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On the Computational Power of 
Spiking Neural P Systems with  
Self-Organization
Xun Wang1, Tao Song1,2, Faming Gong1 & Pan Zheng2

Neural-like computing models are versatile computing mechanisms in the field of artificial intelligence. 
Spiking neural P systems (SN P systems for short) are one of the recently developed spiking neural 
network models inspired by the way neurons communicate. The communications among neurons are 
essentially achieved by spikes, i. e. short electrical pulses. In terms of motivation, SN P systems fall 
into the third generation of neural network models. In this study, a novel variant of SN P systems, 
namely SN P systems with self-organization, is introduced, and the computational power of the 
system is investigated and evaluated. It is proved that SN P systems with self-organization are capable 
of computing and accept the family of sets of Turing computable natural numbers. Moreover, with 
87 neurons the system can compute any Turing computable recursive function, thus achieves Turing 
universality. These results demonstrate promising initiatives to solve an open problem arisen by Gh 
Păun.

In the central nervous system, there are abundant amount of computational intelligence precipitated throughout 
millions of years of evolution. The computational intelligence has provided plenty of inspirations to construct 
powerful computing models and algorithms1–3. Neural-like computing models are a class of powerful models 
inspired by the way how neurons communicate. The communication among neurons is essentially achieved by 
spikes, i.e. short electrical pulses. The biological phenomenon has been intensively investigated in the field of 
neural computation4. Using different mathematic approaches to describe neural spiking behaviours, various 
neural-like computing models have been proposed, such as artificial neural networks5 and spiking neural net-
works6. In the field of membrane computing, a kind of distributed and parallel neural-like computation model, 
named spiking neural P systems (SN P systems), were proposed in 20067. SN P systems are widely considered as 
a promising variant of the third generation of neural network models8.

Generally, an SN P system can be represented by a directed graph, where neurons are placed in nodes and 
the synapses are denoted using arcs. Every neuron can contain a number of spikes and a set of firing (or spiking) 
rules. Following the firing rules, a neuron can send information encoded in spikes to other neurons. Input neu-
rons read spikes from the environment, and output neurons emit spikes into the environment. The computation 
result can be embodied in various ways. One of the common approaches is the time elapsed between the first two 
consecutive spikes sent into the environment9,10 and the total number of spikes emitted into the environment11–13.

For the past decade, there have been quite a few research efforts put forward to SN P systems. Notably, SN P 
systems can generate and accept the sets of Turing computable natural numbers14, generate the recursively enu-
merable languages15,16 and compute the sets of Turing computable functions17. Inspired by different biological 
phenomena and mathematical motivations, lots of variants of SN P systems have been proposed, such as SN P 
systems with anti-spikes18,19, SN P systems with weight20, SN P systems with astrocyte21, homogenous SN P sys-
tems22,23, SN P systems with threshold24, fuzzy SN P systems25,26, sequential SN P systems27, SN P systems with 
rules on synapses28, SN P systems with structural plasticity29. For applications, SN P systems are used to design 
logic gates, logic circuites30 and operating systems31, perform basic arithmetic operations32,33, solve combinatorial 
optimization problems34, diagnose fault of electric power systems35.

SN P systems are known as a class of neural-like computing models under the framework of membrane 
computing36. Spiking neural network (shortly named SNN) is a well known candidate of siking neural network 
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models37, which incorporates the concept of time into their operating model, besides neuronal and synaptic state 
in general artificial neural networks, The neuron in SNN cannot fire at each propagation cycle, but only when 
a membrane potential reaches a specific value. When a neuron fires, it generates a signal which travels to other 
neurons which, in turn, increase or decrease their potentials in accordance with this signal. In SN P systems, spik-
ing rules, denoted by formal production in grammar theory of formal languages, is used to describe the neuron's 
spiking behaviour, which determine the conditions of triggering spiking, the number of spikes consumed, and 
the number of spikes emitting to the neighboring neurons. The spikes from different neurons can be accumulated 
in the target neuron for further spiking. In terms of motivation of models, SN P systems also fall into the spiking 
neural network models, i.e., the third generation of neural network models.

