
1Scientific RepoRts | 6:27624 | DOI: 10.1038/srep27624

www.nature.com/scientificreports

On the Computational Power of
Spiking Neural P Systems with
Self-Organization
Xun Wang1, Tao Song1,2, Faming Gong1 & Pan Zheng2

Neural-like computing models are versatile computing mechanisms in the field of artificial intelligence.
Spiking neural P systems (SN P systems for short) are one of the recently developed spiking neural
network models inspired by the way neurons communicate. The communications among neurons are
essentially achieved by spikes, i. e. short electrical pulses. In terms of motivation, SN P systems fall
into the third generation of neural network models. In this study, a novel variant of SN P systems,
namely SN P systems with self-organization, is introduced, and the computational power of the
system is investigated and evaluated. It is proved that SN P systems with self-organization are capable
of computing and accept the family of sets of Turing computable natural numbers. Moreover, with
87 neurons the system can compute any Turing computable recursive function, thus achieves Turing
universality. These results demonstrate promising initiatives to solve an open problem arisen by Gh
Păun.

In the central nervous system, there are abundant amount of computational intelligence precipitated throughout
millions of years of evolution. The computational intelligence has provided plenty of inspirations to construct
powerful computing models and algorithms1–3. Neural-like computing models are a class of powerful models
inspired by the way how neurons communicate. The communication among neurons is essentially achieved by
spikes, i.e. short electrical pulses. The biological phenomenon has been intensively investigated in the field of
neural computation4. Using different mathematic approaches to describe neural spiking behaviours, various
neural-like computing models have been proposed, such as artificial neural networks5 and spiking neural net-
works6. In the field of membrane computing, a kind of distributed and parallel neural-like computation model,
named spiking neural P systems (SN P systems), were proposed in 20067. SN P systems are widely considered as
a promising variant of the third generation of neural network models8.

Generally, an SN P system can be represented by a directed graph, where neurons are placed in nodes and
the synapses are denoted using arcs. Every neuron can contain a number of spikes and a set of firing (or spiking)
rules. Following the firing rules, a neuron can send information encoded in spikes to other neurons. Input neu-
rons read spikes from the environment, and output neurons emit spikes into the environment. The computation
result can be embodied in various ways. One of the common approaches is the time elapsed between the first two
consecutive spikes sent into the environment9,10 and the total number of spikes emitted into the environment11–13.

For the past decade, there have been quite a few research efforts put forward to SN P systems. Notably, SN P
systems can generate and accept the sets of Turing computable natural numbers14, generate the recursively enu-
merable languages15,16 and compute the sets of Turing computable functions17. Inspired by different biological
phenomena and mathematical motivations, lots of variants of SN P systems have been proposed, such as SN P
systems with anti-spikes18,19, SN P systems with weight20, SN P systems with astrocyte21, homogenous SN P sys-
tems22,23, SN P systems with threshold24, fuzzy SN P systems25,26, sequential SN P systems27, SN P systems with
rules on synapses28, SN P systems with structural plasticity29. For applications, SN P systems are used to design
logic gates, logic circuites30 and operating systems31, perform basic arithmetic operations32,33, solve combinatorial
optimization problems34, diagnose fault of electric power systems35.

SN P systems are known as a class of neural-like computing models under the framework of membrane
computing36. Spiking neural network (shortly named SNN) is a well known candidate of siking neural network

1College of Computer and Communication Engineering, China University of Petroleum, Qingdao 266580, Shandong,
China. 2Faculty of Engineering, Computing and Science, Swinburne University of Technology Sarawak Campus,
Kuching, 93350, Malaysia. Correspondence and requests for materials should be addressed to T.S. (email: tsong@
upc.edu.cn or tsong@swinburne.edu.my)

received: 01 March 2016

accepted: 23 May 2016

Published: 10 June 2016

OPEN

mailto:tsong@upc.edu.cn
mailto:tsong@upc.edu.cn
mailto:tsong@swinburne.edu.my

www.nature.com/scientificreports/

2Scientific RepoRts | 6:27624 | DOI: 10.1038/srep27624

models37, which incorporates the concept of time into their operating model, besides neuronal and synaptic state
in general artificial neural networks, The neuron in SNN cannot fire at each propagation cycle, but only when
a membrane potential reaches a specific value. When a neuron fires, it generates a signal which travels to other
neurons which, in turn, increase or decrease their potentials in accordance with this signal. In SN P systems, spik-
ing rules, denoted by formal production in grammar theory of formal languages, is used to describe the neuron's
spiking behaviour, which determine the conditions of triggering spiking, the number of spikes consumed, and
the number of spikes emitting to the neighboring neurons. The spikes from different neurons can be accumulated
in the target neuron for further spiking. In terms of motivation of models, SN P systems also fall into the spiking
neural network models, i.e., the third generation of neural network models.

Since SN P systems have more fundamental data structure (spike trains, i.e., binary strings), it performs well
in achieving significant computation power with using a small number of units (neurons). It was proved by Gh
Păun that 49 neurons are sufficient for SN P systems to achieve Turing universality. But, for conventional arti-
ficial neural networks, it was shown that 886 sigmoid function based processors are needed to achieve Turing
universality38.

In the nervous system, synaptic plasticity forms the cell assemblies with the self-organization of neurons,
which induces ordered or even synchronized neural dynamics replicating basic processes of long-term mem-
ory39,40. The self-organizing principle in the developing nervous system and its importance for preserving and
continuing neural system development provide us insights on how neural-like networks might be reorganized
and configured in response to environment changes. Enlightened by the biological fact, self-organizing artificial
neural networks with unsupervised and supervised learning have been proposed and gain their popularity for
visualisation and classification41,42. It is still an open problem as formulated by Gh Păun in ref. 43, to construct
SN P systems with self-organization and to use the system to perform possible computer vision and pattern rec-
ognition tasks.

Results
In this research, a novel variant of SN P systems, namely SN P systems with self-organization, is proposed and
developed. The system initially has no synapse, but the synapses can be dynamically formed during the computa-
tion, which exhibits the self-organization behaviour. In the system, creation and deletion rules are used to create
and delete synapses. The applications of synapse creation and deletion rules are controlled by the states of the
involved neurons, i.e., the number of spikes contained in the neurons. The computational power of the system is
investigated as well. As a result, it demonstrates that SN P systems with self-organization can compute and accept
any set of Turing computable natural numbers. Moreover, with 87 neurons, the system can compute any Turing
computable recursive function, ergo achieves Turing universality.

Before stating the results in mathematical forms, some notations should be introduced. NmSPSOall(creh, delg,
ruler) (resp. NmSPSOacc(creh′, delg′, ruler′)) denotes the family of sets of numbers computed (resp. accepted) by SN
P systems with self-organization of degree m, where h (resp. h′) indicates the maximal number of synapses that
can be created using a synapse creation rule, g (resp. g′) is the maximal number of synapses that can be deleted by
using a synapse deletion rule, r (resp. r′) is the maximal number of rules in each neuron, and the subscript all indi-
cates the computation result is encoded by the number of spikes emitted into the environment (resp. the subscript
acc indicates the system works in the accepting mode). If the parameters are not bounded, i.e., there is no limit
imposed on them, then they are replaced with *. NRE denotes the family of Turing computable sets of numbers44.

The main results of this work can be mathematically depicted by the following theorems.

Theorem 1. N*SPSOall(cre*, del*, rule5) = NRE.
Theorem 2. N*SPSOacc(cre*, del*, rule5) = NRE.
Theorem 3. There is a universal SN P system with self-organization having 87 neurons for computing functions.

These results show that SN P systems with self-organization are powerful computing models, i.e., they are
capable of doing what Turing machine can do. Also, they provide potential and theoretical feasibility of using SN
P systems to solve real-life problems, such as pattern recognition and classification.

In SN P system with self-organization, it has no initially designed synapses. The synapses can be created or
deleted according to the information contained in involved neurons during the computation. In previous work, it
was found that the information diversing ability of synapses had some programable feature for SN P systems, but
the computation power of SN P systems without initial synapses is an open problem. Although this is not the first
time the feature of creating or deleting synapses investigated in SN P systems, see e.g. SN P systems with structural
plasticity, it is quite the first attempt to construct SN P systems has no initial synapses.

