Skip to main content
. 1997 Mar-Apr;102(2):171–185. doi: 10.6028/jres.102.013

Table 1.

Correlation of Kauzmann temperatures TK with Vogel-Fulcher T0 to values for various substances

Substance Tga TK Ref.b T0
(high)
T0
(low)
Ref. Tg/T0 Tg/TK frag.
mc
(frag.)−1
D
−logτ0d
(−logη0)
(−logD0)
TK/T0
1-butene 58a 48 1 64(η) [54(η)] 31 1.07 1.20 >0.88
2-methylpentane 78a 58 2 59(η) 60+5 (η) 32, 33 1.43 1.38 58 0.97
83 n-hex.
butyronitrile 100 81.2 3 58(τD) 34 1.72 1.19 47 32 16 1.26↓
ethanol 95 71 4b 70–75(τD) 35 1.28 1.33 7 1.0
90a 80(τD) 36 1.19 2.7 8.9 0.93↑
methanol 103 64±5 5, 6 60±15(τD) 37(a) 1.71 1.61 12.4 1.06
9 66(D) 37(b) 12.4 (7.1) 0.97
n-propanol 105 73 7 73.5(η) 73.5(τD) 38 1.42 1.44 33 11.7 1.00↑
100a 50.3(τD) 36 40 12.4 1.45
toluene tol + 17% benzCl 126 96 8 103(η) <108(τD) 39(a) >1.16 1.19 5.6 (3.5) 0.93
126 108(τD) 108(τD) 39(b) >1.16 107 13.0 ~1.0
ethylene glycol (ethan diol) 153 115 9 109(τD) 40 1.43 1.33 16 14.3 1.05
119 10 125 (η) 41 1.22
1–3 prop. diol 154 109 10 1.41
145a
1–2 prop diol (Tg=Tg(1·3)+18 172 109+18? 11 109(η) 114(τH) 42 1.57 1.41 52 17.8 14.6 1.11
(127) 122(τD) 42 52 13.5 13.2 1.04
glycerol 193 135 12b 128(τH) 42 1.51 1.43 53 19.5 15.6 1.04
187 137(τH) 44 1.41 53 0.99
127(τD) 38,9 1.52 12.7 14.6 1.07
127(τD) 45 8 33 1.07↓
121(τD) 45(b) 1.11
H2SO4·1H2O 182 142 13b 146(σ) 46 1.25 1.28 0.97
H2SO4·2H2O 169 131 13b 120(σ) 46 1.41 1.29 1.09
H2SO4·3H2O 162 135 13b 128(σ) 46 1.27 1.20 1.05
155a
H2SO4·4H2O 157 133 13b 136(η) 46 1.15 1.18
136(σ) 46 0.98
triphen.phosfite 205 166 14 183 186 34 1.12 1.23 160 2.9 13.3 0.91
PMS (disiloxane) 165a 137 15(a) 47 1.20
Salol 220a 167 16 135(τH) 48 1.63 1.31 38.7 24.5 1.24↓
157 17,48 141(τD) 48 1.56 1.40 33 23.3 1.11↓
orthoterphenyl and otp + 16% opp 244 200 18 184(τH) 49(a) 1.33 1.22 17.7 1.09↓
196(η) 17, 32 1.26 1.26 81c 1.04
193(η) 50
dibutyl phthallate1 (uncrystallizable) 179 19 151(η) 151(η) 51 1.18 (3.6)
137(τD) 32, 49(b) 1.30 69 14
m-toluidinc 187 151 14,8(b) 153(τD) 8(b) 79 13 1.00
157 15(b)
propylene carbonate 156 125.8 20 130(τD) 52 1.20 1.23 104 2.9 13.1 0.97
128 52b 132.3(τD) 36 0.95
Ca(NO3)2·4H2O 217 200 21 205(η) 53 1.09 0.98
204 22 190(η) 54 1.14 1.05
201(σ) 55 1.08 1.0
Cd(NO3)2·4H2O 213 198 21 56 1.08
fructose 286 210 14 206(τE) 57 1.39 1.36 13.5 1.02
glucose 306 271a 23 231 58 1.32 1.13 1.17
259(τD) 43 1.18 12 1.05
mannitol 282 236 9, 24
sorbitol (dulcitol) 266 236? 24 212(η) 59 1.13 93 8.6 1.11
217 24 224(τD) 9 1.19 1.23 7.8 14.3 1.05
sucrose 323 283 25 290 58 1.11 1.14 0.154 0.98
287 14 1.125
trehalose 388 14 57 13.5
phenolphtalein 363 310 14 274(τE) 57 1.32 1.17 13.5 1.13
selenium 307 240±10 26 251(η) 32,63 1.22 1.28 87c 1.04
ZnCl2 380 250±25 27 260(η) 60 1.46 1.52 0.96
180(τ1) 32,64 30c 14 1.39
236(τV) 32,65 1.61 42.5c 14 1.06
Li acetate 401 381e 28 371(σ) 61 1.08 1.05a 14 1.03
As2S3 455 265 26 237(τh) 44 1.82 1.93 18.7 1.00↓
La2O·2B2O3 959 845 29 864 850(η) 29 1.12 1.13 0.99
CaAl2Si2O8 1118 815 30 805(η) 62 1.39 1.37 1.01
a

