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Abstract
Membrane proteins play crucial roles in cellular processes and are often important pharmacological drug
targets. The hydrophobic properties of these proteins make full structural and functional characterization
challenging because of the need to use detergents or other solubilizing agents when extracting them
from their native lipid membranes. To aid membrane protein research, new methodologies are required
to allow these proteins to be expressed and purified cheaply, easily, in high yield and to provide water
soluble proteins for subsequent study. This mini review focuses on the relatively new area of water soluble
membrane proteins and in particular two innovative approaches: the redesign of membrane proteins to yield
water soluble variants and how adding solubilizing fusion proteins can help to overcome these challenges.
This review also looks at naturally occurring membrane proteins, which are able to exist as stable, functional,
water soluble assemblies with no alteration to their native sequence.

Introduction
Integral membrane proteins (IMPs) exist within lipid
membranes. Current estimates suggest that between 15 and
30 % of open reading frames in sequenced genomes encode
membrane proteins [1–3]. This protein grouping performs a
range of key functions vital to the cell, such as the controlled
movement of molecules, nutrients and ions across lipid
bilayers, as well as participating in cell signalling and motility.
Therefore, it is unsurprising that approximately 60 % of
drugs used today target IMPs to achieve their therapeutic
action [4], and this reliance on membrane proteins as drug
targets is unlikely to diminish. Understanding IMPs through
structural, biochemical and biophysical interrogation is a
prerequisite for new therapeutic developments in order to
build up a detailed and accurate picture of how particular
membrane proteins function at the molecular level [3,5].

Their ability to insert and remain stable in lipid bilayers
renders IMPs, by their very nature, intrinsically hydrophobic
and as such they have low solubility in aqueous environments.
The poor water solubility of these proteins creates a challenge
to successful in vitro membrane protein characterization. To
circumvent this, detergents are often used to solubilize the
membrane proteins [6–8]. The detergent molecules form a
micelle structure, which encircles the membrane protein and
provide an environment with similarities to the natural lipid
surroundings. However, detergents are not without their
own problems. Finding detergents and buffer conditions
which provide optimal protein stability without loss of
function is often a time consuming process of trial and error
[7,9,10], although some high-throughput methods have been
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developed to aid in this search [9,10]. It is also necessary
to maintain the concentration of the detergent above the
critical micelle concentration (CMC) at all times to prevent
the dissolution of the micelle–protein complex [7,8]. There
are a number of alternative systems emerging for studying
IMPs in a water soluble form, including the use of amphipols
[11], bicelles [12] and nanodiscs [13], although these often
require the membrane protein to be isolated in detergents
prior to incorporation into the new system.

Water soluble membrane proteins by
computational redesign
A radical strategy to overcome some of the difficulties in
working with IMPs is to redesign the protein to become water
soluble by substituting the exterior lipid facing hydrophobic
residues of the protein for hydrophilic ones [14]. As is
the case for many soluble proteins, the residues buried
within the protein core are mainly responsible for generating
the correct protein structure and functional activity. By
leaving these interior residues of the protein unchanged, the
overall structure and function of the protein is retained,
but now without the need for external solubilizing agents
(e.g. detergents). One of the challenges with this approach is
deciding which residues to modify. The first example of the
computationally redesigned multi-transmembrane spanning
protein was the potassium channel KcsA. In this case, a
crystal structure of the tetrameric assembly was already
available [15], allowing the lipid exposed residues to be
readily identified. The solvation propensities and molecular
potentials of residue substitutions at these positions were
then modelled computationally using a probabilistic design
method to arrive at 29 transmembrane residue substitutions
per subunit of the tetrameric assembly (27 % of the residues
in the transmembrane regions) [16,17]. When this KcsA
variant was expressed in Escherichia coli, the protein was
produced and isolated in high yields and maintained solubility
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Figure 1 Retention of structure in water soluble KcsA

Structural comparison of the transmembrane region of the native (PDB: 1K4C) [15] and water soluble variant (PDB: 2K1E)

[18] of the bacterial potassium ion channel KcsA. Native KcsA in yellow and water soluble KcsA in blue. Orange spheres

indicate the Cα positions of the mutated residues in the water soluble variant. Shown here are top-down four subunits (a)

and side-on two subunit views (b). Figure reproduced from [14]: Perez-Aguilar, J. and Saven, J. (2012) Computational Design

of Membrane Proteins. Structure 20, 5–14.

