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Abstract Approximately 15 % of colorectal carcinomas

(CRC) display high level microsatellite instability (MSI-H)

due to either a germline mutation in one of the genes

responsible for DNA mismatch repair (Lynch syndrome,

3 %) or somatic inactivation of the same pathway, most

commonly through hypermethylation of the MLH1 gene

(sporadic MSI-H, 12 %). Although heterogeneous, MSI-H

colorectal carcinomas as a group show some distinct bio-

logic characteristics when compared to CRC with stable or

low level microsatellite instability. In the present review

we will highlight therapeutically relevant characteristics of

MSI-H tumors which could lead to specific responses to

some conventional chemotherapy or novel targeted therapy

agents.
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Introduction

Colorectal carcinoma (CRC) represents the third most

common malignancy in the developed world and one of the

leading causes of cancer-related death [1]. At the molecular

level, CRC is a heterogeneous disease with several

molecular subtypes that harbor distinct molecular genetic,

pathologic and clinical characteristics [2]. Recently, the

consensus molecular subtypes (CMS) of CRC have been

defined [3]. According to the new classification, four CMS

with distinguishing characteristics have been proposed:

CMS1 (microsatellite instability immune subtype: hyper-

mutated subtype of CRC, microsatellite unstable with a

strong immune activation); CMS2 (canonical subtype of

CRC: epithelial subtype with upregulation of the WNT and

MYC signaling pathways); CMS3 (metabolic subtype of

CRC: epithelial subtype with metabolic dysregulation); and

CMS4 [mesenchymal subtype of CRC with prominent

transforming growth factor-b (TGF-b) activation, stromal

invasion and neoangiogenesis] [3].

MSI refers to the hypermutable state of cells caused by

impaired DNA mismatch repair (MMR). It consists of

insertion and deletion mutations in stretches of short tan-

dem DNA repeats (microsatellites) as well as nucleotide

substitutions throughout the genome [4]. In this review, we

simplify classification of molecular subtypes of CRC based

on MSI status into two broad subgroups: MSI-high (MSI-

H) and MSI-negative (low or stable) CRCs, in an effort to

highlight potential therapeutic differences between these

easily separable groups.

MSI-high (MSI-H) colorectal cancer

MSI-H CRC accounts for 15 % of all CRC and includes

hereditary non-polyposis colorectal cancer (HNPCC) or

Lynch syndrome (3 %) and sporadic MSI-H CRC (12 %).

Lynch syndrome is a highly penetrant (80 % life time risk

for CRC), autosomal-dominant disorder caused by germ-

line mutations in one of the MMR genes: MLH1, MSH2

(70 %), MSH6 and PMS2 (*30 %) [5, 6] (Fig. 1A, B). In

addition, germline deletions of the last exon of the

epithelial cell adhesion molecule [(EPCAM), a gene
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located upstream of MSH2] cause Lynch syndrome via

epigenetic inactivation of MSH2 [7].

Sporadic MSI-H CRCs are typically caused by somatic

methylation of the MLH1 gene promoter [4] (Fig. 2A, B).

It is worth noting that a small subset of MSI-H tumors

harbor no alterations in the MMR genes, but overexpress

various miRNAs that may silence the MMR genes. Thus,

miRNA-155 downregulates MLH1, MSH2 and MSH6

mRNA, inducing MSI in CRC cell lines [8]. Similarly,

miRNA-21, targeting MSH2 and MSH6 mRNA, has been

found to be overexpressed in MSI-H CRC [9]. In addi-

tion, Li et al. [10, 11] found that cells lacking the

SETD2 histone methyltransferase displayed microsatel-

lite instability.

Regardless of the origin (hereditary or sporadic) or type

of mutation, MSI-H CRCs share some distinct histologic

cancer features (mucin-rich, signet ring and medullary

types, often admixed) with increased numbers of tumor-

infiltrating lymphocytes (TILs) and prominent Crohn’s-like

lymphoid reaction [6, 12]. In addition, patients with Lynch

syndrome have an increased risk of synchronous or meta-

chronous tumors that include extracolonic sites (small

bowel, stomach, endometrium, skin, genitourinary tract) [5,

13]. Prognostically, patients with HNPCC have a more

favorable outcome (overall survival) in comparison with

stage-matched sporadic CRCs [14, 15].

Methylation of the MLH1 promoter region that is typi-

cally seen in sporadic MSI-H CRC, but not in Lynch

syndrome, is strongly associated with the BRAF V600E

gene mutation [16, 17] (Fig. 2D). In fact, presence of the

BRAF V600E mutation in CRC essentially excludes Lynch

syndrome, with the exception of rare cases associated with

PMS2 germline mutation [18, 19].

