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Abstract The eukaryotic genome can be roughly divided into
euchromatin and heterochromatin domains that are structural-
ly and functionally distinct. Heterochromatin is characterized
by its high compaction that impedes DNA transactions such as
gene transcription, replication, or recombination. Beyond its
role in regulating DNA accessibility, heterochromatin plays
essential roles in nuclear architecture, chromosome segrega-
tion, and genome stability. The formation of heterochromatin
involves special histone modifications and the recruitment and
spreading of silencing complexes that impact the higher-order
structures of chromatin; however, its molecular nature varies
between different chromosomal regions and between species.
Although heterochromatin has been extensively characterized,
its formation and maintenance throughout the cell cycle are
not yet fully understood. The biggest challenge for the faithful
transmission of chromatin domains is the destabilization of
chromatin structures followed by their reassembly on a novel
DNA template during genomic replication. This destabilizing
event also provides a window of opportunity for the de novo
establishment of heterochromatin. In recent years, it has be-
come clear that different types of obstacles such as tight
protein-DNA complexes, highly transcribed genes, and sec-
ondary DNA structures could impede the normal progression
of the replisome and thus have the potential to endanger the
integrity of the genome. Multiple studies carried out in differ-
ent model organisms have demonstrated the capacity of such

replisome impediments to favor the formation of heterochro-
matin. Our review summarizes these reports and discusses the
potential role of replication stress in the formation and main-
tenance of heterochromatin and the role that silencing proteins
could play at sites where the integrity of the genome is
compromised.
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In eukaryotic cells, the genetic information is stored as a com-
plex of DNA and proteins called chromatin. Based on cyto-
logical observations, the German botanist Emil Heitz distin-
guished the following two types of chromatin: euchromatin,
corresponding to regions of mitotic chromosome that
decondensed during interphase, and heterochromatin, corre-
sponding to regions that remained condensed throughout the
whole cell cycle. Heitz proposed that heterochromatin reflects
a functionally inactive state of the genome. Heterochromatin
was subsequently found to be associated with gene repression
and specific patterns of post-translational histone modifica-
tions or chromatin marks that recruit general repressors of
transcription. Apart from their role in transcriptional repres-
sion, heterochromatic regions are also an important determi-
nant of the spatial organization of the genome. They tend to
cluster together and localize close to the nuclear periphery or
a r o und nu c l e o l i , f o rm i ng f u n c t i o n a l n u c l e a r
subcompartments, which sequester the pool of silencing pro-
teins (Padeken and Heun 2014; Meister and Taddei 2013;
Saksouk et al. 2015).

Heterochromatin can be generally divided into two major
types—constitutive and facultative—that display different
molecular signatures. Constitutive heterochromatin forms at
telomeres, centromeres, and repetitive elements, where it
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plays a major role in genome stability (Dillon 2004; Saksouk
et al. 2015). Facultative heterochromatin is developmentally
regulated and acts as a key regulator of cellular differentiation
and morphogenesis (Trojer and Reinberg 2007).

How heterochromatin domains are formed at specific loci
and maintained throughout cellular division is still an open
question, but DNA replication appears to be an important
player in this process.

The replication process is per se a disrupting event that
challenges established patterns of chromatin marks but at the
same time provides a window of opportunity to change chro-
matin status. Cells have thus evolved specific mechanisms to
coordinate DNA replication with the re-assembly of a similar
chromatin environment on the two daughter strands (Alabert
and Groth 2012).

Direct molecular links between replication and heterochro-
matin factors have been reported in many different species.
One striking example is the conserved role of the origin rec-
ognition complex (ORC) in heterochromatin formation that
was first observed in budding yeast, where the ORC subunit
Orc1 interacts directly with the silencing factor Sir1 (Bell et al.
1993). Furthermore, Sir3, which is the structural component
of silent chromatin in this species, is a paralog of Orc1 that
arose from the whole genome duplication event in the
Saccharomycetaceae order (Hickman et al. 2011). It is likely
that Sir3 acquired its silencing function after gene duplication,
as the Orc1 protein fulfills the role of Sir3 in Kluyveromyces
lactis, a species that diverged from Saccharomyces prior to
Orc1 duplication (Hickman and Rusche 2010). Interestingly,
although heterochromatin components are not conserved be-
tween budding yeast and metazoans, ORC has been shown to
interact with heterochromatin proteins such as heterochroma-
tin protein 1 (HP1) in metazoans, indicating the conserved
cross-talk between DNA replication and chromatin state.