without the need for detergent solubilization. Size-exclusion
chromatography and analytical ultracentrifugation revealed
that the protein assembled into tetrameric oligomers similar
to that of the wild-type protein [16]. Analysis of the structure
of the soluble variant by NMR showed that it was highly
similar to that of the wild-type KcsA (Figure 1) [15,18].
This is a remarkable finding considering the high number
of mutated residues and the obvious differences between
lipid and water as solvents. This highlights that the short-
range backbone interactions and side-chain packing drive
assembly of secondary and tertiary structures in membrane
proteins [19]. Not only is the structure of the water soluble
KcsA variant highly similar to the wild-type protein, but it
also displays NMR signal intensities which are 5-fold more
sensitive for potassium than sodium ions in the region of the
ion selectivity filter. This suggests that the soluble variant
may retain functional relevance [18] as previous biochemical
and structural studies of KcsA have recorded selectivity
for potassium over sodium of 5– to 7–fold [20,21]. Similar
methodologies have been successfully applied to a range of
different IMPs including phospholamban, [22] the nicotinic
acetylcholine receptor [23] and the human μ-opioid receptor
[24,25]. In all these cases, the water soluble variants are
able to bind their target receptor molecules, making them
potentially useful for initial drug screening studies which are
often particularly reliant on the availability of large quantities
of purified, stable, membrane proteins.

Water soluble membrane proteins through
solubility enhancing fusion proteins
A limitation of redesigned, water soluble IMP’s is that a large
number of mutations are required. Even though the generated
protein may have similar overall structural and biophysical

characteristics, it is likely to feature many subtle changes
which could produce alterations to the proteins function. An
alternative strategy would be to keep the membrane protein
sequence unchanged but to supplement the construct with
fusion tags which could enhance the solubility of the IMP
while maintaining the correct fold and functional form of
the protein. This approach was recently realized by Mizrachi
et al. [26,27]. In their method, which they term SIMPLEx
(solubilization of IMPs with high levels of expression), they
utilize an amphipathic protein as a fusion partner to bring
about a range of water soluble membrane proteins [27].

As many of the newly developed solubilization agents for
IMPs are amphipathic in nature [28], the authors selected the
approximately 200-residue C-terminal lipid binding domain
of apolipoprotein from E. coli as the solubilizing fusion
partner. As well as being amphipathic, this protein has a
high degree of structural flexibility allowing it to easily
adapt to a variety of different geometries when required
[29]. This protein domain, abbreviated to ApoAI*, is already
used to bind phospholipid molecules in nanodiscs, into
which detergent solubilized IMPs can be partitioned, making
its selection as a fusion partner a natural choice [13]. A
construct encoding ApoAI* as a C-terminal fusion partner
to the ethidium multidrug resistance protein E (EmrE)
was created. EmrE is a relatively small α-helical IMP. In
order to prevent insertion of the EmrE–ApoAI* fusion
into the inner cell membrane an N-terminal decoy protein,
outer surface protein A (OspA) (or MBP, maltose binding
protein), was added as well. This protein chimaera was
expressed in E. coli and subsequent Western blot analysis
showed partitioning of the protein to the water soluble cell
fraction. This is a remarkable result considering that when
EmrE was produced alone it is present only within the
cell membrane and insoluble fractions [27]. The chimaera
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Figure 2 Arrangement of an apolipoprotein domain fusion tag surrounding the integral membrane protein EmrE

Structural reconstruction based on SAXS analysis of �spMBP–EmrE–ApoAI* fusion protein [27]. (a) �spMBP has been removed

from the reconstruction to allow visualization of ApoAI* (orange/yellow) shielding EmrE. (b–c) Side views of the chimaera

with �spMBP present. Figure reproduced from [27]: Mizrachi, D., Chen, Y., Liu, J., Peng, H., Ke, A., Pollack, L., Turner, R.,

Auchus, R. and DeLisa, M. (2015) Making water-soluble integral membrane proteins in vivo using an amphipathic protein

fusion strategy. Nat. Commun. 6.