Since SN P systems have more fundamental data structure (spike trains, i.e., binary strings), it performs well 
in achieving significant computation power with using a small number of units (neurons). It was proved by Gh 
Păun that 49 neurons are sufficient for SN P systems to achieve Turing universality. But, for conventional arti-
ficial neural networks, it was shown that 886 sigmoid function based processors are needed to achieve Turing 
universality38.

In the nervous system, synaptic plasticity forms the cell assemblies with the self-organization of neurons, 
which induces ordered or even synchronized neural dynamics replicating basic processes of long-term mem-
ory39,40. The self-organizing principle in the developing nervous system and its importance for preserving and 
continuing neural system development provide us insights on how neural-like networks might be reorganized 
and configured in response to environment changes. Enlightened by the biological fact, self-organizing artificial 
neural networks with unsupervised and supervised learning have been proposed and gain their popularity for 
visualisation and classification41,42. It is still an open problem as formulated by Gh Păun in ref. 43, to construct 
SN P systems with self-organization and to use the system to perform possible computer vision and pattern rec-
ognition tasks.

Results
In this research, a novel variant of SN P systems, namely SN P systems with self-organization, is proposed and 
developed. The system initially has no synapse, but the synapses can be dynamically formed during the computa-
tion, which exhibits the self-organization behaviour. In the system, creation and deletion rules are used to create 
and delete synapses. The applications of synapse creation and deletion rules are controlled by the states of the 
involved neurons, i.e., the number of spikes contained in the neurons. The computational power of the system is 
investigated as well. As a result, it demonstrates that SN P systems with self-organization can compute and accept 
any set of Turing computable natural numbers. Moreover, with 87 neurons, the system can compute any Turing 
computable recursive function, ergo achieves Turing universality.

Before stating the results in mathematical forms, some notations should be introduced. NmSPSOall(creh, delg, 
ruler) (resp. NmSPSOacc(creh′, delg′, ruler′)) denotes the family of sets of numbers computed (resp. accepted) by SN 
P systems with self-organization of degree m, where h (resp. h′) indicates the maximal number of synapses that 
can be created using a synapse creation rule, g (resp. g′) is the maximal number of synapses that can be deleted by 
using a synapse deletion rule, r (resp. r′) is the maximal number of rules in each neuron, and the subscript all indi-
cates the computation result is encoded by the number of spikes emitted into the environment (resp. the subscript 
acc indicates the system works in the accepting mode). If the parameters are not bounded, i.e., there is no limit 
imposed on them, then they are replaced with *. NRE denotes the family of Turing computable sets of numbers44.

The main results of this work can be mathematically depicted by the following theorems.

Theorem 1. N*SPSOall(cre*, del*, rule5) = NRE.
Theorem 2. N*SPSOacc(cre*, del*, rule5) = NRE.
Theorem 3. There is a universal SN P system with self-organization having 87 neurons for computing functions.

These results show that SN P systems with self-organization are powerful computing models, i.e., they are 
capable of doing what Turing machine can do. Also, they provide potential and theoretical feasibility of using SN 
P systems to solve real-life problems, such as pattern recognition and classification.

In SN P system with self-organization, it has no initially designed synapses. The synapses can be created or 
deleted according to the information contained in involved neurons during the computation. In previous work, it 
was found that the information diversing ability of synapses had some programable feature for SN P systems, but 
the computation power of SN P systems without initial synapses is an open problem. Although this is not the first 
time the feature of creating or deleting synapses investigated in SN P systems, see e.g. SN P systems with structural 
plasticity, it is quite the first attempt to construct SN P systems has no initial synapses.

Methods
In this section, it starts by the mathematical definition of SN P system with self-organization, and then the com-
putation power of SN P systems with self-organization is investigated as number generator, acceptor and function 
computing devices. It is proved in constructive ways that SN P systems with self-organization can compute and 
accept the family of sets of Turing computable natural numbers. With 87 neurons, such system can compute any 
Turing computable recursive function.

Spiking Neural P Systems with Self-Organization. Before introducing the definition of SN P system 
with self-organization, some prerequisites of basic concepts of formal language theory45 are recalled.