Methods
In this section, it starts by the mathematical definition of SN P system with self-organization, and then the com-
putation power of SN P systems with self-organization is investigated as number generator, acceptor and function
computing devices. It is proved in constructive ways that SN P systems with self-organization can compute and
accept the family of sets of Turing computable natural numbers. With 87 neurons, such system can compute any
Turing computable recursive function.

Spiking Neural P Systems with Self-Organization. Before introducing the definition of SN P system
with self-organization, some prerequisites of basic concepts of formal language theory45 are recalled.

For an alphabet V, V* denotes the set of all finite strings of symbols from V, the empty string is denoted by λ,
and the set of all nonempty strings over V is denoted by V+. When V = {a} is a singleton, then we write simply a*
and a+ instead of {a}*, {a}+. A regular expression over an alphabet V is defined as follows: (1) λ and each a ∈ V is

www.nature.com/scientificreports/

3Scientific RepoRts | 6:27624 | DOI: 10.1038/srep27624

a regular expression; (2) if E1 and E2 are regular expressions over V, then (E1)(E2), (E1) ∪ (E2), and (E1)+ are regular
expressions over V; (3) nothing else is a regular expression over V.

For each regular expression E, a language L(E) is associated, defined in the following way: (1) L(λ) = {λ} and
L(a) = {a}, for all a ∈ V, (2) L((E1)∪(E2)) = L(E1) ∪ L(E2), L((E1)(E2)) = L(E1)L(E2) and L((E1)+) = (L(E1))+ for all
regular expressions E1, E2 over V. Unnecessary parentheses can be omitted when writing a regular expression, and
(E)+ ∪ {λ} can also be written as E*. By NRE we denote the family of Turing computable sets of numbers. (NRE is
the family of length sets of recursively enumerable languages–those recognized by Turing machines).

An SN P system with self-organization of degree m ≥ 1 is a construct of the form

Π = …O s s s syn in out(, , , , , , ,)m1 2 0

where

•	 O = {a} is a singleton, where a is called the spike;
•	 σ1, σ2, …, σm are neurons of the form σi = (ni, Ri) with 1 ≤ i ≤ m, where

 – ∈ni is the initial number of spikes contained in neuron σi;
 – Ri is a finite set of rules in neuron σi of the following three forms:

(1) spiking rule: E/ac → ap; d, where E is a regular expression over O, d ≥ 0 and c ≥ p ≥ 0;
(2) synapse creation rule: E′/ac′ → +(ap′, cre(i)), where E′ is a regular expression over O, cre(i) ⊆ {σ1, σ2, …,
σm}/{σi} and c′ ≥ p′ > 1;

(3) synapse deletion rule: E″/ac″ → −(λ, del(i)), where E″ is a regular expression over O, del(i) ⊆ {σ1, σ2, …,
σm}/{σi} and c″ ≥ 1;

•	 syn0 = 0/ is the initial set of synapses, which means no synapse is initially set; at any moment t, the set of syn-
apses is denoted by synt ⊆ {1, 2, …, m} × {1, 2, …, m}.

•	 in, out ∈ {1, 2, …, m} indicates the input and output neuron, respectively.

A spiking rule of the form E/ac → ap; d is applied as follows. If neuron σi contains k spikes, and ak ∈ L(E), k ≥ c,
then rule E/ac → ap; d ∈ Ri can be applied. It means that c spikes are consumed and removed from neuron σi, i.e.,
k − c spikes are remained, while the neuron emits p spikes to its neighboring neurons after d steps. (It is a common
practice in membrane computing to have a global clock defined. The clock is used to mark the time of the whole
system and ensure the system synchronization.) If d = 0, then the p spikes are emitted out immediately, if d = 1,
then the p spikes are emitted in the next step, etc. If the rule is used in step t and d ≥ 1, then in steps t, t + 1, ...,
t + d − 1 the neuron is closed (this corresponds to the refractory period from neurobiology), so that it cannot
receive new spikes (if a neuron tries to send spikes to a neuron in close status, then these particular spikes will be
lost). In the step t + d, the neuron fires and regains open status, so it can receive spikes (which can be used starting
with the step t + d + 1, when the neuron can again apply rules). It is possible that p is associated with value 0. In
this case, neuron σi consumes c spikes without emitting any spike. Spiking rule with p = 0 is also called forgetting
rule, by which a pre-defined number of spikes can be removed out of the neuron. If E = ac, then the rule can be
written in the simplified form ac → ap; d, and if d = 0, then the rule can be simply written as E/ac → ap.

Synapse creation and deletion rules are used to create and delete synapses during the computation. Synapse
creation rule E′/ac′ → +(ap′, cre(i)) is applied as follows. If neuron σi has k′ spikes such that ak′ ∈ L(E′), k′ ≥ c′, then
the synapse creation rule is applied with consuming c′ spikes, creating synapses to connect neuron σi to each
neuron in cre(i) and emitting p′ spikes to each neuron in cre(i). If neuron σi has k″ spikes such that ak″ ∈ L(E″)
and k″ ≥ c″, then synapse deletion rule E″/ac″ → −(λ, del(i)) is applied, removing c″ spikes from neuron σi and
deleting all the synapses connecting neuron σi to the neurons from del(i). With the synapse creation and deletion
rules, E′ and E″ are regular expressions over O = {a}, which regulate the application of synapse creation and dele-
tion rules. This means that synapse creation and deletion rules can be used if and only if the neuron contain some
particular numbers of spikes, i.e., the neuron is in some specific states. With the applications of synapse creation
and deletion rules the system can dynamically rebuild its topological structure during the computation, which is
herein defined as self-organization.

One neuron is specified as the input neuron, through which the system can read spikes from the environment.
The output neuron has a synapse creation rule of the form E′/ac′ → +(ap′, {0}), where the environment is labelled
by 0. By using the rule, the output neuron creates a synapse pointing to the environment, and then it can emit
spikes into the environment along the created synapse.

For each time step, as long as there is one available rule in Ri, neuron σi must apply the rule. It is possible
that there are more than one rule that can be used in a neuron at some moment, since spiking rules, synapse
creation rules and synapse deletion rules may be associated with regular languages (according to their regular
expressions). In this case, the neuron will non-deterministically uses one of the enabled rules. The system works
sequentially in each neuron (at most one rule from each Ri can be used), and if parallelism is designed for the
system, all the neurons at the same system level have at least one enabled rule activated.

The configuration of the system at certain moment is defined by three major factors which are the number of
spikes contained in each neuron, the number of steps to wait until it becomes open and the current set of syn-
apses. With the notion, the initial configuration of the system is 〈n1/0, n2/0, …, nm/0, 0/〉. Using the spiking, forget-
ting, synapse creation and deletion rules as described above, we can define transitions among configurations. Any
sequence of transitions starting from the initial configuration is called a computation. A computation halts, also
called successful, if it reaches a configuration where no rule can be applied in any neuron in the system. For each

www.nature.com/scientificreports/

4Scientific RepoRts | 6:27624 | DOI: 10.1038/srep27624

successful computation of the system, a computation result is generated, which is total the number of spikes sent
to the environment by the output neuron.

System Π generates a number n as follows. The computation of the system starts from the initial configuration
and finally halts, emitting totally n spikes to the environment. The set of all numbers computed in this way by Π
is denoted by Nall(Π) (the subscript all indicates that the computation result is the total number of spikes emitted
into the environment by the system). System Π can also work in the accepting mode. A number n is read through
input neurons from the environment in form of spike train 10n−11, which will be stored in a specified neuron σ1
in the form of f(n) spikes. If the computation eventually halts, then number n is said to be accepted by Π. The set
of numbers accepted by Π is denoted by Nacc(Π).