Although ORC is present at all replication origins, hetero-
chromatin is formed and confined to specific domains, sug-
gesting that the interaction between ORC and heterochromatic
factors is restricted to specific regions or that it leads to het-
erochromatin formation only under specific circumstances.

What is the hallmark of heterochromatin domains that dis-
tinguishes them from euchromatin regions and triggers the
formation of heterochromatic structures? One possibility that
we will discuss in this review is that these regions are difficult
to replicate and that this feature could favor heterochromatin
formation. Indeed, it is noteworthy that sequences embedded
into heterochromatin are often inherently difficult to replicate
and are thus a potential source of replication stress (Ivessa
et al. 2003; Miller et al. 2006; Sfeir et al. 2009; Zaratiegui
et al. 2011b). Replication stress is defined as slowing or
stalling in replication fork progression and arises from many
different sources including repetitive sequences, tight DNA-
protein complexes, DNA secondary structures, DNA–RNA
hybrids (R-loops), collisions between replication and

transcription machineries, DNA lesions, or misincorporation
of ribonucleotides (Aguilera and Garcia-Muse 2012;
Bochman et al. 2012; Tourriere and Pasero 2007). Although
replication stress can occur in both euchromatin and hetero-
chromatin, several lines of evidence indicate that replication
stress could be an important, although not unique, determinant
in the formation and maintenance of heterochromatin states.

In this review, we will try to summarize the current knowl-
edge on the mechanisms that link replication stress with hetero-
chromatin formation and maintenance and discuss the potential
function of this link.

Replicating heterochromatin

As mentioned above, heterochromatin comes in different
flavors; here, we will briefly discuss mechanisms involved
in pericentric heterochromatin replication that can serve as a
paradigm for heterochromatin duplication. In mammalian
cells, heterochromatin is formed in pericentric regions via
the recruitment of HP1, which exists in the following three
isoforms: α, β, and γ (Maison and Almouzni 2004), which
have distinct functions in heterochromatin formation depend-
ing on the stage of differentiation (Aucott et al. 2008; Caillier
et al. 2010; Sridharan et al. 2013). HP1 association with chro-
matin relies on the activity of the Suv39h1 methyltransferase,
which creates a docking site for HP1 by trimethylating H3
lysine 9 (K9) (Maison and Almouzni 2004). HP1 also physi-
cally interacts with Suv39h1, providing a feed-forward loop to
spread heterochromatin to neighboring nucleosomes.

During DNA replication, nucleosomes disassemble ahead
of the fork and parental H3–H4 histones are handled by the
histone chaperone anti-silencing function 1 (ASF1), which
associates with the replicative DNA helicase (Alabert and
Groth 2012). ASF1 is thought to coordinate the recycling of
parental histones and de novo deposition of newly synthesized
histones on the daughter strands. Chromatin assembly is
coupled to DNA synthesis by the interaction between the slid-
ing clamp proliferating cell nuclear antigen (PCNA) and the
chromatin assembly factor 1 (CAF1) (Shibahara and Stillman
1999). Additionally, CAF1 interacts with HP1α and the his-
tone lys ine N-methyl t ransferase SetDB1, which
monomethylates H3.1 (Loyola et al. 2009). Thus, in addition
to its role in depositing H3 onto newly replicated DNA, CAF1
helps to target SetDB1 and HP1α to sites of heterochromatin
formation, promoting both the monomethylation of H3.1K9
and the loading of HP1α in these regions. H3K9me1 is sub-
sequently recognized by the methyltransferase Suv39h1,
which trimethylates H3K9, thus allowing HP1 binding.
Furthermore, recycled parental H3K9me3 also have the po-
tential to recruit HP1 (Rivera et al. 2014). Duplication of HP1-
associated chromatin thus appears to be a robust process in-
volving parallel pathways. Similar mechanisms seem to be at
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play in the transmission of other heterochromatin-associated
histone marks such as H4K20me (Rivera et al. 2014). In ad-
dition, HP1α is targeted as a sumoylated form to pericentric
heterochromatin via its association with non-coding tran-
scripts corresponding to major satellite repeats, independently
of the methyltransferase activity of Suv39h1 (Maison et al.
2011). Whether this pathway requires replication is still an
open question.

