes but slow them to the
point of infectious retroviral release inhibition. We also speculate that such mechanism maybe
exploited by host cells to inhibit spread of infection.

Materials and Methods

Expression vectors, cells, and antibodies
HIV-1ΔR8.2 (HIV-1NL4-3 R9ΔApa [70]) and HIV R9 were used. Its late domain mutants,
ΔPTAP and ΔYP were previously described [43]. Humanized Gag was produced as previously
described [71]. ALIX (NM_013374), Tsg101 (NM_006292), CHMP4b (NM_176812) and
VPS4A (NM_013245) were kindly provided by Dr. Wesley Sundquist (university of Utah) and
were all HA N-terminally tagged. GFP ORF was cloned from peGFP-N1 (Clontech). Point
mutations were introduced using the Quick Change site directed mutagenesis kit (Stratagene).

All cell lines used were grown in complete DMEMmedium under standard conditions,
excepted for TIRF experiments where cells were incubated in CO2-independent medium
(LifeTechnologies).

Anti-ALIX [44], anti-Tsg101 (C-2, Santa Cruz Biotech.), anti-HA (HA.11 clone 16B12,
Covance), anti-p24 (183-H12-5C, NIH AIDS Reagent Program), anti-p17 (17–1, Santa Cruz
Biotech.), anti-RT (MAb21, NIH AIDS Reagent Program), anti-PR (1696, Santa Cruz Bio-
tech.), and infrared dye coupled secondary antibodies (LI-COR) were used for immunoprob-
ing. Scanning was performed with the Odyssey infrared imaging system (LI-COR) in
accordance with the manufacturer’s instructions at 700 or 800 nm, accordingly.

VLP release analysis
All cell lines used were transfected using lipofectamine 2000 (LifeTechnologies), except for 293T
cells using standard CaPO4 precipitation technique. Both cells and media were collected for anal-
ysis. Cells were lysed in RIPA buffer (140 mMNaCl, 8 mMNa2HPO4, 2 mMNaH2PO4, 1%
NP-40, 0.5% sodium deoxycholate, 0.05% SDS), and after removal of residual cell debris by cen-
trifugation, VLPs were pelleted from cell supernatants by centrifugation for 2 hours through 10%
(w/v) sucrose cushion at 15,000 x g. Final VLP samples were re-suspended in PBS. VLP release
yields/ratio were calculated as VLPs-associated Gag forms per cell-associated Gag forms based
on either CA or MA probing, after densitometry analysis of the immunoblotting data using the
Image Studio Lite software (LI-COR). HIV Gag kinetics were fit using a boltzman equation to
calculate the delay times for various mutants as described in Supporting Information.

TIR-FM assessments
Live images were acquired using iMIC Digital Microscope made by TILL photonics controlled
by TILL’s Live Acquisition imaging software (see also Supporting Information). U2OS cells
were transfected with Gag-mCherry variants and observed by TIRF imaging. At 12 hours post-
transfection, cells were gently detached using TryplE (LifeTechnologies). Detachment was
achieved by removing the medium and washing once with PBS; a thin layer of TryplE was
added to cover cells to allow cell to detach. Images of cells before detachment and afterwards
with released VLPs left on the glass support are shown in Fig 3 (right panels).
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MonteCarlo simulations
Simulations were setup following the Gillipsie algorithm [43]. Processing, diffusion of Pol and
budding were simulated for a single VLP and repeated 500 times to generate a population. The
expected p24 and p55 proteins were calculated based on the simulated VLP release. Three
essential reactions were considered within each VLP as follows:

d½Gag:Pol�
dt

¼ �kp½Gag:Pol� � ½Gag:Pol�

d½Pol�
dt

¼ þkp½Gag:Pol� � ½Gag:Pol� � kd½Pol�

d½VLP�
dt

¼ �kr½VLP� � k�r ½VLP��

The concentration shown in brackets is the number of molecules within one VLP. At time
t = 0 therefore ½Gag:Pol�ðt ¼ 0Þ ¼ 120 ðmolecules

VLP
Þ and ½Pol�ðt ¼ 0Þ ¼ 0. In these equations kp is

the processing rate, kd is the diffusion rate of Pol from the formed VLP with open neck, kr is
the rate of VLP release before processing, and k�r is the rate of release after processing. The con-
centrations of p24 and p55 were calculated based on the following equations:

if ð½Gag:Pol� þ ½Pol� < 2Þ then ½p24� ¼ 0 and ½p55� ¼ ½Gag� þ ½Gag:pol�

if ð½Gag:Pol� þ ½Pol� > 2Þ then ½p24� ¼ ½Gag� þ ½Gag:Pol� and ½p55� ¼ 0

Simulated curves of p24 and p55 (for this analysis, we did not distinguish between p41, p48 and
p55, summing all products and representing them as p55) are used in Fig 8A to fit the experimental
p24 and p55 concentrations measured in Gag.Pol kinetics experiments. In these simulations, kp and
kd rates are kept constant while each specific p6 mutation is simulated with a corresponding kr. The
simulated internal Pol (Red) and Gag.Pol (Blue) concentrations in three VLPs are shown in Fig 8B.