It is denoted by NmSPSOall(creh, delg, ruler) (resp. NmSPSOacc(creh′, delg′, ruler′)) the family of sets of numbers
computed (resp. accepted) by SN P systems with self-organization of degree m, where h (resp. h′) indicates the
maximal number of synapses that can be created with using a synapse creation rule, g (resp. g′) is the maximal
number of synapses that can be deleted with using a synapse deletion rule, r (resp. r′) is the maximal number of
rules in each neuron, and the subscript all indicates the computation result is encoded by the number of spikes
emitted into the environment (resp. the subscript acc indicates the system works in a accepting mode). If the
parameters are not bounded, i.e., there is no limit imposed on them, then they are replaced with *.

In order to compute a function f : Nk → N by SN P systems with self-organization, k natural numbers n1, n2, …,
nk are introduced in the system by reading from the environment a spike train (which is a binary sequence)
= …− − −z 10 10 1 10 1n n n1 1 1k1 2 . The input neuron has a synapse pointing from the environment, by which the

spikes can enter it. The input neuron reads a spike in each step corresponding to a digit 1 from the string z; other-
wise, no spike is received. Note that exactly k + 1 spikes are introduced into the system through the input neuron,
i.e., after the last spike, it is assumed that no further spike is coming to the input neuron. The output neuron has a
synapse pointing to the environment from it, by which the spikes can be emitted to the environment. The result
of the computation is the total number of spikes emitted into the environment by the output neuron, hence pro-
ducing r spikes with r = f(n1, n2, …, nk).

SN P systems with self-organization can be represented graphically, which is easier to understand than that in
a symbolic way. A rounded rectangle with the initial number of spikes and rules is used to represent a neuron and
a directed edge connecting two neurons represents a synapse.

In the following proofs, the notion of register machine is used. A register machine is a construct M = (m, H,
l0, lh, I), where m is the number of registers, H is the set of instruction labels, l0 is the start label, lh is the halt label
(assigned to instruction HALT), and I is the set of instructions; each label from H labels only one instruction from
I, thus precisele following forms:

•	 li: (ADD(r), lj, lk) (add 1 to register r and then go to one of the instructions with labels lj, lk),
•	 li: (SUB(r), lj, lk) (if register r is non-zero, then subtract 1 from it, and go to the instruction with label lj; other-

wise, go to the instruction with label lk),
•	 lh: HALT (the halt instruction).

As number generator. A register machine M computes a number n as follows. It starts by using initial
instruction l0 with all registers storing number 0. When it reaches halt instruction lh, the number stored in register
1 is called the number generated or computed by register machine M. The set of numbers generated or computed
by register machine M is denoted by N(M). It is known that register machines compute all sets of numbers which
are Turing computable, hence they characterize NRE, i.e., N(M) = NRE, where NRE is the family of Turing com-
putable sets of numbers44.

Without loss of generality, it can be assumed that in the halting configuration, all registers different from the
first one are empty, and that the first register is never decremented during the computation (i.e., its content is only
added to). When the power of two number generating devices D1 and D2 are compared, number zero is ignored;
that is, N(D1) = N(D2) if and only if N(D1) − {0} = N(D2) − {0} (this corresponds to the usual practice of ignoring
the empty string in language and automata theory).

Theorem 4. N*SPSOall(cre*, del*, rule5) = NRE.

Proof. It only has to prove NRE⊆N*SPSOall (cre*, del*, rule5), since the converse inclusion is straightforward
from the Turing-Church thesis (or it can be proved by the similar technical details in Section 8.1 in ref. 46, but is
cumbersome). To achieve this, we use the characterization of NRE by means of register machines in the generative
mode. Let us consider a register machine M = (m, H, l0, lh, I) defined above. It is assumed that register 1 of M is the
output register, which is never decremented during the computation. For each register r of M, let sr be the number
of instructions of the form li: (SUB(r), lj, lk), i.e., the number of SUB instructions acting on register r. If there is
no such SUB instruction, then sr = 0, which is the case for the first register r = 1. In what follows, a specific SN P
system with self-organization Π is constructed to simulate register machine M.

System Π consists of three modules–ADD, SUB and FIN modules. The ADD and SUB modules are used to
simulate the operations of ADD and SUB instructions of M; and the FIN module is used to output a computation
result.

In general, with any register r of M, a neuron σr in system Π is associated; the number stored in register r is
encoded by the number of spikes in neuron σr. Specifically, if register r stores number n ≥ 0, then there are 5n
spikes in neuron σr. For each label li of an instruction in M, a neuron σl i

 is associated. During the simulation,
when neuron σl i

 receives 6 spikes, it becomes active and starts to simulate instruction li: (OP(r), lj, lk) of M: the

www.nature.com/scientificreports/

5Scientific RepoRts | 6:27624 | DOI: 10.1038/srep27624

process starts with neuron σl i
 activated, operates on the number of spikes in neuron σr as requested by OP, then

sends 6 spikes into neuron σl j
 or σlk

, which becomes active in this way. Since there is no initial synapse in system
Π, some synapses are created to pass spikes to target neurons with synapse creation rules, after that the created
synapses will be deleted when simulation completes by synapse deletion rules. When neuron σlh

 (associated with
the halting instruction lh of M) is activated, a computation in M is completely simulated by system Π.

The following describes the works of ADD, SUB, and FIN modules of the SN P systems with self-organization.
Module ADD (shown in Fig. 1): Simulating the ADD instruction li: (ADD(r), lj, lk).
Initially, there is no synapse in system Π, and all the neurons have no spike with exception that neuron σl0

 has
6 spikes. This means system Π starts by simulating initial instruction l0. Let us assume that at step t, an instruction
li: (ADD(r), lj, lk) has to be simulated, with 6 spikes present in neuron σl i

 (like σl0
 in the initial configuration) and

no spike in any other neurons, except in those neurons associated with registers.
At step t, neuron σl i

 has 6 spikes, and synapse creation rule → +a a a l l r/ (, { , , })i i
6 5 5 (1) (2) is applied in σl i

, it
generates three synapses connecting neuron σl i

 to neurons σli
(1), σli

(2) and σr. Meanwhile, it consumes 5 spikes (one
spike remaining) and sends 5 spikes to each of neurons σli

(1), σli
(2) and σr. The number of spikes in neuron σr is

increased by 5, which simulates adding 1 to register r of M. At step t + 1, neuron σl i
 deletes the three synapses

created at step t by using rule λ→ −a l l r(, { , , })i i
(1) (2) . At the same moment, neuron σli

(2) uses synapse creation
rule a5/a4 → + (a3, {lj, lk}), and creates two synapses to neurons σl j

 and σlk
, as well as sends 3 spikes to each of the

two neurons. At step t + 2, neuron σli
(2) deletes the two synapses by using synapse deletion rule a → − (λ, {lj, lk}).

In neuron σli
(1), there are 5 spikes at step t + 1 such that both of synapse creation rules a5/a4 → + (a3, {lj}) and

a5/a4 → + (a3, {lk}) are enabled, but only one of them is non-deterministically used.

 – If rule a5/a4 → + (a3, {lj}) is chosen to use, neuron σli
(1) creates a synapse and sends 3 spikes to neuron σl j

. In this
case, neuron σl j

 accumulates 6 spikes, which means system Π starts to simulate instruction lj of M. One step
later, with one spike inside neuron σli

(1) uses rule a → − (λ, {lj, lk}) to delete the synapse to neuron σl j
, and neu-

ron σlk
 removes the 3 spikes (from neuron σli

(2)) by the forgetting rule a3 → λ.
 – If rule a5/a4 → + (a3, {lk}) is selected to apply, neuron σli

(1) creates a synapse and sends 3 spikes to neuron σlk
.

Neuron σlk
 accumulates 6 spikes, which indicates system Π goes to simulate instruction lk of M. One step later,

neuron σl j
 removes the 3 spikes by using forgetting rule a3 → λ, and the synapse from neuron σli

(1) to σlk
 is

deleted by using rule a → − (λ, {lj, lk}) in neuron σli
(1).

Therefore, from firing neuron σl i
, system Π adds 5 spikes to neuron σr and non-deterministically activates one

of the neurons σl j
 and σlk

, which correctly simulates the ADD instruction li: (ADD(r), lj, lk). When the simulation
of ADD instruction is completed, the ADD module returns to its initial topological structure, i.e., there is no
synapse in the module. The dynamic transformation of topological structure and the numbers of spikes in neu-
rons of ADD module during the ADD instruction simulation with neuron σl j

 or σlk
 finally activated is shown in

Figs 2 and 3. In the figures, the spiking rules are omitted for clear illustration, neurons are represented by circles
with the number of spikes and directed edges is used to represent the synapses.