Heterochromatin protein at DNA damage sites

In response to DNA damage, chromatin undergoes global
decondensation. This process has been proposed to facilitate
genome surveillance by enhancing the access of DNA damage
response (DDR) proteins to sites of damage (Adam et al. 2015).
Paradoxically, heterochromatin factors such as KAP1, HP1,
and the H3K9methyltransferase Suv39h1 were shown to accu-
mulate rapidly and transiently at DNA damage sites (Ayrapetov
et al. 2014; Lemaitre and Soutoglou 2014). This occurs in both
euchromatic and heterochromatic regions, suggesting a general
role for this response in DNA repair. Indeed, depletion of two
isoforms of HP1 (α and β) impairs homologous recombination
(HR) efficiency, whereas depletion of HPγ gamma had the
opposite effect, through mechanisms that are still under debate
(Lemaitre and Soutoglou 2014; Soria and Almouzni 2013). A
recent study showed that the rapid loading of HP1/KAP1/
Suv39h1 leads to the trimethylation of H3K9 over tens of kilo-
base flanking double-strand breaks (DSBs). Although this
H3K9me3 is often associated with heterochromatin, the modi-
fication of this large region is thought to help recruit and acti-
vate the Tip60 acetyltransferase, which recognizes H3K9me3.
Tip60 promotes nucleosome turnover and activation of the
ataxia telangiectasia mutated (ATM) checkpoint kinase, which
acts as a negative feedback by removing the HP1/KAP1/suv39
complex from chromatin (Ayrapetov et al. 2014).

Beside its potential direct impact on HR, heterochromatin-
associated proteins might also help coordinate transcription
and repair. Indeed, polycomb proteins that are involved in
gene silencing at facultative heterochromatin are also recruited
to DSB sites, where they are thought to switch off transcrip-
tion to facilitate DSB repair (Kakarougkas et al. 2014; Ui et al.
2015; Vissers et al. 2012).

HP1 recruitment at sites of DNA damage is again depen-
dent on its interaction with CAF1 (Baldeyron et al. 2011;
Loyola et al. 2009), which is recruited to DNA synthesis re-
pair sites by PCNA (Moggs et al. 2000). CAF1 is conserved in
budding yeast, where it also contributes to the maintenance of
silent chromatin (Enomoto and Berman 1998) and genome
stability (Kaufman et al. 1997). Other links between DNA
repair and heterochromatin have been reported in budding
yeast. Similar to HP1, its functional homologue in budding
yeast (Sir3) has been found to localize at sites of DNA damage

(Martin et al. 1999; Mills et al. 1999), although the function of
this recruitment remains elusive. Furthermore, the Ku protein
plays essential roles in protecting DSB against resection and
in promoting subtelomeric gene repression (Boulton and
Jackson 1996, 1998). More recently, artificially tethering the
ATM checkpoint kinase Tel1 or the DNA repair protein
Mre11 to a defective silencer was shown to promote silencing
at this locus. Tel1 has been shown to interact with Sir2 in the
two-hybrid system, as has Mre11 with both Sir3 and Sir4
(Kirkland et al. 2015). Hence, Tel1 and Mre11 may trigger
silencing through the direct recruitment of the SIR complex.

Thus, both DDR and replication are linked to the recruit-
ment of silencing proteins in different species, sometimes ul-
timately leading to chromatin opening. Silencing proteins may
also contribute to genome stability, although this has not al-
ways been clearly demonstrated.

Replication stress and senescence-associated
heterochromatin foci in mammalian cells

Cellular senescence is a well-studied example of a process dur-
ing which chromatin undergoes a massive reorganization.
Cellular senescence is an irreversible proliferation arrest,
thought to contribute to tumor suppression, wound healing,
development, and aging (Rai and Adams 2013). Entry into
senescence can be triggered by different sources of stress, in-
cluding telomere shortening (replicative senescence) and onco-
gene activation (oncogene-induced senescence (OIS)) (Rai and
Adams 2013; Serrano et al. 1997). OIS is accompanied by the
accumulation and compaction of chromatin into large subnu-
clear heterochromatic domains, termed senescence-associated
heterochromatin foci (SAHFs) (Narita et al. 2003; Zhang et al.
2005). These structures harbor heterochromatic markers, such
as H3K9me3, the histone variant macroH2A, high-mobility
group A (HMGA), and the three HP1 isoforms (Corpet and
Stucki 2014; Narita et al. 2003, 2006; Zhang et al. 2005).