could be successfully purified in high yield of between 10
and 15 mg/l of cell culture by conventional nickel affinity
purification without the aid of any detergents. However,
was the ApoAI* binding high numbers of lipid molecules
as it does in nanodiscs? Lipid analysis of the purified
chimaera showed only 5–10 lipid molecules per monomer
of ApoAI*, rather than the expected 70, showing that the
ApoAI* fusion does not solubilize the IMP by simply binding
high amounts of lipid but rather by interacting directly
with the IMP itself [25]. Crucially, the purified chimaera
was analysed by size-exclusion chromatography and showed
retention times equivalent to the presence of dimeric and
tetrameric species, confirming that the presence of the fusion
tag had not interfered with the normal assembly of EmrE
into dimers and tetramers. The EmrE chimaera was also
able to bind substrates with close to native affinity. SAXS
analysis of a �spMBP–EmrE–ApoAI* fusion demonstrates
that the ApoAI* domains assemble around the membrane
protein core (Figure 2) to create a solubilizing protein
shell (�spMBP refers to maltose-binding protein lacking the
signal peptide). This ground breaking approach for in vivo
water solubilized IMP production has now been applied
to several other membrane proteins with differing size and
structures and shown to give similar results [27]. These
include among others outer membrane protein X (OmpX)
and disulfide bond formation protein B (DsbB) from E.
coli, cytochrome b5, Claudin-1 and 3 from Homo sapiens
and voltage dependent anion selective channel 1 (VDAC1)
from Rattus norvegicus [27]. This technique has the potential
to revolutionize membrane protein research by increasing
the ease of production and thereby significantly improving
the yield of functional protein for structural and biophysical
study.

Naturally occurring water soluble
membrane proteins
This review has so far focused on IMPs which normally reside
within lipid membranes and which can, by elaborate protein
engineering methods, be made to exist in a water soluble
form without the addition of detergents or other solubilizing
agents. However, this does not represent the whole picture.
There are naturally occurring membrane proteins which
reportedly exist in a water soluble state with little or no
modification of their sequence. Many of these are found in
the magnetosomes of magnetotactic bacteria (MTB). MTB
are naturally occurring bacteria able to synthesize precise
crystals of magnetic nanoparticles inside their cells [30,31].
These nanocrystals usually take the form of the iron oxide
magnetite, and are made within an internal lipid vesicle
termed the magnetosome [31]. This lipid vesicle can be
considered as an organelle and is rich in various proteins
which are believed to control all aspects of the nucleation,
growth and maturation of the crystalline magnetite core
[32–36].

The first of these proteins to be isolated and studied is
the magnetosome membrane specific protein 6 (Mms6) [37].
This is a small, 6 kDa protein with a hydrophobic N-terminal
domain and hydrophilic, acid-rich, C-terminal domain.
Mms6 normally resides in the magnetosome membrane but
has been expressed successfully in E. coli where it is found
to form insoluble inclusion bodies [37]. These inclusion
bodies can be dissolved in high concentrations of guanidine
or urea and refolded using various refolding strategies to
reduce the concentration of the denaturant. Remarkably,
after removal of the denaturant, the Mms6 protein is
folded, water soluble and forms micellar structures with the
N-terminal regions buried and the C-terminal regions surface
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Figure 3 Water soluble magnetosome membrane protein MmsF

MmsF soluble proteinosome structures [44]. (a) Negatively stained TEM images of MmsF at different magnifications. Scale bar

of inset is 10 nm. (b) CD analysis of MmsF showing α-helical secondary structure. (c) Structure prediction of MmsF from the

Quark server [49] showing three helices coloured blue to orange from N- to C-termini. Figure reproduced from [44]: Rawlings,

A.E., Bramble, J.P., Walker, R., Bain, J., Galloway, J.M. and Staniland, S.S. (2014) Self-assembled MmsF proteinosomes control

magnetite nanoparticle formation in vitro. Proc. Natl. Acad. Sci. U.S.A. 111, 19094–19099.