Module SUB (shown in Fig. 4): Simulating the SUB instruction li: (SUB(r), lj, lk).
Given starting time stamp t, system Π simulates a SUB instruction li: (SUB(r), lj, lk). Let sr be the number of

SUB instructions acting on register r and the set of labels of instructions acting on register r be …i i i{ , , , }s1 2 r
.

Obviously, it holds ∈ …i i i i{ , , , }s1 2 r
.

Figure 1. Module ADD simulating the ADD instruction.

www.nature.com/scientificreports/

6Scientific RepoRts | 6:27624 | DOI: 10.1038/srep27624

Figure 2. The dynamic transformation of topological structure and the numbers of spikes in neurons of
ADD module during the ADD instruction simulation with neuron σl j

 finally activated.

Figure 3. The dynamic transformation of topological structure and the numbers of spikes in neurons of
ADD module during the ADD instruction simulation with neuron σlk

 finally activated.

Figure 4. Module SUB simulating the SUB instruction.

www.nature.com/scientificreports/

7Scientific RepoRts | 6:27624 | DOI: 10.1038/srep27624

At step t , neuron σl i
 has 6 spikes, and becomes active by using synapse creation rule

→ +a a a l l r/ (, { , , })i i
6 5 4 (1) (2) , creating synapses and sending 4 spikes to each of neurons σli

(1), σli
(2) and σr. With

4 spikes inside, neurons σli
(1) and σli

(2) keep inactive at step t + 1 because no rule can be used. In neuron σr, it has
the following two cases.

 – If neuron σr has 5n (n > 0) spikes (corresponding to the fact that the number stored in register r is n, and n > 0),
then by receiving 4 spikes from neuron σl i

, it accumulates 5n + 4 spikes and becomes active by using rule
→ + | = …+a a a a l l s i i i() / (, { , , , , })s s s

4 5 8 6 (1) (2)
1 2 r

 at step t + 1. It creates a synapse to each of neurons σls
(1) and

σls
(2) with = …s i i i, , , s1 2 r

 and sending 6 spikes to the neurons. By consuming 8 spikes, the number of spikes
i n n e u r o n σ r b e c o m e s 5 n + 4 − 8 = 5 (n − 1) + 1 (n ≥ 0) s u c h t h a t r u l e

λ→ − | = …⁎a a l l s i i i() (, { , , , , })s s s
5 (1) (2)

1 2 r
 is enabled and applied at step t + 2. With application of the rule,

neuron σr removes the synapses from neuron σr to neurons σls
(1) and σls

(2), = …s i i i, , , s1 2 r
. Meanwhile, neu-

rons σls
(1) and σls

(2) with s ≠ i remove the 6 spikes by using forgetting rule a6 → λ, and neuron σli
(2) removes the 10

spikes by forgetting rule a10 → λ. Neuron σli
(1) accumulates 10 spikes (4 spikes from neuron σl i

 and 6 spikes from
neuron σr), and rule a10/a9 → + (a6, {lj}) is applied at step t + 2, creating a synapse and sending 6 spikes to neu-
ron σl j

. In this case, neuron σl j
 receives 6 spikes, which means system Π starts to simulate instruction lj of M.

One step later, the synapse from neuron σli
(1) to neuron σl j

 is deleted by using synapse deletion rule a → − (λ,
{lj}).

 – If neuron σr has no spike (corresponding to the fact that the number stored in register r is 0), then after receiv-
ing 4 spikes from neuron σl i

, it has 4 spikes and rule → + | = …a a a l l s i i i/ (, { , , , , })s s s
4 3 3 (1) (2)

1 2 r
 is used,

creating a synapse to each of neurons σls
(1) and σls

(2) with = …s i i i, , , s1 2 r
 and sending 3 spikes to the neurons.

Neuron σr remains one spike, and synapse deletion rule λ→ − | = …⁎a a l l s i i i() (, { , , , , })s s s
5 (1) (2)

1 2 r
 is

applied at step t + 2, removing the synapses from neuron σr to neurons σls
(1) and σls

(2), = …s i i i, , , s1 2 r
. At the

same moment, neurons σls
(1) and σls

(2) with s ≠ i remove the 3 spikes by using forgetting rule a3 → λ, and neuron
σli

(1) removes 7 spikes using spiking rule a7 → λ. Having 7 spikes, Neuron σli
(2) becomes active by using rule

a7/a6 → + (a6, {lk}) at step t + 2, creating a synapse to neuron σlk
 and sending 6 spikes to neuron σlk

. In this case,
neuron σlk

 receives 6 spikes, which means system Π starts to simulate instruction lk of M. At step t + 3, neuron
σli

(2) uses rule a → − (λ, {lk}) to remove the synapse to neuron σlk
.

The simulation of SUB instruction performs correctly: System Π starts from σl i
 having 6 spikes and becoming

active, and ends in neuron σl j
 receiving 6 spikes (if the number stored in register r is great than 0 and decreased

by one), or in neuron σlk
 receiving 6 spikes (if the number stored in register r is 0).

When the simulation of SUB instruction is completed, the SUB module returns to its initial topological struc-
ture, i.e., there is no synapse in the module. The dynamic transformation of topological structure and the num-
bers of spikes in involved neurons in the SUB instruction simulation with neuron σl j

 (resp. neuron σlk
) finally

activated is shown in Fig. 5 (resp. Fig. 6).
Module FIN (shown in Fig. 7) – outputting the result of computation.
Assume that at step t the computation in M halts, i.e., the halting instruction is reached. In this case, neuron

σlh
 in Π receives 6 spikes. At that moment, neuron σ1 contains 5n spikes, for the number n ≥ 1 stored in register 1

of M. With 6 spikes inside, neuron σlh
 becomes active by using rule a6/a5 → +(a2, {1}), creating a synapse to neu-

ron σ1 and sending 2 spikes to neuron σ1. Neuron σlh
 ends with one spike, and rule a → −(λ, {1}) is used, remov-

ing the synapse to neuron σ1 one step later.
After neuron σ1 receives the 2 spikes from neuron σlh

, the number of spikes in neuron σ1 becomes 5n + 2 and
rule a2(a5)+/a → +(λ, {0}) is enabled and applied at step t + 2. By using the rule, neuron σ1 consumes one spike
and creates a synapse to the environment. Neuron σ1 contains 5n + 1 spikes such that spiking rule a(a5)+/a5 → a is
used, consuming 5 spikes and emitting one spike to the environment at step t + 3. Note that the number of spikes
in neuron σ1 becomes 5(n − 1) + 1. So, if the number of spikes in neuron σ1 is not one, then neuron σ1 will fire
again in the next step sending one spike into the environment. In this way, neuron σ1 can fire for n times, i.e., until
the number of spikes in neuron σ1 reaches one. For each time when neuron σ1 fires, it sends one spike into the
environment. So, in total, neuron σ1 sends n spikes into the environment, which is exactly the number stored in
register 1 of M at the moment when the computation of M halts. When neuron σ1 has one spike, rule a → −(λ, {0})
is used to remove the synapse from neuron σ1 to the environment, and system Π eventually halts.

The dynamic transformation of topological structure of the FIN module and the numbers of spikes in the
neurons of FIN module and in the environment are shown in Fig. 8.

Based on the description of the work of system Π above, the register machine M is correctly simulated by
system Π, i.e., N(M) = Nall(Π). We can check that each neuron in system Π has at most three rules, and no limit
is imposed on the numbers of neurons and the synapses that can be created (or deleted) by using one synapse
creation (or deletion) rule. Therefore, it concludes N*SPSOall(cre*, del*, rule5) = NRE.

This concludes the proof.