Importantly, SAHF formation is not a universal feature of
senescence as it is less prevalent in replicative senescence and
is highly variable between cell types. Thus, SAHF formation
appears to be influenced by the origin of the stress that triggers
senescence (Kosar et al. 2011). Senescence induced by onco-
genes arises from an acute stress at stalled replication forks,
leading to irreparable DNA damage (Bartkova et al. 2006; Di
Micco et al. 2006, 2011). However, DNA breaks per se do not
seem to be the source of SAHF formation, as the activation of
the S phase checkpoint kinase ataxia telangiectasia and Rad3-
related (ATR) protein in the absence of DNA damage is suf-
ficient to cause cellular senescence and appearance of SAHF
(Toledo et al. 2008). Interestingly, oncogene-induced SAHF
formation depends on DNA replication and ATR (Di Micco
et al. 2011). Furthermore, topological and chromatin regula-
tors involved in the DNA replication process, such as
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topoisomerase 1 and ASF1, are also essential for SAHF for-
mation. Together, these data support a causal link between
oncogene-altered DNA replication and SAHF formation
(Humbert et al. 2009; Zhang et al. 2005, 2007).

It is still unclear to what extent SAHF plays a role in the
tumor suppressive function of senescence in vivo.
Heterochromatinization of proliferation genes through
SAHF has been proposed to directly contribute to proliferation
arrest. Indeed, disruption of the Suv39h1 H3K9 methyltrans-
ferase dramatically accelerates Ras-induced T cell lymphoma-
genesis in a mouse model (Braig et al. 2005). However, SAHF
formation is not sufficient to drive proliferation arrest as
SAHF persists in p53 and ATM mutants, in which the cell
cycle arrest has been relieved (Di Micco et al. 2011; Rai and
Adams 2013). In this case, it was proposed that SAHF protects
cells expressing oncogenes from undergoing apoptosis by
dampening the DNA damage response (Di Micco et al.
2011). In support of this hypothesis, heterochromatin has been
reported to modulate DDR activation in different model sys-
tems (see above and Murga et al. 2007). Indeed, loss of HP1γ
or the Suv39 methyltransferase led to an amplification of the
DDR, eventually resulting in cell apoptosis (Di Micco et al.
2011). As several cancer cell lines display elevated levels of
H3K9me3 and HP1, it has been proposed that the inactivation
of tumor suppressors, such as p53, hijacks SAHFs to maintain
DDR at sublethal levels, thus allowing proliferation. In sum-
mary, on the one hand, SAHF might contribute to tumor sup-
pression via repression of proliferation-promoting genes such
as cyclin A, while on the other hand, SAHF may dampen the
DNA damage response, suppress apoptosis, and promote vi-
ability. As a consequence, altering heterochromatin might
have different outcomes depending on the stage of oncogenic
progression and on the history that led to transformation.

Replication roadblocks and heterochromatin
formation

Tight DNA-protein complexes

Budding yeast does not show condensed chromatin during
interphase and lacks most of the molecular markers that typify
heterochromatin in most other eukaryotes, such as H3K9me3
and HP1. Instead, repressed chromatin is generated specifical-
ly at telomeres and cryptic mating-type loci (HMs) by the
recruitment of a complex of silent information regulators,
namely, Sir2, Sir3, and Sir4 (Kueng et al. 2013; Taddei and
Gasser 2012). The complex has the ability to spread along the
chromatin fiber from nucleation sites due to the enzymatic
activity of Sir2 that deacetylates histone H4 tails from neigh-
boring nucleosomes and to the affinity of Sir3 for deacetylated
histones (Hecht et al. 1995; Imai et al. 2000; Rusche et al.
2003; Smith et al. 2000; Tanner et al. 2000). At telomeres,

heterochromatin formation is nucleated by Rap1, which binds
telomeric TG1–3 repeats and interacts with both Sir3 and Sir4
(Konig and Rhodes 1997; Moretti et al. 1994; Oppikofer et al.
2013). At HMs, nucleation is dependent on the presence of
Bsilencer^ elements. These elements contain combinations of
binding sites for a set of factors Rap1, Abf1, and Sum1 and a
member of the origin recognition complex (Orc1) (Kueng
et al. 2013; Taddei and Gasser 2012). Intriguingly, Rap1 and
Abf1 are two of the most common transcription factors in the
yeast genome, and Orc1, as already discussed, is a member of
the essential ORC complex, important for the firing of origins
of replication (Bell and Stillman 1992; Shore 1994; Yarragudi
et al. 2007). How the juxtaposition of these factors leads to the
nucleation of silencing is still unknown. The current model
proposes that the juxtaposition of factors with a low affinity
for the SIR complex could generate a high-affinity binding
site. However, although Rap1 interacts directly with Sir3
and Sir4 and Orc1 with Sir1, which in turn recruits Sir4, there
is no clear evidence so far supporting a direct interaction be-
tween Abf1 and the SIR complex.