accessible [37]. These water soluble Mms6 micelles are
able to bind to iron ions with high affinity [37,38] via
the negatively-charged carboxylic acid groups present in
its hydrophilic region, and in so doing transform their
structure into a planar disc-like assembly [39]. This iron
binding ability is thought to be important for magnetite
formation within the magnetosome. Purified Mms6 has also
been shown to incorporate into liposomes where the N-
terminal hydrophobic region becomes resistant to proteolytic

cleavage by proteinase K but the C-terminal region retains
solvent (and therefore protease) accessibility [38]. Due to its
small size, Mms6 can also be produced as a water soluble
fusion protein to the large solubility enhancing tag MBP,
and then released via the action of the sequence selective
tobacco etch virus (TEV) protease [40]. In that case, there
is no need for refolding and the protein shows similar
properties to refolded Mms6. Perhaps the most intriguing
aspect of Mms6 is the ability of the purified micelles to
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influence the characteristics of magnetite nanoparticles when
included as an additive in synthetic magnetite precipitation
reactions. The particles formed in the presence of Mms6
display a narrower range of sizes, mineral types and often have
the cubo-octahedral appearance of biogenic magnetosome
derived nanoparticles [37,41–43] compared with particles
produced without protein. This activity indicates that the
water soluble micellar form of Mms6, retains a function which
is similar to its proposed role in vivo.

Four other proteins, magnetosome membrane specific
protein F (MmsF), magnetosome associated membrane
protein F (MamF) and magnetosome membrane unknown
protein F (MmxF), from Magnetospirillum magneticum
AMB-1 [44] and MamC from Magnetococcus marinus MC-1
[45,46], have also been found to be water soluble.
Transmembrane prediction algorithms suggest that the three
highly similar proteins from M. magneticum AMB-1 possess
three transmembrane helices [44,47] and in vivo GFP
localization studies of MmsF confirm that this protein is
found at the magnetosome membrane [48]. However, when
overexpressed in E. coli, MmsF, MamF and MmxF were
found only in the water soluble cell fraction and not in the
cell membrane or in inclusion bodies as would be expected
for a typical membrane protein [44]. Following affinity
purification the proteins were analysed by dynamic light
scattering, TEM and CD, and were found to be assembled
into large spherical structures resembling vesicles and to
have a significant α-helical content consistent with them
being α-helical polytopic membrane proteins [44] (Figure 3).
The vesicle structures or proteinosomes, were approximately
40 nm in diameter and were sensitive to proteolysis with
proteinase K. The authors found that when added to a
synthetic magnetite precipitation reaction, these proteins
could influence the balance of the various iron oxides which
formed [44].

MamC has two predicted membrane spanning helices and
is a protein unique to the magnetosome membrane [46,47].
Overexpression in E. coli gives rise to inclusion bodies of
MamC which can be refolded after dissolution in urea to
generate water soluble protein micelles [45]. The soluble form
of this protein is able bind iron ions [46] and also to influence
the size of magnetite nanoparticles formed during synthetic
reactions [45].

Several of the membrane proteins from the magnetosomes
of MTB appear able to exist both within the magnetosome
membrane and as water soluble micelles and assemblies.
The common hallmark between all of these proteins
appears to be their ability to achieve aqueous solubility
through aggregation and shielding of their hydrophobic
transmembrane spanning regions. This is coupled with highly
charged solvent exposed regions containing large numbers of
acidic amino acids. Why do these proteins have this dual
ability? This is a question that remains to be answered.
However, to find several proteins with this ability which all
normally reside together in the same membrane is, I believe,
unlikely to be a serendipitous occurrence. It is possible
these proteins form water soluble assemblies before they are

recruited and inserted into the magnetosome membrane to
prevent their incorporation into the inner cell membrane.
Unlocking the specific sequence and structural motifs, as well
as discovering new proteins with similar properties will no
doubt guide the development of new approaches to the design
of water soluble membrane proteins.

Conclusions
Our general understanding of proteins tells us that they
will normally be a member of one or two different,
and mutually incompatible classifications: either soluble or
membrane associated. This mini review has shown that
some proteins can actually be both whereas others can be
converted from one to the other through rational design.
Membrane proteins which are water soluble bring many of
the advantages of typical soluble proteins such as high yield
from overexpression, ease of purification and stability during
biophysical investigations [16,18,23,27,44,45]. Unfortunately
these approaches do come with their own limitations. For
instance, using the highly flexible apolipoprotein domains as
solubilizing fusion proteins may hamper efforts to crystallize
IMPs [27], and making large numbers of mutations in the
sequences of membrane proteins to render them water soluble
could cause unanticipated functional changes, altering the
very function the engineered protein was designed to test.
However, these difficulties are not insurmountable, and
with each new membrane protein that is investigated in a
water soluble form comes new knowledge of fundamental
membrane protein biology to lead the development of future
advances in this vital research area.
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