As number acceptor. Register machine can work in the accepting mode. Number n is accepted by register
machine M′ as follows. Initially, number n is stored in the first register of M′ and all the other registers are empty.
If the computation starting in this configuration eventually halts, then the number n is said to be accepted by
register machine M′. The set of numbers accepted by register machine M′ is denoted by Nacc(M′). It is known

www.nature.com/scientificreports/

8Scientific RepoRts | 6:27624 | DOI: 10.1038/srep27624

that all the sets of numbers in NRE can be accepted by register machine M′, even using the deterministic register
machine; i.e. the machine with the ADD instructions of the form li: (ADD(r), lj, lk) where lj = lk (in this case, the
instruction is written in the form li: (ADD(r), lj))44.

Theorem 5. N*SPSOacc(cre*, del*, rule5) = NRE.

Proof. It only has to prove NRE ⊆ N*SPSOacc (cre*, del*, rule5), since the converse inclusion is straightforward
from the Turing-Church thesis. In what follows, an SN P system Π′ with self-organization working in accepting
mode is constructed to simulate a deterministic register machine M′ = (m, H, l0, lh, I) working in the acceptive
mode. Actually, the proof is given by modifying the proof of Theorem 4.

Each register r of M′ is associated with a neuron σr in system Π′, and for each instruction li of M′ a neuron σl i

is associated. A number n stored in register r is represented by 5n spikes in neuron σr.
The system Π′ consists of an INPUT module, deterministic ADD and SUB modules. The INPUT module is

shown in Fig. 9, where all neurons are initially empty with the exception that input neuron σin has 8 spikes. Spike
train 10n−11 is introduced into the system through input neuron σin, where the internal between the two spikes in
the spike train is (n + 1) − 1 = n, which indicates that number n is going to be accepted by system Π′.

Assuming at step t neuron σin receives the first spike. At step t + 1, neuron σin contains 9 spikes, and rule
a9/a6 → +(a6, {I1, I2}) is used, creating a synapse from neuron σin to neurons σ I1

 and σ I2
. Meanwhile, neuron σin

sends 6 spikes to the two neurons. In neuron σin, 6 spikes are consumed and 3 spikes remain. With 6 spikes inside,
neurons σ I1

 and σ I2
 become active at step t + 2. Neuron σ I1

 uses rule a6/a → +(λ, {I2}) to create a synapse to neu-
ron σ I2

; and neuron σ I2
 uses rule a6/a → +(λ, {I1, 1}) to create a synapse to each of neurons σ I1

 and σ1. Each of
neurons σ I1

 and σ I2
 has 5 spikes left. From step t + 3 on, neurons σ I1

 and σ I2
 fire and begin to exchange 5 spikes

between them. In this way, neuron σ1 receives 5 spikes from neurons σ I2
 at each step.

At step t + n, neuron σin receives the second spike from the environment, accumulating 4 spikes inside. At step
t + n + 1, neuron σin fires for the second time by using spiking rule a4/a3 → a3, sending 3 spikes to neurons σ I1

 and
σ I2

. Each of neurons σ I1
 and σ I2

 accumulates 8 spikes. At step t + n + 2, neuron σ I1
 uses synapse creation rule

a8/a6 → +(a6, {l0}), creating a synapse to neuron σl0
 and sending 6 spikes to neuron σl0

. This means that system Π′
starts to simulate the initial instruction l0 of register machine M′. Meanwhile, neuron σ I2

 uses synapse deletion
rule a8/a → −(λ, {I1}), removing the synapse from neuron .. to neuron σ I1

. In the next step, neuron σ I1
 creates a

synapse to neuron σ1 and sends 5 spikes to neuron σ1 by using rule a7 → +(a5, {1}).

Figure 5. The dynamic transformation of topological structure and the numbers of spikes in involved
neurons in the SUB instruction simulation with neuron σl j

 finally activated.

www.nature.com/scientificreports/

9Scientific RepoRts | 6:27624 | DOI: 10.1038/srep27624

From step t + 3 to t + n + 1, neuron σ1 receives 5 spikes in each step from neuron σ I2
, thus in total accumulat-

ing 5(n − 1) spikes. Neuron σ1 receives no spike at step t + n + 2, and gets 5 spikes from neuron σ I2
 at step

t + n + 3. After that, no more spikes are sent to neuron σ I2
. Neuron σ1 contains 5n spikes, which indicates the

number to be accepted by register machine M′ is n. At step t + n + 4, neuron σ I2
 uses rule a2 → −(λ, {1}), deleting

the synapse to neuron σ1.
The dynamic transformation of topological structure of INPUT module and the numbers of spikes in the

neurons of INPUT module are shown in Fig. 10.
The deterministic ADD module is shown in Fig. 11, whose function is rather clear. By receiving 6 spikes, neu-

ron σl i
 becomes active, creating a synapse and sending 5 spikes to each of neurons σr, σli

(1) and σli
(2). The number

of spikes in neuron σr is increased by 5, which simulates the number stored in register 1 is increased by one. In the
next step, neuron σl i

 uses rule λ→ −a l l r(, { , , })i i
(1) (2) , removing the synapses from neuron σl i

 to neurons σr,
σli

(1) and σli
(2). In neurons σli

(1) and σli
(2), there are 5 spikes. The two neurons become active by using rule

a5/a4 → +(a3, {lj}). Each of them creates a synapse to neuron σl j
 and emits 3 spikes to neuron σl j

. In this way, neu-
ron σl j

 accumulates 6 spikes inside, which means the system Π′ goes to simulate instruction lj of M′. The synapses
from neuron σli

(1) and σli
(2) to neuron σl j

 will be removed by using synapse deletion rule a → −(λ, {lj}) in neurons
σli

(1) and σli
(2).

Module SUB remains unchanged, as shown in Fig. 4. Module FIN is removed, with neuron σlh
 remaining in

the system, but having no rule inside. When neuron σlh
 receives 6 spikes, it means that the computation of register

machine M′ reaches instruction lh and stops. Having 6 spikes inside, neuron σlh
 cannot become active for no rule

can be used. In this way, the work of system Π′ halts.

Figure 6. The dynamic transformation of topological structure and the numbers of spikes in involved
neurons in the SUB instruction simulation with neuron σlk

 finally activated.

Figure 7. Outputting the computation result.

www.nature.com/scientificreports/

1 0Scientific RepoRts | 6:27624 | DOI: 10.1038/srep27624

Based on the description of the implementation of system Π′ above, it is clear that the register machine M′
in acceptive mode is correctly simulated by the system Π′ working in acceptive mode, i.e., Nacc(M′) = Nacc(Π′).

We can check that each neuron in system Π′ has at most five rules, and no limit is imposed on the numbers
of neurons and the synapses that can be created (or deleted) with using one synapse creation (or deletion) rule.
Therefore, it concludes N*SPSOacc(cre*, del*, rule5) = NRE.

As function computing device. A register machine M can compute a function f : Nk → N as follows: the
arguments are introduced in special registers r1, r2, …, rk (without loss of the generality, it is assumed that the
first k registers are used). The computation starts with the initial instruction l0. if the register machine halts, i.e.,
reaches HALT instruction lh, the value of the function is placed in another specified register, labelled by rt, with all
registers different from rt storing number 0. The partial function computed by a register machine M in this way is
denoted by M(n1, n2, …, nk). All Turing computable functions can be computed by register machine in this way.

Several universal register machines for computing functions were defined. Let (ϕ0, ϕ1,…) be a fixed admissible
enumeration of the unary partial recursive functions. A register machine Mu is said to be universal if there is a
recursive function g such that for all natural numbers x, y we have ϕx(y) = Mu(g(x), y). As addressed by Minsky,
universal register machine can compute any ϕx(y) by inputting a couple of numbers g(x) and y in registers 1 and 2,
and the result can be obtained in register 047.

In the following proof of universality, a specific universal register machine Mu from47 is used, the machine
Mu = (8, H, l0, lh, I) presented in Fig. 12. In this universal register machine Mu, there are 8 registers (numbered
from 0 to 7) and 23 instructions, and the last instruction is the halting one. As described above, the input numbers

Figure 8. The dynamic transformation of topological structure of the FIN module and the numbers of
spikes in the neurons of FIN module and the environment.