Interestingly, replication has been proposed to be required to
establish silencing in Saccharomyces cerevisiae (Miller and
Nasmyth 1984). However, this notion has been challenged by
the observation that silencing can be established upon targeting
of Sir1 to a non-replicative extrachromosomal cassette contain-
ing a crippled HMR locus (Kirchmaier and Rine 2001; Li et al.
2001). In this artificial context, silencing establishment retained
cell cycle dependence, arguing that the passage of the replication
fork is not required for establishment of yeast silent chromatin,
although this does not exclude that it may contribute under some
conditions. Interestingly, heterochromatin formation also shows
cell cycle specificity in mammalian cells as microinjection of
non-replicating plasmids in late S phase is transcriptionally re-
pressed and associated with non-acetylated histones, whereas
plasmid microinjected in early S phase is hyperacetylated and
transcriptionally active (Zhang et al. 2002).

Although replication is not always necessary to establish
silencing on non-chromosomal DNA, several observations
indicate that fork pausing can contribute to heterochromatin
establishment in budding yeast. First, it is noteworthy that
natural sites of silencing (telomeres, HM, and ribosomal
DNA (rDNA)) are all sites of transient replication fork paus-
ing. Indeed, Rap1, ORC, Abf1, and Fob1 bind directly to the
DNA and their tight interaction with their DNA-binding se-
quences acts as a replication roadblock (Brewer and Fangman
1988; Ivessa et al. 2003; Makovets et al. 2004). Interestingly,
ORC binds more tightly at theHMR-E silencer element than at
a very efficient replication origin found in euchromatin.
Furthermore, this high-affinity binding site is required for
ORC-dependent silencing at HMR (Palacios DeBeer et al.
2003). Second, we showed that natural or artificial pause sites
can favor silencing establishment at ectopic loci (Dubarry
et al. 2011). Importantly, this effect is increased in the absence
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of the DNA helicase Rrm3, which is known to facilitate rep-
lication at non-histone protein-DNA complexes. These data
support a model where prolonged replication pausing in-
creases the probability to form heterochromatin.

At endogenous loci, massive and stable SIR recruitment
occurs only at sites harboring multiple DNA-protein complexes
that have affinity for components of the SIR complex (i.e.,
Rap1 and Orc1). It is thus possible that replication fork pausing
imposed by these complexes contributes to SIR recruitment at
these sites, where they are then maintained by the affinities of
Rap1 and Orc1 for Sir3, Sir4, and Sir1. Consistent with this
hypothesis, SIR-dependent silencing of crypticmating-type loci
in K. lactis requires a different set of DNA-binding proteins for
silencing establishment (Barsoum et al. 2010; Sjostrand et al.
2002). Further supporting this model is a recent report that a
direct interaction between Sir3 and the ATPase subunit of the
nucleosome remodeler Swi2 is key for SWI/SNF to promote
resistance to replication stress in vivo and for the establishment
of heterochromatin at telomeres (Manning and Peterson 2014).

In Schizosaccharomyces pombe, whose heterochromatin is
more related to that of metazoans, mutations affecting the pool
of dNTPS, thus slowing the replication fork and contributing to
replication stress—favor the spreading of silent chromatin across
the heterochromatin barriers of the silentmating-type locusmat2/
3 (Singh and Klar 2008). Intriguingly, this extended heterochro-
matin depends on the binding of the transcription factor Atf1 that
recruits histone deacetylases at this locus. Thus, the paradoxical
role of transcription factors in heterochromatin formation in re-
lation with replication stress appears as a recurrent theme.