Tg value based on the onset Cp from adiabatic calorimetry, which is several degrees lower than scanning calorimetry or DTA-based values because of the much longer time scale. Tg/TK values are based on 10 K/min DSC or DTA data for Tg.

b
Indicates that the assessment of TK will not be found in the calorimetry paper cited, but rather in one of the authors articles, or students’ thesis.
  1. C. A. Angell and W. Sichina, Ann. N.Y. Acad. Sci. Vol. 279 (1976) p. 53.
  2. E. J. Sare, Ph. D. thesis, Purdue Univ. (1970).
  3. D. L. Smith, Ph. D. thesis, Purdue Univ. (1983).
c

Many values of m, defined as the slope of a Fig. 6 type plot at Tg/T = 1, are compiled in R. Bohmer, K. L. Ngai, C. A. Angell, and D. J. Plazek, J. Chem. Phys. 99 (5), 4201–4209 (1993). Where the m value is used to obtain T0 via Ref. 32, the superscript c is attached to the m value. Such T0 values are associated with −logτ0 of 14 by assignment.

d

−logτ0 is the value of τ0 which is the best fit value for the T0 value cited. If −logτ0 is numerically larger than the physical value of 14 (phonons), then the T0 value should be weighted up, and therfore TK/T0 should be weighted down. Where this is an important effect, the value of TK/T0 is tagged ↑ or ↓ to indicate the need for adjustment. For viscosity, the equivalent value of −log(η0/P) is 3.5 and for diffusivity −log(D0/m2s−1) is 7.55. For cases in which T0 is obtained from an m value via Ref. 32, the value of −logτ0 is 14 by assignment.

e
Unpublished data (Sichina and Angell) suggest this estimate of TK is too high, that ΔCp passes through a maximum and TK retreats to ~ 360 K.
σ
T0 value from conductivity.
η
T0 value from viscosity measurements.
τD
T0 value from dielectric relaxation measurements.
τE
T0 value from tensile stress relaxation measurements and assignment τ0 = 10–13.5 s.
τH
T0 value from ac heat capacity measurements.
τL
T0 value from longitudinal relaxation time from digital correlation spectroscopy.
τh
T0 value from Sherer-Hodge Tg analysis Ref. 44.
τV
T0 value from volume relaxation activation energy at Tg and Ref. 32.

References to Table

1

J. G. Aston, H. L. Fink, A. B. Bestul, E. L. Pace, and G. J. Szaca, J. Am. Chem. Soc. 68, 52 (1946); S. S. Todd and G. J. Parks, J. Am. Chem. Soc. 50, 1427 (1928).

2

D. R. Douslin and H. M. Huffmann, J. Am. Chem. Soc. 68, 1704 (1946).

3

M. Oguni, H. Hikawa, and H. Suga, Thermochim. Acta 158, 143 (1990).

4

O. Haida, H. Suga and S. Seki, J. Chem. Thermodyn. 9, 1113 (1979).

5

M. Sugisaki, H. Suga and S. Seki, Bull. Chem. Soc. Jpn. 41, 2586, 2591 (1968).

6

E. J. Sare, unpublished work.

7

J. F. Counsell, E. B. Lees, and J. F. Martin, J. Chem. Soc. (A), 1819 (1968) (Analysis by D. L. Smith).

8

(a) C. Alba, L. E. Busse, and C. A. Angell, J. Chem. Phys. 92, 617–624 (1990).