Figure 9. The INPUT module of system Π′.

www.nature.com/scientificreports/

1 1Scientific RepoRts | 6:27624 | DOI: 10.1038/srep27624

(the “code” of the partial recursive function to compute and the argument for this function) are introduced in
registers 1 and 2, and the result is outputted in register 0 when the machine Mu halts.

A modification is necessary to be made in Mu, because the subtraction operation in the register where the
result is placed is not allowed in the construction of the previous Theorems, but register 0 of Mu is subject of such
operations. That is why an extra register is needed - labeled with 8 - and the halt instruction lh of Mu should be
replaced by the following instructions:

′ ′ .l l l l l l: ((0), ,), : ((8),), :h h22 23 23 22SUB ADD HALT

Therefore, the modified universal register machine ′Mu has 9 registers, 24 ADD and SUB instructions, and 25
labels. The result of a computation of ′Mu is stored in register 8

Theorem 6 There is a universal SN P system with self-organization having 87 neurons for computing functions.

Proof. An SN P system with self-organization Π″ is constructed to simulate the computation of the universal
register machine ′Mu. Specifically, the system Π″ consists of deterministic ADD modules, SUB modules, as well as

Figure 10. The dynamic transformation of topological structure of INPUT module and the numbers of
spikes in the neurons of INPUT module.

www.nature.com/scientificreports/

1 2Scientific RepoRts | 6:27624 | DOI: 10.1038/srep27624

an INPUT module and an OUTPUT module. The deterministic ADD module shown in Fig. 11 and SUB module
shown in Fig. 4 can be used here to simulate the deterministic ADD instruction and SUB instruction of ′Mu. The
INPUT module introduces the necessary spikes into the system by reading a spike train from the environment,
and the OUTPUT module outputs the computation result.

With each register r of ′Mu, a neuron σr in system Π″ is associated; the number stored in register r is encoded
by the number of spikes in neuron σr. If register r holds the number n ≥ 0, then neuron σr contains 5n spikes.
With each instruction li in .., a neuron σl i

 in system Π″ is associated. If neuron σl i
 has 6 spikes inside, it becomes

active and starts to simulate the instruction li. When neuron σ ′l h
 (associated with the label l′h of the halting

instruction of ′Mu) receives 6 spikes, the computation in ′Mu is completely simulated by the system Π″; the number
of spikes emitted into the environment from the output neuron, i.e., neuron σ8, corresponds to the result com-
puted by ′Mu (stored in register 8).

The tasks of loading 5g(x) spikes in neuron σ1 and 5y spikes in neuron σ2 by reading the spike train 10g(x)−1
10y−11 through input neuron σin can be carried out by the INPUT module shown in Fig. 13.

Initially, all the neurons contain no spike inside, with the exception that neuron σin has 15 spikes. It is assumed
at step t neuron σin reads the first spike from the environment. With 16 spikes inside, neuron σin becomes active by
using rule a16/a6 → +(a6, {I1, I2}) at step t + 1. It creates a synapse and sends 6 spikes to each of neurons σ I1

 and σ I2
.

Subsequently, neuron σin keeps inactive (for no rule can be used) until the second spike arrives at step t + g(x).

Figure 11. The deterministic ADD module of system Π′.

Figure 12. The universal register machine Mu from47.

www.nature.com/scientificreports/

13Scientific RepoRts | 6:27624 | DOI: 10.1038/srep27624

Neuron σ I1
 has 6 spikes and uses rule a6/a → +(λ, {I2, 1}) at step t + 2 it creates a synapse to neurons σ I2

 and σ1 and
sends 5 spikes to each of the two neurons. Meanwhile, neuron σ I2

 creates a synapse to neuron σ I2
 and sends 5 spikes

to it. From step t + 3 on, neuron σ I1
 sends 5 spikes to neuron σ I1

 and exchanges 5 spikes with neuron σ I2
 in each step.

At step t + g(x), neuron σin receives the second spike from the environment. By then it accumulates 11 spikes
inside. At step t + g(x) + 1, neuron σin fires by using spiking rule a11/a3 → a3, and sends 3 spikes to neurons σ I1

 and
σ I2

. Each of neurons σ I1
 and .. contains 8 spike, which will be remained in σin.

At step t + g(x) + 2, neuron σ I1
 applies synapse deletion rule a8/a → −(λ, {I1}) and removes the synapse to

neuron σ I0
, meanwhile neuron σ I2

 removes the synapse to neuron σ I1
. The two neurons stop to exchange spikes

with each other. At step t + g(x) + 3, neuron σ I1
 has 7 spikes and fires by using spiking rule a7/a5 → a5, and sends

5 spikes to neuron σ1. In the next step, neuron σ I1
 removes the synapse to neuron σ1, and cannot send spikes to

neuron σ1.
In general, in each step from step t + 3 to t + g(x) +1, neuron σ1 receives 5 spikes from neuron σ I1

, in total
receiving 5(g(x) − 1) spikes; at step t + g(x) + 2, no spike arriving in neuron σ1, and at step t + g(x) + 3, 5 spikes
reaching neuron σ1. In this way, neuron σ1 accumulates 5g(x) spikes, which simulates number g(x) is stored in
register 1 of ′Mu.

At step t + g(x) + 2, neuron σin contains 8 spikes such that rule a8/a6 → + (a6, {I3, I4}) is used, creating a synapse
and sends 6 spikes to each of neurons σ I3

 and σ I4
. At step t + g(x) + 3, neurons σ I3

 and σ I4
 create synapses to each

other, meanwhile neuron σ I3
 creates a synapse to neuron σ2. From step t + g(x) + 4 on, neuron σ I3

 begins to
exchange 5 spikes with σ I4

 and send 5 spikes to neuron σ2 in each step. At step t + g(x) + y, neuron σin receives the
third spike from the environment, accumulating 3 spikes inside. One step later, it fires by using spiking rule
a3/a2 → a2, sending 2 spikes to neurons σ I1

, σ I2
, σ I3

 and σ I4
. With 2 spikes inside, neuron σ1 removes its synapse to

neuron σ1 by rule a2 → −(λ, {1}); while neuron σ I2
 forgets the two spikes by forgetting rule a2 → λ. By receiving 2

spikes from neuron σin, neurons σ I3
 and σ I4

 contain 7 spikes. At step t + g(x) + y + 2, neuron σ I3
 fires by using rule

a7/a3 → a3 and sends 3 spikes to neurons σ2 and σ I4
. The number of spikes in neuron σ2 is 5(y − 1) + 3. Neuron σ I4

consumes 6 spikes, creates a synapse and sends 6 spikes to neuron σl0

. This means system Π'' starts to simulate the
initial instruction l0 of ′Mu.

At step t + g(x) + y + 3, neuron σ I3
 has 4 spikes, and it becomes active by rule a4/a → −(λ, {I4}), and removes

its synapse to neuron σ I3
 and ends with 3 spikes. In the next step, neuron σ I3

 fires by using spiking rule a3/a2 → a2,
emitting 2 spikes to neuron σ2. In this way, the number of spikes in neuron σ2 becomes 5(y − 1) + 3 + 2 = 5y,
which indicates number y is stored in register 2 of ′Mu.

The deterministic ADD module shown in Fig. 11 and SUB module shown in Fig. 4 can be used to simulate
ADD and SUB instructions of ′Mu. The FIN module shown in Fig. 7 can be used to output the computation result
with changing neuron σ1 into σ8.

Until now, we have used

•	 9 neurons for 9 registers,
•	 25 neurons for 25 labels,
•	 20 neurons for 10 ADD instructions,
•	 28 neurons for 14 SUB instruction,
•	 5 additional neurons in the INPUT module,

Figure 13. The INPUT module of system Π″.

www.nature.com/scientificreports/

1 4Scientific RepoRts | 6:27624 | DOI: 10.1038/srep27624

which comes to a total of 87 neurons.
This concludes the proof.

Discussion and Future Works
In this work, a novel variant of SN P systems, namely SN P systems with self-organization, is introduced. As
results, it is proven that the systems are Turing universal, i.e., they can compute and accept the family of sets of
Turing computable natural numbers. With 87 neurons, the system can compute any Turing computable recursive
function, thus achieving Turing universality.

