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Abstract

The use of exogenous proteins as intracellular probes and chemotherapeutic agents is in its 

infancy. A major hurdle has been the delivery of native proteins to an intracellular site of action. 

Herein, we report on a compact delivery vehicle that employs the intrinsic affinity of boronic acids 

for the carbohydrates that coat the surface of mammalian cells. In the vehicle, benzoxaborole is 

linked to protein amino groups via a “trimethyl lock”. Immolation of this linker is triggered by 

cellular esterases, releasing native protein. Efficacy is demonstrated by enhanced delivery of green 

fluorescent protein and a cytotoxic ribonuclease into mammalian cells. This versatile strategy 

provides new opportunities in chemical biology and pharmacology.

Graphical abstract

The delivery of proteins and other macromolecules to an intracellular site is made difficult 

by cellular membranes.
1
 Extensive efforts have led to the development of effective delivery 

systems that invoke cell-penetrating peptides,
2–5

 antibodies,
6
 ligands for natural receptors,

7 

dendrimers,
8
 functionalized polymers,

9,10 liposomes,
11

 or nanoparticles.
12,13 Extant 
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strategies can, however, lead to adducts that are inapplicable in vivo, unstable in a 

physiological context, recalcitrant to biodegradation, or immunogenic.
14

Boronic acids are physiologically benign Lewis acids that react spontaneously and reversibly 

with 1,2- and 1,3-diols to form five- and six-membered cyclic boronic esters, 

respectively.
15,16 The dynamic covalent bonding of boronic acids/esters can facilitate the 

delivery of cargo into cells, which are coated with a diol-rich glycocalyx. To exploit that 

attribute, polymers, nanoparticles, and noncovalent assemblies have been decorated with 

phenylboronic acid and other arylboronic acids.
17,18

Recently, we showed that boronic acids can be advantageous when conjugated directly to a 

protein.
19

 The ensuing formation of transient boronate esters with the glycocalyx enhances 

cellular delivery. To date, this approach has relied on the irreversible modification of the 

target protein, which can compromise activity
20,19,10,21 or lead to immunogenicity.

22,23 An 

ideal delivery system based on boronic acids (or any moiety) is “traceless” in its delivery of 

cargo.

We sought to use a boronic acid and an immolative linker to promote the delivery of native 

proteins into a cell. As a boronic acid, we chose 2-hydroxymethylphenylboronic acid 

(benzoxaborole), which has higher affinity than does phenylboronic acid for the 

glycopyranosides that are abundant in the glycocalyx.
24,19,18 As an immolative linker, we 

chose the o-hydroxydihydrocinnamic acid derivative known as the trimethyl lock (TML). 

After being triggered, the TML exhibits extremely high lactonization rates to release a cargo 

of interest (Scheme 1).
25–29

 The TML has been used for a wide variety of applications in 

chemistry and pharmacology,
30

 but not as an immolative linker on a protein. We chose ester 

hydrolysis as the means to trigger lactonization of the TML, as esterases are abundant inside, 

but not outside, of human cells
31–33

 and underlie the action of numerous prodrugs.
34

 We 

equipped our TML scaffold with an N-hydroxysuccinimide ester for chemoselective 

conjugation to amino groups,
20

 such as those at the N terminus and on the side chain of 

lysine residues, which have a ~6% abundance in proteins.
35

 Thus, our delivery vehicle (B-

TML–NHS ester) has three modules: benzoxaborole, an esterase-activated TML linker, and 

an NHS ester (Figure 1A).

We synthesized B-TML–NHS ester convergently in 10 steps by extending a known 

procedure.
36

 Then, we characterized its ability to enhance the cellular internalization of a 

green fluorescent protein (GFP) (Scheme 2), which has distinctive fluorescence and an 

inability to enter mammalian cells.
37

 Overnight incubation at ambient temperature with 100-

fold excess of B-TML–NHS ester in 3:1 PBS/acetonitrile yielded 3 ± 1 labels per protein 

(Figures 1B and S1). The number of labels in the B-TML–GFP conjugate did not decrease 

after a month of storage in PBS (Figure S2), consistent with the stability observed for other 

TML conjugates.
38–40

 Labeling was, however, “bioreversible”. Incubation with a lysate from 

Chinese hamster ovary (CHO) K1 cells removed all of the labels from B-TML–GFP (Figure 

1B).

Next, we compared the uptake of B-TML–GFP and unlabeled GFP by CHO K1 cells. After 

a 4-h incubation, we observed a dramatic increase in the cellular uptake of B-TML–GFP 
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(Figure 1C). The fluorescence in microscopy images was largely punctate, suggesting that 

B-TML–GFP was taken up via an endosomal pathway (Figure 1D). Co-localization of this 

bright punctate staining with a stain for transferrin was consistent with this conclusion 

(Figure S3). After a 24-h incubation, some cytosolic staining was observed, suggestive of 

endosomal escape (Figure S4).