For an alphabet V, V* denotes the set of all finite strings of symbols from V, the empty string is denoted by λ, 
and the set of all nonempty strings over V is denoted by V+. When V = {a} is a singleton, then we write simply a* 
and a+ instead of {a}*, {a}+. A regular expression over an alphabet V is defined as follows: (1) λ and each a ∈ V is 
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a regular expression; (2) if E1 and E2 are regular expressions over V, then (E1)(E2), (E1) ∪ (E2), and (E1)+ are regular 
expressions over V; (3) nothing else is a regular expression over V.

For each regular expression E, a language L(E) is associated, defined in the following way: (1) L(λ) = {λ} and 
L(a) = {a}, for all a ∈ V, (2) L((E1)∪(E2)) = L(E1) ∪ L(E2), L((E1)(E2)) = L(E1)L(E2) and L((E1)+) = (L(E1))+ for all 
regular expressions E1, E2 over V. Unnecessary parentheses can be omitted when writing a regular expression, and 
(E)+ ∪ {λ} can also be written as E*. By NRE we denote the family of Turing computable sets of numbers. (NRE is 
the family of length sets of recursively enumerable languages–those recognized by Turing machines).

An SN P system with self-organization of degree m ≥ 1 is a construct of the form

Π = …O s s s syn in out( , , , , , , , )m1 2 0

where

•	 O = {a} is a singleton, where a is called the spike;
•	 σ1, σ2, …, σm are neurons of the form σi = (ni, Ri) with 1 ≤ i ≤ m, where

 – ∈ni  is the initial number of spikes contained in neuron σi;
 – Ri is a finite set of rules in neuron σi of the following three forms:

(1)   spiking rule: E/ac → ap; d, where E is a regular expression over O, d ≥ 0 and c ≥ p ≥ 0;
(2)  synapse creation rule: E′/ac′ → +(ap′, cre(i)), where E′ is a regular expression over O, cre(i) ⊆ {σ1, σ2, …, 
σm}/{σi} and c′ ≥ p′ > 1;

(3)  synapse deletion rule: E″/ac″ → −(λ, del(i)), where E″ is a regular expression over O, del(i) ⊆ {σ1, σ2, …, 
σm}/{σi} and c″ ≥ 1;

•	 syn0 = 0/ is the initial set of synapses, which means no synapse is initially set; at any moment t, the set of syn-
apses is denoted by synt ⊆ {1, 2, …, m} × {1, 2, …, m}.

•	 in, out ∈ {1, 2, …, m} indicates the input and output neuron, respectively.

A spiking rule of the form E/ac → ap; d is applied as follows. If neuron σi contains k spikes, and ak ∈ L(E), k ≥ c, 
then rule E/ac → ap; d ∈ Ri can be applied. It means that c spikes are consumed and removed from neuron σi, i.e., 
k − c spikes are remained, while the neuron emits p spikes to its neighboring neurons after d steps. (It is a common 
practice in membrane computing to have a global clock defined. The clock is used to mark the time of the whole 
system and ensure the system synchronization.) If d = 0, then the p spikes are emitted out immediately, if d = 1, 
then the p spikes are emitted in the next step, etc. If the rule is used in step t and d ≥ 1, then in steps t, t + 1, ...,  
t + d − 1 the neuron is closed (this corresponds to the refractory period from neurobiology), so that it cannot 
receive new spikes (if a neuron tries to send spikes to a neuron in close status, then these particular spikes will be 
lost). In the step t + d, the neuron fires and regains open status, so it can receive spikes (which can be used starting 
with the step t + d + 1, when the neuron can again apply rules). It is possible that p is associated with value 0. In 
this case, neuron σi consumes c spikes without emitting any spike. Spiking rule with p = 0 is also called forgetting 
rule, by which a pre-defined number of spikes can be removed out of the neuron. If E = ac, then the rule can be 
written in the simplified form ac → ap; d, and if d = 0, then the rule can be simply written as E/ac → ap.