There has been a research focus on the construction of small universal SN P with less computing resource, i.e.
less number of neuron in use17,48–52. It is of interest that whether we can reduce the number of neurons in univer-
sal SN P systems with self-organization as function computing devices. A possible way is to construct ADD-ADD,
ADD-SUB and SUB-ADD modules to perform particular consecutive ADD-ADD, ADD-SUB, and SUB-ADD
instructions of ′Mu.

SN P systems with learning function/capabiliy is a promising direction. Learning strategies and feedback
mechanism have been intensively studied and investigated in conventional artificial neural networks. It is worthy
to look into these techniques and transplant these ideas into SN P systems with self-organization.

In research of using artificial neural networks to recognize digital English letters, database MNIST (Mixed
National Institute of Standards and Technology database) is widely used for training various letter recognition
systems53, and for training and testing in the field of machine learning54. For further research, SN P systems with
self-organization may be used to recognize handwritten digits letters and other possible pattern recognition prob-
lems. Since the data structure of SN P systems is binary sequences, an extra task of transmitting letters or pictures
into binary sequences should be addressed. A possible way is transmitting digital numbers of pixels of pictures to
binary form. Also, local binary pattern method, can be used to transmit pictures to binary forms.

Bioinformatics is s an interdisciplinary field that develops methods and software tools for understanding bio-
logical data55. Artificial intelligence based methods and data mining strategy have been used in processing bio-
logical data, see e.g.56–62, it is worthy to processing biological data by SN P systems, such as DNA motif finding63,64,
nuclear export signal identification65,66.

References
1. Chen, X., Perez-Jimenez, M. J., Valenciacabrera, L., Wang, B. & Zeng, X. Computing with viruses. Theor. Comput. Sci. 623, 146–159

(2016).
2. Zhang, X., Tian, Y. & Jin, Y. A knee point-driven evolutionary algorithm for many-objective optimization. IEEE T. Evolut. Compu.

16, 35–41 (2015).
3. Zhang, X., Tian, Y., Cheng, R. & Jin, Y. An efficient approach to nondominated sorting for evolutionary multiobjective optimization.

IEEE T. Evolut. Compu. 19, 201–213 (2015).
4. Gerstner, W. & Kistler, W. M. Spiking neuron models: single neurons, populations, plasticity (Cambridge university press, 2002).
5. Hagan, M. T., Demuth, H. B. & Beale, M. H. Neural network design (Pws Publishing Boston, 1996).
6. Ghosh-Dastidar, S. & Adeli, H. Spiking neural networks. Int. J. Neural Syst. 19, 295–308 (2009).
7. Ionescu, M., Păun, Gh. & Yokomori, T. Spiking neural P systems. Fund. Inform. 71, 279–308 (2006).
8. Maass, W. Networks of spiking neurons: the third generation of neural network models. Neural Networks 10, 1659–1671 (1997).
9. Pan, L. & Păun, Gh. Spiking neural P systems: an improved normal form. Theor. Comput. Sci. 411, 906–918 (2010).

10. Song, T. & Pan, L. Spiking neural P systems with rules on synapses working in maximum spiking strategy. IEEE T. Nanobiosci. 14,
465–477 (2015).

11. Cavaliere, M. et al. Asynchronous spiking neural P systems. Theor. Comput. Sci. 410, 2352–2364 (2009).
12. Song, T. & Pan, L. Spiking neural P systems with rules on synapses working in maximum spikes consumption strategy. IEEE T.

Nanobiosci. 14, 37–43 (2015).
13. Song, T., Pan, L. & Păun, Gh. Asynchronous spiking neural P systems with local synchronization. Inform. Sciences 219, 197–207

(2012).
14. Păun, Gh. Spiking neural P systems with astrocyte-like control. J. Univers. Comput. Sci. 13, 1707–1721 (2007).
15. Chen, H., Freund, R., Ionescu, M., Păun, Gh. & Pérez-Jiménez, M. J. On string languages generated by spiking neural P systems.

Fund. Inform. 75, 141–162 (2007).
16. Zeng, X., Xu, L., Liu, X. & Pan, L. On languages generated by spiking neural P systems with weights. Inform. Sciences 278, 423–433

(2014).
17. Păun, A. & Păun, Gh. Small universal spiking neural P systems. Biosystems 90, 48–60 (2007).
18. Song, T., Pan, L., Jiang, K., Song, B. & Chen, W. Normal forms for some classes of sequential spiking neural P systems. IEEE T.

Nanobiosci. 12, 255–264 (2013).
19. Pan, L. & Păun, Gh. Spiking neural P systems with anti-spikes. Int. J. Comput. Commun. 4, 273–282 (2009).
20. Pan, L., Wang, J., Hoogeboom, H. J. & Pérez-Jiménez, M. J. Spiking neural P systems with weights. Neural Comput. 22, 2615–2646

(2010).
21. Pan, L., Wang, J. & Hoogeboom, H. J. Spiking neural P systems with astrocytes. Neural Comput. 24, 805–825 (2012).
22. Song, T., Wang, X., Zhang, Z. & Chen, Z. Homogenous spiking neural P systems with anti-spikes. Neural Comput. Appl. 24,

1833–1841 (2013).
23. Zeng, X., Zhang, X. & Pan, L. Homogeneous spiking neural P systems. Fund. Inform. 97, 275–294 (2009).
24. Zeng, X., Zhang, X., Song, T. & Pan, L. Spiking neural P systems with thresholds. Neural Comput. 26, 1340–1361 (2014).
25. Wang, J., Shi, P., Peng, H., Pérez-Jiménez, M. J. & Wang, T. Weighted fuzzy spiking neural P systems. IEEE T. Fuzzy Syst. 21, 209–220

(2013).
26. Peng, H. et al. Fuzzy reasoning spiking neural P system for fault diagnosis. Inform. Sciences 235, 106–116 (2013).
27. Ibarra, O. H., Păun, A. & Rodrguez-Patón, A. Sequential SNP systems based on min/max spike number. Theor. Comput. Sci. 410,

2982–2991 (2009).
28. Song, T., Zou, Q., Li, X. & Zeng, X. Asynchronous spiking neural P systems with rules on synapses. Neurocomputing 151, 1439–1445

(2015).
29. Cabarle, F. G. C., Adorna, H. N., Pérez-Jiménez, M. J. & Song, T. Spiking neural P systems with structural plasticity. Neural Comput.

Appl. 26, 1905–1917 (2015).
30. Ionescu, M. & Sburlan, D. Several applications of spiking neural P systems. Proceedings of the Fifth Brainstorming Week on

Membrane Computing, Sevilla, Spain (2007).

www.nature.com/scientificreports/

1 5Scientific RepoRts | 6:27624 | DOI: 10.1038/srep27624

31. Adl, A., Badr, A. & Farag, I. Towards a spiking neural P systems OS. arXiv preprint arXiv:1012.0326 (2010).
32. Liu, X., Li, Z., Liu, J., Liu, L. & Zeng, X. Implementation of arithmetic operations with time-free spiking neural P systems. IEEE T.

Nanobiosci. 14, 617–624 (2015).
33. Zeng, X., Song, T., Zhang, X. & Pan, L. Performing four basic arithmetic operations with spiking neural P systems. IEEE T.