In mouse and human genomes, the repetitive sequences as-
sociated with Suv39 H3K9me3-dependent heterochromatin
contain transcription factor binding sites (Bulut-Karslioglu
et al. 2012). Importantly, depletion of the two homeotic tran-
scription factors Pax3 and Pax9 that bind mouse satellite repeats
results in a derepression of these sequences and loss of hetero-
chromaticmarks. This led to a proposal that the reiterate arrange-
ment of transcription factor binding sites in repetitive sequence is
a general mechanism for heterochromatin formation (Bulut-
Karslioglu et al. 2012). It will be interesting to test whether these
factors represent obstacles for the replisome in this context.

What could be the function of heterochromatin formation
at tight DNA-protein complexes sites? In S. cerevisiae, the
histone deacetylase Sir2 represses PolII transcription and re-
duces recombination that would otherwise arise from the tight
binding of Fob1 at rDNA repeats (Kobayashi 2011).

A similar function has been proposed in S. pombe for the
CENP-B heterochromatin proteins that stabilize replication
roadblocks imposed by the DNA-binding protein Sap1 at long
terminal repeat retrotransposons (Zaratiegui et al. 2011b).
Outside repetitive sequences, repressing transcription close
to replication stress sites could contribute to genome integrity
by preventing collision between the replication and transcrip-
tion machineries.

DNA secondary structures

DNA secondary structures such as hairpin or G-quadruplex
(G4) pose specific threats to the progression of the replication
machinery (Leon-Ortiz et al. 2014). G4 are four-strand DNA
structures held together by guanine, which can be unwound
by several conserved helicases in vitro (WRN, BLM, FANCJ,
and PIF1). Telomere sequences are predicted to form G4 and
were shown to pose a challenge for the replication machinery in
the absence of the telomere binding factors Taz1 in fission yeast
and telomeric repeat factor 1 (TRF1) in human cells (Miller et al.
2006; Sfeir et al. 2009). TRF1 possibly alleviates this replication
problem by recruiting the BLM helicase (Sfeir et al. 2009). In
human cancer cells, the G4 stabilizing molecule pyridostatin
targets nuclear sites overlapping with hPif1 (Rodriguez et al.
2012). Furthermore, this drug promotes growth arrest via induc-
ing replication- and transcription-dependent DNA damage at
telomeric and non-telomeric sequences with a propensity to
form G4, arguing that these structures do form in vivo.

Furthermore, G4 structures were shown to cause epigenetic
instability in the absence of G4 processing enzymes in meta-
zoan and yeast (Sarkies et al. 2012). In S. cerevisiae, inserting
a G4 motif 40 kb away from telomere VL in Pif1-defective
cells induces SIR-dependent epigenetic instability on reporter
genes located on the telomere proximal flanking region
(Paeschke et al. 2013). Along the same lines, DT40 chicken
cells defective for FANCJ show increased chromatin compac-
tion in active regions of the genome (Schwab et al. 2013).
Furthermore, loss of gene expression and active chromatin
marks occur in the vicinity of G4 structure in the absence of
the translesion polymerase Rev1 (Schiavone et al. 2014).

Trinucleotide repeats are prone to genomic instability, and
their expansion is a recurrent cause of several human diseases
including Friedreich’s ataxia (GAA/TTC) and fragile X syn-
drome (CGG). In both cases, trinucleotide expansion in a
non-coding region leads to the silencing of the surrounding
locus. Studies in transgenic mice indicate that GAA-triplet ex-
pansions stimulate heterochromatinization of a neighboring
gene (Saveliev et al. 2003), a process that can be reduced by
inhibiting the Sir2 family of deacetylases (Chan et al. 2013).
Mechanisms leading to heterochromatin formation at expanded
trinucleotide repeats are not well understood. Given that trinu-
cleotide repeats are prone to form hairpin secondary structures
and interfere with replication, replication stress could trigger
heteterochromatin formation at these sites (Mirkin 2007).