Synapse creation and deletion rules are used to create and delete synapses during the computation. Synapse 
creation rule E′/ac′ → +(ap′, cre(i)) is applied as follows. If neuron σi has k′ spikes such that ak′ ∈ L(E′), k′ ≥ c′, then 
the synapse creation rule is applied with consuming c′ spikes, creating synapses to connect neuron σi to each 
neuron in cre(i) and emitting p′ spikes to each neuron in cre(i). If neuron σi has k″ spikes such that ak″ ∈ L(E″) 
and k″ ≥ c″, then synapse deletion rule E″/ac″ → −(λ, del(i)) is applied, removing c″ spikes from neuron σi and 
deleting all the synapses connecting neuron σi to the neurons from del(i). With the synapse creation and deletion 
rules, E′ and E″ are regular expressions over O = {a}, which regulate the application of synapse creation and dele-
tion rules. This means that synapse creation and deletion rules can be used if and only if the neuron contain some 
particular numbers of spikes, i.e., the neuron is in some specific states. With the applications of synapse creation 
and deletion rules the system can dynamically rebuild its topological structure during the computation, which is 
herein defined as self-organization.

One neuron is specified as the input neuron, through which the system can read spikes from the environment. 
The output neuron has a synapse creation rule of the form E′/ac′ → +(ap′, {0}), where the environment is labelled 
by 0. By using the rule, the output neuron creates a synapse pointing to the environment, and then it can emit 
spikes into the environment along the created synapse.

For each time step, as long as there is one available rule in Ri, neuron σi must apply the rule. It is possible 
that there are more than one rule that can be used in a neuron at some moment, since spiking rules, synapse 
creation rules and synapse deletion rules may be associated with regular languages (according to their regular 
expressions). In this case, the neuron will non-deterministically uses one of the enabled rules. The system works 
sequentially in each neuron (at most one rule from each Ri can be used), and if parallelism is designed for the 
system, all the neurons at the same system level have at least one enabled rule activated.

The configuration of the system at certain moment is defined by three major factors which are the number of 
spikes contained in each neuron, the number of steps to wait until it becomes open and the current set of syn-
apses. With the notion, the initial configuration of the system is 〈n1/0, n2/0, …, nm/0, 0/〉. Using the spiking, forget-
ting, synapse creation and deletion rules as described above, we can define transitions among configurations. Any 
sequence of transitions starting from the initial configuration is called a computation. A computation halts, also 
called successful, if it reaches a configuration where no rule can be applied in any neuron in the system. For each 
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successful computation of the system, a computation result is generated, which is total the number of spikes sent 
to the environment by the output neuron.

System Π generates a number n as follows. The computation of the system starts from the initial configuration 
and finally halts, emitting totally n spikes to the environment. The set of all numbers computed in this way by Π 
is denoted by Nall(Π) (the subscript all indicates that the computation result is the total number of spikes emitted 
into the environment by the system). System Π can also work in the accepting mode. A number n is read through 
input neurons from the environment in form of spike train 10n−11, which will be stored in a specified neuron σ1 
in the form of f(n) spikes. If the computation eventually halts, then number n is said to be accepted by Π. The set 
of numbers accepted by Π is denoted by Nacc(Π).

It is denoted by NmSPSOall(creh, delg, ruler) (resp. NmSPSOacc(creh′, delg′, ruler′)) the family of sets of numbers 
computed (resp. accepted) by SN P systems with self-organization of degree m, where h (resp. h′) indicates the 
maximal number of synapses that can be created with using a synapse creation rule, g (resp. g′) is the maximal 
number of synapses that can be deleted with using a synapse deletion rule, r (resp. r′) is the maximal number of 
rules in each neuron, and the subscript all indicates the computation result is encoded by the number of spikes 
emitted into the environment (resp. the subscript acc indicates the system works in a accepting mode). If the 
parameters are not bounded, i.e., there is no limit imposed on them, then they are replaced with *.

In order to compute a function f : Nk → N by SN P systems with self-organization, k natural numbers n1, n2, …, 
nk are introduced in the system by reading from the environment a spike train (which is a binary sequence) 
= …− − −z 10 10 1 10 1n n n1 1 1k1 2 . The input neuron has a synapse pointing from the environment, by which the 

spikes can enter it. The input neuron reads a spike in each step corresponding to a digit 1 from the string z; other-
wise, no spike is received. Note that exactly k + 1 spikes are introduced into the system through the input neuron, 
i.e., after the last spike, it is assumed that no further spike is coming to the input neuron. The output neuron has a 
synapse pointing to the environment from it, by which the spikes can be emitted to the environment. The result 
of the computation is the total number of spikes emitted into the environment by the output neuron, hence pro-
ducing r spikes with r = f(n1, n2, …, nk).