(b) C. Alba-Simionesco, A. Vessal, J. Fan, and C. A. Angell, J. Chem. Phys. (in press).

9

C. A. Angell and D. L. Smith, J. Phys. Chem. 86, 3845 (1982).

10

K. Takeda, O. Yamanamuro, I. Tsukushi, and T. Matsui, Fluid Phase Equilibria (in press); private communication.

11

D. L. Smith, unpublished work.

12

G. E. Gibson and W. F. Giauque, J. Am. Chem. Soc. 45, 93 (1923).

13

J. E. Kunzler and W. F. Gianque, J. Am. Chem. Soc. 74, 797 (1952).

14

J. Fan, Ph.D. thesis, Arizona State Univ. (1995).

15

(a) H. Fujimori, M. Mizukami, and M. Oguni (to be published).

(b) H. Fujimori, M. Oguni, and C. Alba-Simionesco, Proc. IUPAC Conference on Thermodynamics, Osaka, August 1996.

16

T. Hikima, M. Hanaya, and M. Oguni, Sol. State Comm. 93, 713 (1995).

17

W. T. Laughlin and D. R. Uhlmann, J. Phys. Chem. 76, 2317 (1972).

18

S. S. Chang and A. B. Bestul, J. Chem. Phys. 56, 503 (1972); R. J. Greet and D. Turnbull, J. Chem. Phys. 47, 2185 (1967).

19

H. Fujimori and M. Oguni, J. Phys. Chem. Sol. 54, 271 (1993).

20

H. Fujimori and M. Oguni, J. Chem. Thermodyn. 26, 367 (1994).

21

C. A. Angell and J. C. Tucker, J. Phys. Chem. 78, 278 (1974).

22

X. Yu and L. Heppler et al., J. Chem. Thermodyn. 25, 191 (1992).

23

W. Kauzmann, Chem. Rev. 43, 219 (1948).

24

W. Sichina and C. A. Angell, unpublished work.

25

Cited in Ref. 58.

26

S. S. Chang and A. B. Bestul, J. Chem. Thermodyn. 6, 325 (1974).

27

C. A. Angell, E. Williams, K. J. Rao, and J. C. Tucker, J. Phys. Chem. 81, 238 (1977).

28

Chap. 1 in Glass: Structure by Spectroscopy, J. Wong and C. A. Angell, eds., Marcel Dekker, New York, New York (1976).

29

C. A. Angell, C. A. Scamehorn, D. L. List, and J. Kieffer, eds., Proceedings of the XVth International Congress on Glass, O.V. Mazurin, Leningrad, NAVKA (1989) p. 204.

30

P. Richet, Geochim. Cosmochim. Acta. 48, 471 (1984).

31

Y. Takeda, O. Yamamuro, and H. Suga, J. Phys. Chem. Sol. 52, 607 (1991); M. Oguni (private communication).

32

T0 obtained from the slope of the Tg-scaled Arrhenius plot, called fragility m, and its relation to T0 and Tg. T0 = Tg (1 – 16/m) for relaxation times, which presumes logτ0 = 14, and T0 = Tg (1 – 17/m) for viscosity. See Roland Böhmer and C. A. Angell, Phys. Rev. B. 45, 10091 (1992). Many values of m are collected in R. Böhmer, K. L. Ngai, C. A. Angell and D. J. Plazek, J. Chem. Phys. 99, 4201 (1993).

33

A. C. Ling and J. E. Willard, J. Phys. Chem. 72, 1918 (1968); m = 58; also see Fig. 6 of Ref. 8. The value T0 = 59 K is reported for viscosity fits of the unbranched isomer hexane, by O. G. Lewis, J. Chem. Phys. 43, 2693 (1965).