MSI-H colorectal cancers in the era of personalized

medicine

CRC is the second leading cause of cancer-related death in

the developed world, [20]. Although the response rate of

metastatic CRC to the combined chemotherapy is around

50 %, progression of the disease is inevitable and less than

10 % of patients survive [2 years [20]. In adjunct to

conventional chemotherapy (e.g. 5-FU, capecitabine,

oxaliplatin, irinotecan), metastatic CRC is now treated with

a number of drugs aimed at target-specific signaling path-

ways [e.g. anti-EGFR based therapy (panitumumab and

cetuximab for KRAS/NRAS wild type CRC); bevacizumab

(for inhibition of angiogenesis)] [20, 21]. There is an

urgent need for more specific predictive markers that will

tailor the CRC treatment modalities and improve overall

survival in patients with locally advanced and/or metastatic

disease.

Fig. 1 A colorectal carcinoma from a case of Lynch syndrome

caused by an MLH1 gene mutation: A hematoxylin and eosin (H&E)

stained slide, B immunohistochemistry (IHC) showing concurrent

loss of PMS2 in tumor cells, C tumor cells were diffusely positive

(90–100 %) for topoisomerase 1 and D strongly positive (3?) for

thymidylate synthase
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Predictive biomarkers of conventional

chemotherapy

MSI-H status due to loss of MMR gene function is not only

a key player in the pathogenesis of CRC, but is also

associated with a different response to classic chemother-

apeutic treatment modalities [6].

A seminal clinical study by Ribic et al. [15] revealed the

benefit of 5-FU-based adjuvant chemotherapy in patients

with stage II and stage III MSI-negative CRC (HR = 0.72,

p = 0.04) but not in those with MSI-H status (HR = 1.07,

p = 0.80). Preclinical data also confirmed that tumor cells

with MSI-H status are resistant to fluoropyrimidines [e.g.

5-fluorouracil (5-FU) and capecitabine], but may be sen-

sitive to irinotecan and mitomycin C [4, 6, 21]. A meta-

analysis by Guetz et al. [22] also highlighted MSI-H status

as a strong predictive factor for non-response to 5-FU

based chemotherapy. Several enzymes including dihy-

dropyrimidine dehydrogenase (DPD), orotate phosphori-

bosyl transferase (OPRT), thymidine phosphorylase (TP)

and thymidylate synthase (TS) have been associated with

the metabolism of the 5-FU pathway [21]. TS is a key

enzyme involved in the synthesis of 20-deoxythymidine-50-
monophosphate, which represents an essential precursor

for DNA synthesis [23]. Although data from the available

literature are not consistent [(different methodologies,

cutoff values), reviewed in Koopman et al.], several studies

have found significantly higher expression of TS in MSI-H

CRCs, including Lynch syndrome cases, and an association

with resistance to 5-FU chemotherapy regimen [24–26]

(Fig. 1D). In contrast, MSI-H CRCs appear to be more

sensitive to irinotecan which functions as an inhibitor of

topoisomerase 1 (TOP1) [4]. Colorectal cancer cell lines

exhibit sensitivity to irinotecan when harboring increased

TOP1 gene copy number or increased TOP1/CEP20 ratio

[27]. Topoisomerase 1 protein overexpression has also

been described in MSI-H CRC [28], although Søndenstrup

et al. [29] recently reported an absence of TOP1 gene copy

number gain.

Our results, based on the analysis of both sporadic and

hereditary MSI-H and MSI-negative CRCs support the

reported differences in TS protein [30] (Fig. 1C; Table 1). TS

expression was significantly higher in MSI-H tumors, both

sporadic (86 %)andhereditary (100 %), compared to anMSI-

negative cohort (31 %, p\ 0.0001) (Table 1; Fig. 1D). Pro-

tein expression ofTOP1 trends higher in the Lynch cohort, but

is indistinguishable between the sporadic MSI-H and MSI-

negative cohorts [30, 31] (Table 1; Fig. 1C).

Fig. 2 A poorly differentiated (signet ring) colorectal carcinoma with

microsatellite instability-high status caused by the loss of MLH1:

A H&E-stained slide, B loss of MLH1 in tumor cells by IHC,

C concurrent loss of PMS2 in tumor cells by IHC; note retained

expression of both MLH1 and PMS2 proteins in adjacent tumor-

infiltrating lymphocytes, D IHC showing that the tumor also harbored

the BRAF V600E mutation, E the tumor cells exhibited 2? PD-L1

expression in *85 % of the tumor cells (anti-PD-L1 clone SP142)

and F while tumor infiltrating lymphocytes were positive for PD-1

protein
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Another biomarker which has been associated with

MSI-H CRC is O6-methylguanine DNA methyltransferase

(MGMT). MGMT is a DNA repair protein with the ability

to remove various carcinogenic adducts from the O6

position of guanine [32, 33]. Aberrant methylation of the

MGMT gene promoter occurs in CRCs with the CpG island

methylator phenotype (CIMP) [34], and this correlates with

loss of MGMT expression [32]. In CRC, MGMT hyper-

methylation has been described in subsets of both sporadic

and hereditary MSI-H tumors [32, 35, 36] (Fig. 3A, B).