Heterochromatin at replication/transcription
collisions

Another source of replication stress arises from transcription—
replication collisions (Azvolinsky et al. 2009). Such collisions
seem to play a central role in the maintenance of
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pericentromeric heterochromatin in fission yeast. Genetic and
biochemical evidence supports a model in which collisions be-
tween the replisome and the RNA polymerase II transcription
complex generate stalled replication forks at these sites. It has
been shown that, during replication, co-transcriptional RNA
interference (RNAi) mechanisms release RNA polymerase II
(Pol II) and avoid conflicts with the replication machinery (Li
et al. 2011; Zaratiegui et al. 2011a). This is accompanied by the
stable recruitment of the major silencing complex in fission
yeast-cryptic loci regulator complex (CLRC) and the faithful
propagation of heterochromatic states. The CLRC complex
bridges these processes by interacting with subunits of the
RNA-induced transcriptional silencing (RITS) complex as well
as Cdc20 and Mms19, a subunit of the leading strand polymer-
ase polε and a regulatory subunit of the Pol II transcription
factor TFIIH, respectively (Bayne et al. 2010; Li et al. 2011;
Motamedi et al. 2008; Svejstrup 2010). Zaratiegui and col-
leagues proposed that CLRC recruits the RNAi machinery at
sites where the transcriptional and replication machineries
clash. The RNAi machinery is able to remove Pol II and allow
the resumption of DNA synthesis and further spreading of het-
erochromatin along the chromatin fiber (Kloc et al. 2008;
Zaratiegui et al. 2011a). Whether this mechanism is conserved
in other eukaryotes is not clear.

Mechanisms linking replication stress
with heterochromatin formation

If replication stress contributes to heterochromatin formation,
one can wonder what prevents heterochromatin formation at
coding euchromatic regions where replication stress is likely
to occur. One possibility is that counteracting activities asso-
ciated with transcription destabilize heterochromatin or pre-
vent its formation. Interestingly, the William syndrome tran-
scription factor (WSTF) was shown to interact with PCNA to
target the chromatin remodeler Snf2h to replication forks, thus
preventing heterochromatin formation at ectopic sites (Culver-
Cochran and Chadwick 2013; Poot et al. 2004).Whether these
sites correspond to sites of replication stress is not known.

Although the mechanism(s) linking replication stress with
heterochromatin formation remains largely unknown, several
conserved factors arise as good candidates to link these two
processes. First, cohesin is a conserved and essential
multiprotein complex that holds together newly replicated
chromatids and plays a crucial role in the maintenance of
genomic stability (Jeppsson et al. 2014). Cohesins were
shown to accumulate at replication sites when DNA synthesis
is impeded and are critical for the recovery of stalled forks in
budding yeast (Tittel-Elmer et al. 2012) and possibly in human
cells (Gatei et al. 2014). Importantly, both Sir2 in budding
yeast and HP1/Swi6 in metazoan and fission yeast interact
directly with cohesins (Nonaka et al. 2002; Wu et al. 2011),

again supporting a model in which replication stress sites
could stimulate the establishment of heterochromatin.

Replication stress, like DNA damage, triggers phosphory-
lation of serine 129 of histone H2A in yeast (γH2A) or the
histone variant H2A.X in mammalian cells (Downs et al.
2000; Foster and Downs 2005; Rogakou et al. 1998). This
modification aids chromatin remodeling and the recruitment
of repair factors during DNA repair, but its role at replication-
stalled sites is unclear. This modification is enriched at hetero-
chromatic domains in both budding and fission yeast, and this
depends, respectively, on the SIR complex and the histone
methyltransferase Clr4 (Kim et al. 2007; Kitada et al. 2011;
Rozenzhak et al. 2010; Szilard et al. 2010). Although enrich-
ment of this mark could be a passive consequence of the low
turnover of nucleosomes in heterochromatic regions, it has the
potential to recruit specific factors.