Nanobiosci. 11, 366–374 (2012).
34. Zhang, G., Rong, H., Neri, F. & Pérez-Jiménez, M. J. An optimization spiking neural P system for approximately solving

combinatorial optimization problems. Int. J. Neural Syst. 24, 1440006 (2014).
35. Wang, T. et al. Fault diagnosis of electric power systems based on fuzzy reasoning spiking neural P systems IEEE T. Power Syst. 30

1182–1194 (2015).
36. Păun, Gh., Rozenberg, G. & Salomaa, A. The Oxford handbook of membrane computing (Oxford University Press, Inc., 2010).
37. Maass, W. & Bishop, C. M. Pulsed neural networks (MIT press, 2001).
38. Siegelmann, H. T. & Sontag, E. D. On the computational power of neural nets. J. Comput. Syst. Sci. 50, 132–150 (1995).
39. Buzsáki, G. Neural syntax: cell assemblies, synapsembles, and readers. Neuron 68, 362–385 (2010).
40. Tetzlaff, C., Kolodziejski, C., Timme, M., Tsodyks, M. & Wörgötter, F. Synaptic scaling enables dynamically distinct short-and long-

term memory formation. BMC Neurosci. 14, P415 (2013).
41. Fritzke, B. Growing cell structures a self-organizing network for unsupervised and supervised learning. Neural Networks 7,

1441–1460 (1994).
42. Ultsch, A. Self-organizing neural networks for visualisation and classification (Springer-Verlag, Berlin, 1993).
43. Gheorghe, M., Păun, Gh., Pérez-Jiménez, M. J. & Rozenberg, G. Spiking neural P systems, research frontiers of membrane

computing: Open problems and research topics. Int. J. Found. Comput. S. 24, 547–623 (2013).
44. Minsky, M. L. Computation: finite and infinite machines (Prentice-Hall, New Jersey, 1967).
45. Rozenberg, G. & Salomaa, A. Handbook of formal languages, vol. 3 (Springer-Verlag, Berlin, 1997).
46. Păun, Gh. Membrane computing: an introduction (Springer-Verlag, Berlin, 2002).
47. Korec, I. Small universal register machines. Theor. Comput. Sci. 168, 267–301 (1996).
48. Neary, T. A universal spiking neural P system with 11 neurons. Proceedings of the Eleventh International Conference on Membrane

Computing, Jena, Germany (2010).
49. Pan, L. & Zeng, X. A note on small universal spiking neural P systems. In Lect. Notes Comput. Sci. vol. 5957, 436–447 (Springer-

Verlag, Berlin, 2010).
50. Păun, A. & Sidoroff, M. Sequentiality induced by spike number in SNP systems: small universal machines. Membrane Computing,

333–345 (Springer-Verlag, Berlin, 2012).
51. Song, T., Jiang, Y., Shi, X. & Zeng, X. Small universal spiking neural P systems with anti-spikes. J. Comput. Theor. Nanos. 10,

999–1006 (2013).
52. Zhang, X., Zeng, X. & Pan, L. Smaller universal spiking neural P systems. In Annales Societatis Mathematicae Polonae. Series 4:

Fundamenta Informaticae, vol. 87, 117–136 (2008).
53. Burges, C. J. A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Disc. 2, 121–167 (1998).
54. Liu, C.-L., Nakashima, K., Sako, H. & Fujisawa, H. Handwritten digit recognition: benchmarking of state-of-the-art techniques.

Pattern Recogn. 36, 2271–2285 (2003).
55. Bioinformatics-Wikipedia, the free encyclopedia., 5 May 2016.
56. Zou, Q., Li, J., Song, L., Zeng, X. & Wang, G. Similarity computation strategies in the microRNA disease network: a survey. Brief

Funct. Genomic 15, 55–64 (2015).
57. Lin, C. et al. LibD3C: Ensemble classifiers with a clustering and dynamic selection strategy. Neurocomputing 123, 424–435 (2014).
58. Liu, B. et al. Pse-in-One: a web server for generating various modes of pseudo components of DNA, RNA, and protein sequences.

Nucleic Acids Res. W1, W65–W71 (2015).
59. Zou, Q., Hu, Q., Guo, M. & Wang, G. Halign: Fast multiple similar DNA/RNA sequence alignment based on the centre star strategy.

Bioinformatics 31, 2475–2481 (2015).
60. Zeng, J., Li, D., Wu, Y., Zou, Q. & Liu, X. An empirical study of features fusion techniques for protein-protein interaction prediction.

Curr. Bioinform. 11, 4–12 (2016).
61. Yunfeng, W. & S., K. Combining least-squares support vector machines for classification of biomedical signals: a case study with

knee-joint vibroarthrographic signals. J Exp. Theor. Artif. In. 23, 63–77 (2011).
62. Song, L. et al. ndna-prot: identification of DNA-binding proteins based on unbalanced classification. BMC Bioinformatics 15, 1

(2014).
63. Liu, B., Liu, F., Fang, L., Wang, X. & Chou, K. repDNA: a python package to generate various modes of feature vectors for DNA

sequences by incorporating user-defined physicochemical properties and sequence-order effects. Bioinformatics 31, 1307–1309
(2015).

64. Zeng, X., Liao, Y., Liu, Y. & Zou, Q. Prediction and validation of disease genes using hetesim scores. IEEE ACM T Comput. Bi., doi:
10.1109/TCBB.2016.2520947 (2016).

65. Zou, Q., Li, J., Song, L., Zeng, X. & Wang, G. Similarity computation strategies in the microrna-disease network: a survey. BRIEF
Funct. Genomic 15, 55–64 (2016).

66. Zeng, X., Zhang, X. & Zou, Q. Integrative approaches for predicting microrna function and prioritizing disease-related microRNA
using biological interaction networks. Brief Bioinform. 17, 193–203 (2015).

Acknowledgements
The research is under the auspices of National Natural Science Foundation of China (Nos 41276135, 31172010,
61272093, 61320106005, 61402187, 61502535, 61572522 and 61572523), Program for New Century Excellent
Talents in University (NCET-13-1031), 863 Program (2015AA020925), and Fundamental Research Funds for the
Central Universities (15CX05015A).

Author Contributions
T.S. and X.W. contributed the main idea, X.W. and F.G. performed the analysis and theoretical proofs, P.Z. and
X.W. wrote the paper. All authors reviewed the manuscript.

Additional Information
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Wang, X. et al. On the Computational Power of Spiking Neural P Systems with
Self-Organization. Sci. Rep. 6, 27624; doi: 10.1038/srep27624 (2016).

www.nature.com/scientificreports/

1 6Scientific RepoRts | 6:27624 | DOI: 10.1038/srep27624

This work is licensed under a Creative Commons Attribution 4.0 International License. The images
or other third party material in this article are included in the article’s Creative Commons license,

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license,
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this
license, visit http://creativecommons.org/licenses/by/4.0/

http://creativecommons.org/licenses/by/4.0/

	On the Computational Power of Spiking Neural P Systems with Self-Organization
	Results
	Methods
	Spiking Neural P Systems with Self-Organization.
	As number generator.
	Proof.

	As number acceptor.
	Proof.

	As function computing device.
	Proof.

	Discussion and Future Works
	Acknowledgements
	Author Contributions
	Figure 1.  Module ADD simulating the ADD instruction.
	Figure 2.  The dynamic transformation of topological structure and the numbers of spikes in neurons of ADD module during the ADD instruction simulation with neuron finally activated.
	Figure 3.  The dynamic transformation of topological structure and the numbers of spikes in neurons of ADD module during the ADD instruction simulation with neuron finally activated.
	Figure 4.  Module SUB simulating the SUB instruction.
	Figure 5.  The dynamic transformation of topological structure and the numbers of spikes in involved neurons in the SUB instruction simulation with neuron finally activated.
	Figure 6.  The dynamic transformation of topological structure and the numbers of spikes in involved neurons in the SUB instruction simulation with neuron finally activated.
	Figure 7.  Outputting the computation result.
	Figure 8.  The dynamic transformation of topological structure of the FIN module and the numbers of spikes in the neurons of FIN module and the environment.
	Figure 9.  The INPUT module of system Π′.
	Figure 10.  The dynamic transformation of topological structure of INPUT module and the numbers of spikes in the neurons of INPUT module.
	Figure 11.  The deterministic ADD module of system Π′.
	Figure 12.  The universal register machine Mu from47.
	Figure 13.  The INPUT module of system Π″.

 application/pdf

 On the Computational Power of Spiking Neural P Systems with Self-Organization

 srep , (2016). doi:10.1038/srep27624

 Xun Wang
 Tao Song
 Faming Gong
 Pan Zheng

 doi:10.1038/srep27624

 Nature Publishing Group

 © 2016 Nature Publishing Group

 © 2016 Macmillan Publishers Limited
 10.1038/srep27624
 2045-2322

 Nature Publishing Group

 permissions@nature.com

 http://dx.doi.org/10.1038/srep27624

 doi:10.1038/srep27624

 srep , (2016). doi:10.1038/srep27624

 True