SN P systems with self-organization can be represented graphically, which is easier to understand than that in 
a symbolic way. A rounded rectangle with the initial number of spikes and rules is used to represent a neuron and 
a directed edge connecting two neurons represents a synapse.

In the following proofs, the notion of register machine is used. A register machine is a construct M = (m, H, 
l0, lh, I), where m is the number of registers, H is the set of instruction labels, l0 is the start label, lh is the halt label 
(assigned to instruction HALT), and I is the set of instructions; each label from H labels only one instruction from 
I, thus precisele following forms:

•	 li: (ADD(r), lj, lk) (add 1 to register r and then go to one of the instructions with labels lj, lk),
•	 li: (SUB(r), lj, lk) (if register r is non-zero, then subtract 1 from it, and go to the instruction with label lj; other-

wise, go to the instruction with label lk),
•	 lh: HALT (the halt instruction).

As number generator. A register machine M computes a number n as follows. It starts by using initial 
instruction l0 with all registers storing number 0. When it reaches halt instruction lh, the number stored in register 
1 is called the number generated or computed by register machine M. The set of numbers generated or computed 
by register machine M is denoted by N(M). It is known that register machines compute all sets of numbers which 
are Turing computable, hence they characterize NRE, i.e., N(M) = NRE, where NRE is the family of Turing com-
putable sets of numbers44.

Without loss of generality, it can be assumed that in the halting configuration, all registers different from the 
first one are empty, and that the first register is never decremented during the computation (i.e., its content is only 
added to). When the power of two number generating devices D1 and D2 are compared, number zero is ignored; 
that is, N(D1) = N(D2) if and only if N(D1) − {0} = N(D2) − {0} (this corresponds to the usual practice of ignoring 
the empty string in language and automata theory).

Theorem 4. N*SPSOall(cre*, del*, rule5) = NRE.

Proof. It only has to prove NRE⊆N*SPSOall (cre*, del*, rule5), since the converse inclusion is straightforward 
from the Turing-Church thesis (or it can be proved by the similar technical details in Section 8.1 in ref. 46, but is 
cumbersome). To achieve this, we use the characterization of NRE by means of register machines in the generative 
mode. Let us consider a register machine M = (m, H, l0, lh, I) defined above. It is assumed that register 1 of M is the 
output register, which is never decremented during the computation. For each register r of M, let sr be the number 
of instructions of the form li: (SUB(r), lj, lk), i.e., the number of SUB instructions acting on register r. If there is 
no such SUB instruction, then sr = 0, which is the case for the first register r = 1. In what follows, a specific SN P 
system with self-organization Π is constructed to simulate register machine M.

System Π consists of three modules–ADD, SUB and FIN modules. The ADD and SUB modules are used to 
simulate the operations of ADD and SUB instructions of M; and the FIN module is used to output a computation 
result.

In general, with any register r of M, a neuron σr in system Π is associated; the number stored in register r is 
encoded by the number of spikes in neuron σr. Specifically, if register r stores number n ≥ 0, then there are 5n 
spikes in neuron σr. For each label li of an instruction in M, a neuron σl i

 is associated. During the simulation, 
when neuron σl i

 receives 6 spikes, it becomes active and starts to simulate instruction li: (OP(r), lj, lk) of M: the 
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process starts with neuron σl i
 activated, operates on the number of spikes in neuron σr as requested by OP, then 

sends 6 spikes into neuron σl j
 or σlk

, which becomes active in this way. Since there is no initial synapse in system 
Π, some synapses are created to pass spikes to target neurons with synapse creation rules, after that the created 
synapses will be deleted when simulation completes by synapse deletion rules. When neuron σlh

 (associated with 
the halting instruction lh of M) is activated, a computation in M is completely simulated by system Π.