In S. pombe, one of the factors that recognizes γH2A is the
Brct containing domain protein Brc1 (Williams et al. 2010)
that is recruited to pericentric heterochromatin during S phase.
Interestingly, Brc1 mutants show defects in centromeric si-
lencing and increased chromosome missegregation in the
presence of a microtubule-destabilizing agent (Lee et al.
2013; Lee and Russell 2013). Genetic evidences suggest that
Brc1 stabilizes the replisome in these regions, thus avoiding
replication restart through the recombination machinery,
which can lead to loss of genetic and epigenetic information.
Again, although budding yeast heterochromatin has diverged
from one of the S. pombe, the functional link between scaf-
folding repair proteins and heterochromatin appears to be con-
served. Indeed, Brc1 resembles Rtt107/Esc4 in budding yeast,
both structurally and functionally (Zappulla et al. 2006). Esc4
also interacts with γH2A and was recently shown to dampen
checkpoint activation at replication-induced lesions (Ohouo et
al. 2013). Intriguingly, Esc4 also interacts with the silencing
factor Sir3 and mediates Sir3-dependent establishment of het-
erochromatin when targeted (Ohouo et al. 2010; Roberts et al.
2006; Rouse 2004; Zappulla et al. 2006). Whether this inter-
action plays a role in dampening checkpoint activation has not
yet been tested. However, silent chromatin was shown to sup-
press the checkpoint response upon induction of massive rep-
lication fork blocks in the rDNA of S. cerevisiae, indicating
that this mechanism could be conserved in budding yeast
(Bentsen et al. 2013). Esc2 provides another potential molec-
ular link between replication stress and silent chromatin. Like
Esc4, Esc2 was first identified for its ability to establish si-
lencing when targeted to a modified silencer, possibly through
its ability to recruit Sir2 (Dhillon and Kamakaka 2000;
Cuperus and Shore 2002). Esc2 is a protein conserved from
yeast to human containing two SUMO-like domains (Yu et al.
2010) that play a role in the resolution of replication coupled
recombination intermediates in conjunction with Smc5-Smc6
and Mms21 (Albuquerque et al. 2013; Choi et al. 2010;
Mankouri et al. 2009; Mimura et al. 2010; Sollier et al. 2009).
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More indirect mechanisms could also initiate heterochro-
matin formation at sites of replication stress. These include
defects in recycling of parental histones and unscheduled his-
tone incorporation that could lead to loss or gain of specific
histone marks or histone modifications and remodeling asso-
ciated with post-replicative repair events (Alabert and Groth
2012).

As mentioned above, some factors involved in DSB
repair are also linked to gene silencing. It is tempting to
speculate that DNA insults, irrespective of whether they
occur during S phase or outside of it, could serve as an
initial signal for the recruitment of silencing proteins with
the capacity to induce the formation of heterochromatin
structures. This local recruitment of silencing factors
would likely be transient as shown for the recruitment of
heterochromatin factors at euchromatic DNA damage sites
(see above) and would thus not systematically lead to
heterochromatin formation at most loci. However, one
can speculate that the density of these events and/or the
lack of antagonistic activities (i.e., histone remodeler of
modifier) could lead to heterochromatin formation and
maintenance at repetitive sequences. In these regions, het-
erochromatin formation would in turn avoid further stress
by repressing transcription (avoiding replication/

transcription collision), stabilizing the replication fork,
and/or limiting checkpoint activation (Fig. 1).

Concluding remarks

Many studies from different organisms have identified a
crosstalk between replication stress and heterochromatin for-
mation. It is striking that similar processes seem to be at play
despite the un-conserved molecular nature of heterochroma-
tin. This raises the question of the potential role(s) of this
crosstalk. The following two recurrent themes emerge from
the above-discussed studies (Fig. 1): heterochromatin damp-
ening the checkpoint activation at replication stress sites and
heterochromatin stabilizing the replisome by avoiding colli-
sion between the replication and transcription machineries or
by avoiding unscheduled recombination events. On the other
hand, the numerous links between replication stress and het-
erochromatin strongly indicate that replication stress could be
an evolutionary conserved auxiliary mechanism for the estab-
lishment of heterochromatin and silencing domains. Further
studies are needed to unravel the candidates and cascade of
events that govern this complex crosstalk.

Replisome obstacle: • Tight protein-DNA complex(es)
• DNA damage
• Torsional stress
• Chemical DNA lesions
• Secondary DNA structures

Recruitment of 
silencing factors Replisome

destabilization
Faithfull 

repair events

Euchromatin associated 
remodelers / modifying 

activities
 Unfaithful repair 

Loss of genetic
 information

Prolonged checkpoint
       apopoptosis

Heterochromatin
establishment

Replication fork

Fig. 1 During S phase, the replisome encounters a number of
impediments, which could interfere with its progression and have the
potential to endanger the stability of the genome. When faced with such
obstacles, in many cases, the cell triggers the S phase checkpoint and
stabilizes the replication fork. In the event of replication fork
breakdown or Bcollapse,^ replication can restart by recruiting an
alternative pathway requiring homology-directed repair (HDR), which
could eventually result in loss of genetic and/or epigenetic information.

If stalled forks fail to restart, persistent checkpoint activation can lead to
apoptosis. As discussed in the text, silencing factors are also recruited to
sites of replication stress. Possible roles of heterochromatin proteins at
these loci could be in preserving the stability of the replisome or in
modulating the cellular response to replication stress via largely unknown
mechanism(s). Such events could also serve as an initial signal and po-
tentially trigger the formation of heterochromatin
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