Supporting Information
S1 Fig. Characterization of the yield of VLP release by modulating Gag and its expression
in 293T cells. (A) Effect of the G2A mutation. 200 ng of each Gag construct were used for
transfection, and samples were collected 24 hours post-transfection. (B) Time course (0, 6, 12,
and 24 hours) of VLPs release. 200 ng of each Gag construct were used for transfection. (C)
Gag dose-dependent of VLPs release yields. 50, 100, and 200 ng of each Gag construct were
used for transfection, and samples were collected 24 hours post-transfection. All panels corre-
spond to Gag immunoprobing using p24 antibody. Experiments were performed 1 time for
(A) and 3 times for (B) and (C) with very similar results.
(TIF)

S2 Fig. Characterization of the yield of VLP release by Pulse/chase S35 labeling. (A) 200
and 250 ng of each Gag and HIVR8.2 constructs, respectively, were used for transfection. 11
hours post-transfection, cells were pulsed 1 hour then chased for 12 hours. Samples were col-
lected and analyzed accordingly (see S1 Text). (B) Time course of VLPs release by Gag-nxGFP
cargo. 200 ng of each Gag construct were used for transfection. Each 8 hours during the kinetic,
cells were pulsed 30 min then chased the remaining time before samples collection. Both exper-
iments in (A) and (B) were performed twice with the same outcome.
(TIF)
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S3 Fig. p6-independent VLP release by Gag is not cell type specific. Cells and VLPs were col-
lected 24 hours post-transfection. All panels correspond to p24 immunoprobing. This experi-
ment was performed 3 times with similar results.
(TIF)

S4 Fig. Design and validation of the Gag.Pol vector developed for minimally mimicking
HIV budding. (A) Comparison of the Gag-Pol vector previously used in the literature (Gan
and Gould, 2012) and our Gag.Pol construct. (see S1 Text). 250 ng of each construct were used
for transfection, and both Cells and VLPs were analyzed 24 hours post-transfection. (B) p6 re-
introduction in the original GagPol vector (in frame) rescued VLP release, with reduced negative
regulation of the integrase domain during the VLPs budding process. The original Gag-Pol vec-
tor consists of GagΔp6 fused in frame to Pol starting the TF domain till the IN (integrase) end.
We fused full length Gag (p6 included) to Pol as in the original Gag-Pol vector and analyzed the
VLPs release profile. 250 ng of each construct were used for transfection, and both Cells and
VLPs were analyzed 24 hours post-transfection. (C) Full length Pol regulates proper PR activa-
tion during budding and release independently of intact Gag p6. Variants of our Gag.Pol p6
mutants were generated by modulating Pol length via Pol truncation as indicated. 250 ng of each
construct were used for transfection, and both Cells and VLPs were analyzed 24 hours post-
transfection. The vectors were expressed in 293T cells, and all panels correspond to p24 immuno-
probing. All these experiments were performed at least 3 times with similar results.
(TIF)

S5 Fig. Evaluation of RT yields in the VLPs released by Gag.Pol. (A) Independent triplicate
assessments of VLPs release by the Gag.Pol variants in 293T cells as indicated, with either
active PR (PRwt) or inactive PR (PRΔD25N). (B) Comparative evaluation of p24-related Gag
products and RT in VLPs released by Gag.Pol PRwt versus PRΔ in 293T cells. Final VLP sam-
ples were re-suspended in the same volume, and the indicated volume folds were analyzed by
immunoblotting as shown. (C) Densitometry values from Panels (A) and (B) were processed
accordingly and plotted as the corresponding relative amounts compared to the standards that
equalize to 1 for p24 in Gag.Pol PRwt and 100% for RT in Gag.Pol PRΔD25N. 250 ng of each
construct were used for transfection, and VLPs were analyzed 24 hours post-transfection.
These experiments were performed 3 times as shown for (A) with similar results.
(TIF)

S6 Fig. Dynasore effect on VLP release. Dynasore, a noncompetitive inhibitor of the GTPase
activity of Dynamin which blocks cellular dynamin-dependent endocytosis [72, 73], was used to
assess VLP internalization during VLP release. Cells were treated with 80 μMDynasore 4 hours
post-transfection as previously described [73], and samples were collected 20 hours post-treat-
ment. The vectors were expressed in 293T cells; all panels correspond to p24 immunoprobing.
(A)Gag (200 ng of each construct were used for transfection). (B)Gag.Pol (250 ng of each con-
struct were used for transfection). These experiments were performed 3 times with similar results.
(TIF)

S1 Text. Supporting materials and methods.
(DOCX)
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