The following describes the works of ADD, SUB, and FIN modules of the SN P systems with self-organization.
Module ADD (shown in Fig. 1): Simulating the ADD instruction li: (ADD(r), lj, lk).
Initially, there is no synapse in system Π, and all the neurons have no spike with exception that neuron σl0

 has 
6 spikes. This means system Π starts by simulating initial instruction l0. Let us assume that at step t, an instruction 
li: (ADD(r), lj, lk) has to be simulated, with 6 spikes present in neuron σl i

 (like σl0
 in the initial configuration) and 

no spike in any other neurons, except in those neurons associated with registers.
At step t, neuron σl i

 has 6 spikes, and synapse creation rule → +a a a l l r/ ( , { , , })i i
6 5 5 (1) (2)  is applied in σl i

, it 
generates three synapses connecting neuron σl i

 to neurons σli
(1), σli

(2) and σr. Meanwhile, it consumes 5 spikes (one 
spike remaining) and sends 5 spikes to each of neurons σli

(1), σli
(2) and σr. The number of spikes in neuron σr is 

increased by 5, which simulates adding 1 to register r of M. At step t + 1, neuron σl i
 deletes the three synapses 

created at step t by using rule λ→ −a l l r( , { , , })i i
(1) (2) . At the same moment, neuron σli

(2) uses synapse creation 
rule a5/a4 → + (a3, {lj, lk}), and creates two synapses to neurons σl j

 and σlk
, as well as sends 3 spikes to each of the 

two neurons. At step t + 2, neuron σli
(2) deletes the two synapses by using synapse deletion rule a → − (λ, {lj, lk}). 

In neuron σli
(1), there are 5 spikes at step t + 1 such that both of synapse creation rules a5/a4 → + (a3, {lj}) and 

a5/a4 → + (a3, {lk}) are enabled, but only one of them is non-deterministically used.

  –  If rule a5/a4 → + (a3, {lj}) is chosen to use, neuron σli
(1) creates a synapse and sends 3 spikes to neuron σl j

. In this 
case, neuron σl j

 accumulates 6 spikes, which means system Π starts to simulate instruction lj of M. One step 
later, with one spike inside neuron σli

(1) uses rule a → − (λ, {lj, lk}) to delete the synapse to neuron σl j
, and neu-

ron σlk
 removes the 3 spikes (from neuron σli

(2)) by the forgetting rule a3 → λ.
  –  If rule a5/a4 → + (a3, {lk}) is selected to apply, neuron σli

(1) creates a synapse and sends 3 spikes to neuron σlk
. 

Neuron σlk
 accumulates 6 spikes, which indicates system Π goes to simulate instruction lk of M. One step later, 

neuron σl j
 removes the 3 spikes by using forgetting rule a3 → λ, and the synapse from neuron σli

(1) to σlk
 is 

deleted by using rule a → − (λ, {lj, lk}) in neuron σli
(1).

Therefore, from firing neuron σl i
, system Π adds 5 spikes to neuron σr and non-deterministically activates one 

of the neurons σl j
 and σlk

, which correctly simulates the ADD instruction li: (ADD(r), lj, lk). When the simulation 
of ADD instruction is completed, the ADD module returns to its initial topological structure, i.e., there is no 
synapse in the module. The dynamic transformation of topological structure and the numbers of spikes in neu-
rons of ADD module during the ADD instruction simulation with neuron σl j

 or σlk
 finally activated is shown in 

Figs 2 and 3. In the figures, the spiking rules are omitted for clear illustration, neurons are represented by circles 
with the number of spikes and directed edges is used to represent the synapses.

Module SUB (shown in Fig. 4): Simulating the SUB instruction li: (SUB(r), lj, lk).
Given starting time stamp t, system Π simulates a SUB instruction li: (SUB(r), lj, lk). Let sr be the number of 

SUB instructions acting on register r and the set of labels of instructions acting on register r be …i i i{ , , , }s1 2 r
. 

Obviously, it holds ∈ …i i i i{ , , , }s1 2 r
.

Figure 1. Module ADD simulating the ADD instruction. 
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Figure 2. The dynamic transformation of topological structure and the numbers of spikes in neurons of 
ADD module during the ADD instruction simulation with neuron σl j

 finally activated.