To confirm that the boronic acid moiety was responsible for the difference in cellular entry, 

we performed two control experiments. First, we modified GFP with a vehicle (Ac-TML–

NHS ester) that lacks the benzoxaborole functionality (Figure 1A), yielding a level of 

labeling similar to that from B-TML–NHS ester (Figure S1). When incubated with cells for 

4 h, Ac-TML–GFP was taken up comparably to unlabeled GFP rather than to B-TML–GFP 

(Figures 1C and 1D). These data indicate that the enhanced delivery upon treatment with B-

TML–NHS ester is not due to the mere modification of lysine residues or to interactions 

with the TML portion of B-TML. Next, we repeated the cellular uptake experiments with B-

TML–GFP in the presence of fructose, which has a Ka of 336 M−1 for benzoxaborole.
19

 We 

observed a significant decrease in GFP uptake in the presence of fructose, apparent with 

both confocal microscopy and flow cytometry (Figures 2A and 2B). Again, these data indict 

the boronic acid portion of B-TML–GFP as being responsible for cellular uptake.

Finally, we sought to test the efficacy of B-TML as a delivery vehicle to the cytosol. To do 

so, we employed an enzymic cytotoxin—the G88R variant of ribonuclease A, which must 

reach cytosolic RNA to manifest its toxic activity.
41,42 After labeling the ribonuclease by the 

same procedure used to label GFP, we observed an average of 1.6 ± 0.7 labels per molecule 

of protein (Figure S5). This lower labeling is consistent with GFP (19 lysine residues) 

having more amino groups than does the ribonuclease (12 lysine residues). Again, we found 

that the labeling was bioreversible, as incubation with a CHO K1 cell lysate removed all of 

the labels (Figure S6). Finally, we assayed the ability of B-TML–ribonuclease and unlabeled 

ribonuclease to inhibit the proliferation of K-562 cells, which are derived from a human 

myelogenous leukemia line. We found that the pendant boronic acids resulted in a decrease 

in the IC50 value (Figure 3), indicative of more cytotoxin reaching the cytosol.

We conclude that covalent modification of proteins with B-TML–NHS ester can increase 

their ability to enter mammalian cells. Importantly, this modification is traceless, as cellular 

esterase activity restores the proteins to their unmodified state. This bioreversibility of our 

delivery vehicle provides new opportunities. The sulfhydryl groups of cysteine residues have 

long been used for this purpose because their mixed disulfides suffer reduction within the 

cytosol.
43

 Recently, we found that appropriately tuned diazo compounds can esterify protein 

carboxyl groups, providing a second type of bioreversible modification.
44,45 In this work, we 

report on a bioreversible modification of protein amino groups that is distinct from 

others
46–48

 in its reliance on enzymatic catalysis. With its traceless utility in promoting 

cellular uptake, B-TML–NHS ester provides new opportunities in chemical biology and 

pharmacology.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Cellular internalization of B-TML–labeled GFP. (A) Structures of B-TML–NHS ester and 

Ac-TML–NHS ester. Ellipses denote the three distinct modules within B-TML–NHS ester. 

(B) MALDI–TOF mass spectra of B-TML–GFP (green), conjugated to ~3 boronic acid 

moieties per molecule, and the same protein after exposure to CHO K1 cell lysate and 

purification (gray). Expected m/z: GFP, 29361; each B-TML moiety, 450. (C) Flow 

cytometry analysis of CHO K1 cells incubated with 10 μM unlabeled GFP, GFP labeled with 

a control vehicle (Ac-TML), or GFP labeled with the boronate vehicle (B-TML) for 4 h (p < 

0.0001). (D) Confocal microscopy of CHO K1 cells grown as in panel C. Cells were stained 

with WGA-594 (red) and Hoechst 33342 (blue). Scale bars: 10 μm.
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Figure 2. 
Effect of fructose on the cellular internalization of B-TML–labeled GFP. (A) Confocal 

microscopy of B-TML–GFP (10 μM) preincubated with PBS or 175 mM fructose for 30 

min, then used to treat CHO K1 cells for 4 h. Cells were stained with WGA-594 (red) and 

Hoechst 33342 (blue). Scale bars: 20 μm. (B) Flow cytometry analysis of CHO K1 cells 

treated as in panel A (p < 0.01).
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Figure 3. 
Effect of B-TML–labeling on the inhibition of K-562 cell proliferation by a ribonuclease. 

Unlabeled G88R ribonuclease A, IC50 = (6.4 ± 0.1) μM; B-TML–labeled G88R 

ribonuclease A, IC50 = (3.5 ± 0.8) μM. Each data point represents the mean ± SE for three 

separate experiments, each performed in duplicate.
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Scheme 1. 
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Scheme 2. 
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