In our cohort of CRC tumors, MGMT protein expression

was much lower (33 %) in the sporadic MSI-H cohort

compared to MSI-H tumors without BRAF mutation

(54 %); this difference may be attributable to CIMP in the

BRAF mutant tumors (Table 1).

MGMT has also been shown to serve as a predictor of

response to alkylating agents (temozolomide and dacar-

bazine) that have been approved for the treatment of var-

ious cancers including brain tumors (astrocytoma and

glioblastoma multiforme), melanoma, sarcoma, and

Hodgkin lymphoma [26, 37]. In colorectal cancer, temo-

zolomide showed limited clinical activity in unselected

patient cohorts, but when patients were selected for low

expression of MGMT, very promising results were seen

[32, 37–40]. However, Karran in his comment [41] pointed

out the importance of defects within the mismatch repair

machinery in cancer and potential resistance to various

chemotherapeutics, including alkylating drugs. In the

context of MSI-H CRC and alkylating agents, it is worth

noting a study by Hunter et al. [42] who confirmed that

inactivating somatic mutations of the MSH6 gene not only

confer a resistance to alkylating agents in brain tumors

(gliomas) but also promote tumor growth and progression.

Next generation sequencing (NGS) profiling

in MSI-H

Studies using the currently available NGS platforms allow

for investigation into molecular pathways known to con-

tribute to tumorigenesis and progression of CRC and their

Table 1 Differential protein expressions in colorectal tumors with different microsatellite instability status

MSI-H colorectal cancers
MSI-negative 

colorectal 
cancers

p-value
(MSI-H vs. 

MSI-
negative)

p-value 
(Somatic MSI-

H vs. Lynch 
Syndrome)

BRAF-
Mutated

BRAF-
Wild type

Confirmed 
LS

Percent (N/Total)Percent 
(N/Total)

Percent 
(N/Total)

Percent
(N/Total)

TS 
expression

85%
31.1% 

(463/1488) <0.0001 0.1518(93/105)
86% 80% 100%

(31/36) (43/54) (19/19)

PD-1 
expression

75%
44% 

(653/1485) <0.0001 0.7082(68/91)
78% 72% 69%

(28/36) (37/54) (9/13)

PD-L1 
expression

14%
4% 

(22/551) 0.0196 n/a(5/36)
14% 14% n/a(2/14) (3/21)

MGMT 
expression

46%
56% 

(832/1475) 0.0643 n/a(42/91)
33% 54% n/a(12/36) (29/54)

TOPO1 
expression

43%
48% 

(705/1456) 0.3 0.15(37/87)
50% 36% 74%

(18/36) (18/50) (14/19)

All biomarkers were evaluated using immunohistochemistry

LS Lynch syndrome, MGMT O6-methylguanine DNA methyltransferase, MSI microsatellite instability, H high, Negative low or stable, n/a not

available, PD-1 programmed cell death protein 1, PD-L1 programmed-death ligand 1, Topo1 topoisomerase 1, TS thymidylate synthase

p values were calculated using Fisher-Exact two tail tests
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differential contributions in the setting of sporadic and

germline MSI-H CRCs. Several studies reported a frequent

disruption of the WNT signaling pathway in Lynch syn-

drome, with mutations commonly affecting the APC and

CTNNB1 (beta-catenin) genes, which are less commonly

mutated in sporadic MSI-H CRC [43]. Recent compre-

hensive molecular profiling of CRC using whole-genome

sequencing revealed that the majority (75 %) of hyper-

mutated CRCs exhibited MSI-H status, associated with

hypermethylation of MLH1, while the remaining 25 % had

somatic mismatch-repair gene and polymerase e (POLE)

mutations [44]. Along with the expected mutations of APC,

TP53, SMAD4, PIK3CA and KRAS, the study revealed

frequent mutations in ARID1A, SOX9 and FAM123B genes,

while copy-number alterations included amplification of

the ERBB2 and IGF2 genes. Integrative analysis also

indicated an important role for MYC-directed transcrip-

tional activation and repression [44]. Timmermann et al.

[45] also reported a significantly higher incidence of

mutations in MSI-H than in MSI-negative CRCs.