34

B. Schiener, A. Loidl, R. V. Chamberlin, and R. Böhmer, J. Mol. Liq. 69, 243 (1996).

35

D. L. Smith and C. A. Angell, unpublished data on ethanol-methanol mixtures.

36

F. Stickel, E. W. Fischer, R. Richert, J. Chem. Phys. 104, 2043 (1996).

37

(a) D. L. Denney and R. H. Cole, J. Chem. Phys. 23, 1767 (1955) and D. L. Smith and C. A. Angell, unpublished data on ethanol-methanol mixtures.

(b) N. Karger, T. Vardag, and H.-D. Lüdemann, J. Chem. Phys. 93, 3437 (1990).

38

D. W. Davidson and R. H. Cole, J. Chem. Phys. 19, 1484 (1951).

39

(a) D. B. Davies and A. J. Matheson, J. Chem. Phys. 45, 1000 (1966).

(b) L. Wu, Phys. Rev. B 43, 9906 (1991).

40

B. Schiener and R. Böhmer, J. Non-Cryst. Sol. 182, 180 (1995).

41

From data tabulated in Ref. 9.

42

N. O. Birge, Phys. Rev. B 34, 1631 (1986).

43

S. Matsuoko, G. Williams, G. E. Johnson, E. W. Anderson, and T. Furukawa, Macromolecules 18, 2652 (1985).

44

I. M. Hodge, J. Non-Cryst. Sol. 169, 211 (1994); Table 2.

45

(a) F. Stickel, E. W. Fischer, A. Schönhals, and F. Kremer, Phys. Rev. Lett. 73, 2936 (1994).

(b) H. Z. Cummins et al., Phys. Rev. Lett. 73, 2935 (1994).

46

E. J. Sare, Ph. D. thesis, Purdue University (1970).

47

Fujimori and M. Oguni (private communication).

48

P. K. Dixon, Phys. Rev. B. 42, 8179 (1990).

49

(a) P. K. Dixon and S. R. Nagel, Phys. Rev. Lett. 61, 341 (1988) (o-terphenyl + 9 %; o-phenylphenol, m = 81).

(b) T0 = Tg(1 – 16/m), see Ref. 32.

50

G. Williams and P. J. Hains, Faraday Symp. Chem. Soc. No. 6, 14 (1972).

51

A. J. Barlow, J. Lamb, and A. J. Matheson, Proc. Roy. Soc. A 292, 322 (1966).

52

(a) A. Schönhals F. Kremer, and H. Finch, Physica A201, 263 (1993).

(b) C. A. Angell, L. Boehm, M. Oguni, and D. L. Smith, J. Mol. Liquids 56, 275–286 (1993).

53

C. T. Moynihan, J. Phys. Chem. 70, 3399 (1966).

54

J. H. Ambrus, C. T. Moynihan, and P. B. Macedo, J. Electrochem Soc. 119, 192 (1972).

55

C. A. Angell and R. D. Bressel. J. Phys. Chem. 76, 3244 (1972).

56

C. T. Moynihan, C. R. Smalley, C. A. Angell, and E. J. Sare, J. Phys. Chem. 73(6), 2287 (1969).

57

E. Sanchez and C. A. Angell (to be published).

58

A. B. Bestul and S. S. Chang, in Proceedings III International Congress on Glass, Venezia, 1953, A. Garzanti, ed., Nello Stabilimento Grafico Di Roma Della, Rome (1954) p. 26.

59

C. A. Angell, R. Stell, and W. J. Sichina, J. Phys. Chem. 86, 1540 (1982).

60

A. J. Easteal and C. A. Angell, J. Chem. Phys. 56, 4231 (1972).

61

C. A. Angell and W. Sichina, Ann. N.Y. Acad. Sci. Vol. 279 (1976) p. 53, for fragility (D) and Ref. 32.

62

P. Richet and Y. Bottinga, Earth Plan. Sci. Lett. 67, 415 (1984).

63

M. Tatsumisago, B. L. Halfpap, J. L. Green, S. M. Lindsay, and C. A. Angell, Phys. Rev. Lett. 64, 1549 (1990).

64

G. Fytas, G. N. Papatheodorou and E. A. Pavlatou, see Ref. 32.

65

M. Goldstein and M. Nakonecjnyi, Phys. Chem. Glasses 6, 126 (1965).