Le et al. [46] usedwhole-exome sequencing and showed a

mean of 1782 somatic mutations per tumor in patients with

mismatch repair-deficient cancer (N = 9) as compared with

73 mutations per tumor in patients with mismatch repair-

proficient cancer (N = 6) (p = 0.007). Similarly, we per-

formed NGS using a more limited 591-gene panel (available

here: http://www.carismolecularintelligence.com/) on 8

MSI-H CRCs, and observed an average of 130.25 mutations

per tumor compared to an average of 55.17 mutations per

tumor in 189 MSI-negative CRCs (p = 0.0004, Student’s

t test, unpublished data).

Immune checkpoint proteins PD-1 and PD-L1

in MSI-H colorectal cancer

The PD-1 signaling pathway, composed of the immune cell

co-receptor Programmed Death 1 (PDCD1, CD279) and its

ligands PD-L1 (B7-H1, CD274) and PD-L2 (PDCD1LG2,

B7-DC, CD273), is actively involved in local

immunosuppression in human tumors [47]. PD-L1

expression in tumor and associated inflammatory cells has

been described in different malignancies, correlating with

poor clinical outcome but also with the likelihood of

response to targeted immune check point inhibition therapy

[48–52]. Several therapeutic monoclonal antibodies

inhibiting either PD-1 (nivolumab, pembrolizumab) or PD-

L1 (MPDL3280A, Medi4736, BMS-936559) have been

developed and are now used for the treatment of various

malignancies (e.g. metastatic melanoma, non-small cell

lung carcinoma, renal cell carcinoma, bladder carcinoma

and Hodgkin lymphoma) [52–54].

In contrast to MSI-negative CRCs, MSI-H CRCs exhibit

an active immune microenvironment infiltrated by cyto-

toxic (CD8?) T-lymphocytes and activated Th1 cells

characterized by interferon-c production and the Th1

transcription factor TBET. This response likely results

from the presence of numerous neoantigens (mutated pro-

teins) resulting from the hyper-mutated state of the tumor

cells [46, 55–57]. Despite such a ‘‘hostile’’ microenviron-

ment, MSI-H tumor cells are not eliminated by the immune

system due to the cancer specific upregulation of various

immune inhibitory molecules (checkpoints) including PD-

1, PD-L1, Cytotoxic T-lymphocyte-associated protein 4

(CTLA-4), Lymphocyte-activation gene 3 (LAG-3), and

Indoleamine (2,3)-dioxygenase (IDO) [31, 55, 58]

(Fig. 2E, F; Table 1). These data indicate that MSI-H

CRCs are good candidates for checkpoint immunotherapy

as recently shown in a small phase 2 clinical trial which

included 11 patients with MSI-H CRC. The study showed

that the immune-related objective response and immune-

related progression-free survival rates were 40 and 78 %,

respectively for refractory/and metastatic MSI-H CRC in

contrast to MSI-negative CRC (0 and 11 %, respectively)

[46]. This led the US Food and Drug Administration to

rapidly approve the anti-PD-1 drug pembrolizumab for the

treatment of metastatic/refractory MSI-H CRC. Additional

studies and clinical trials involving more samples/patients

should define the optimal predictive biomarkers for

Fig. 3 The case from Fig. 2:

A showing loss of MGMT

protein expression by IHC and

B pyrosequencing results

showing hypermethylation of

the MGMT promoter (57–66 %

methylation at five different

sites)
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immune checkpoint inhibitors as well as their therapeutic

benefits for patients with MSI-H CRC [53].

Conclusions

Although MSI-H colorectal cancers are heterogeneous (i.e.

they can be caused by germline or somatic mutations in

different genes), they have similar characteristics that

allow them to be grouped together for treatment and clin-

ical management. MSI-H CRCs respond poorly to 5-FU-

based chemotherapy (based on thymidylate synthase

overexpression), but they may be efficiently treated with

camptothecin derivatives (based on topoisomerase 1 over-

expression). Hypermethylation/loss of expression of

MGMT, which differs between MSI-H cancers based on

underlying pathogenic mechanism (i.e. sporadic CIMP

MSI-H CRC will be expected to have significantly differ-

ent MGMT expression from hereditary Lynch MSI-H

CRC), may identify a patient subset for clinical investi-

gation. These findings point to the need for individualized

profiling of biomarkers and tailoring of therapy for CRCs.

Due to an active immune microenvironment and high

expression of various checkpoint molecules, MSI-H CRCs

are good candidates for targeted immunotherapy with

immune checkpoint inhibitors (e.g. pembrolizumab). These

cancers also exhibit a distinct hyper-mutated profile that

may be amenable to additional treatment options such as

vaccination and adoptive-cell-transfer therapy.
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