Figure 3. The dynamic transformation of topological structure and the numbers of spikes in neurons of 
ADD module during the ADD instruction simulation with neuron σlk

 finally activated.

Figure 4. Module SUB simulating the SUB instruction. 
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At step t ,  neuron σl i
 has 6 spikes,  and becomes active by using synapse creation rule 

→ +a a a l l r/ ( , { , , })i i
6 5 4 (1) (2) , creating synapses and sending 4 spikes to each of neurons σli

(1), σli
(2) and σr. With 

4 spikes inside, neurons σli
(1) and σli

(2) keep inactive at step t + 1 because no rule can be used. In neuron σr, it has 
the following two cases.

  –  If neuron σr has 5n (n > 0) spikes (corresponding to the fact that the number stored in register r is n, and n > 0), 
then by receiving 4 spikes from neuron σl i

, it accumulates 5n + 4 spikes and becomes active by using rule 
→ + | = …+a a a a l l s i i i( ) / ( , { , , , , })s s s

4 5 8 6 (1) (2)
1 2 r

 at step t + 1. It creates a synapse to each of neurons σls
(1) and 

σls
(2) with = …s i i i, , , s1 2 r

 and sending 6 spikes to the neurons. By consuming 8 spikes, the number of spikes 
i n  n e u r o n  σ r  b e c o m e s  5 n  +  4  −  8  =  5 ( n  −  1 )  +  1  ( n  ≥  0 )  s u c h  t h a t  r u l e 

λ→ − | = …⁎a a l l s i i i( ) ( , { , , , , })s s s
5 (1) (2)

1 2 r
 is enabled and applied at step t + 2. With application of the rule, 

neuron σr removes the synapses from neuron σr to neurons σls
(1) and σls

(2), = …s i i i, , , s1 2 r
. Meanwhile, neu-

rons σls
(1) and σls

(2) with s ≠ i remove the 6 spikes by using forgetting rule a6 → λ, and neuron σli
(2) removes the 10 

spikes by forgetting rule a10 → λ. Neuron σli
(1) accumulates 10 spikes (4 spikes from neuron σl i

 and 6 spikes from 
neuron σr), and rule a10/a9 → + (a6, {lj}) is applied at step t + 2, creating a synapse and sending 6 spikes to neu-
ron σl j

. In this case, neuron σl j
 receives 6 spikes, which means system Π starts to simulate instruction lj of M. 

One step later, the synapse from neuron σli
(1) to neuron σl j

 is deleted by using synapse deletion rule a → − (λ, 
{lj}).

  –  If neuron σr has no spike (corresponding to the fact that the number stored in register r is 0), then after receiv-
ing 4 spikes from neuron σl i

, it has 4 spikes and rule → + | = …a a a l l s i i i/ ( , { , , , , })s s s
4 3 3 (1) (2)

1 2 r
 is used, 

creating a synapse to each of neurons σls
(1) and σls

(2) with = …s i i i, , , s1 2 r
 and sending 3 spikes to the neurons. 

Neuron σr remains one spike, and synapse deletion rule λ→ − | = …⁎a a l l s i i i( ) ( , { , , , , })s s s
5 (1) (2)

1 2 r
 is 

applied at step t + 2, removing the synapses from neuron σr to neurons σls
(1) and σls

(2), = …s i i i, , , s1 2 r
. At the 

same moment, neurons σls
(1) and σls

(2) with s ≠ i remove the 3 spikes by using forgetting rule a3 → λ, and neuron 
σli

(1) removes 7 spikes using spiking rule a7 → λ. Having 7 spikes, Neuron σli
(2) becomes active by using rule 

a7/a6 → + (a6, {lk}) at step t + 2, creating a synapse to neuron σlk
 and sending 6 spikes to neuron σlk

. In this case, 
neuron σlk

 receives 6 spikes, which means system Π starts to simulate instruction lk of M. At step t + 3, neuron 
σli

(2) uses rule a → − (λ, {lk}) to remove the synapse to neuron σlk
.

The simulation of SUB instruction performs correctly: System Π starts from σl i
 having 6 spikes and becoming 

active, and ends in neuron σl j
 receiving 6 spikes (if the number stored in register r is great than 0 and decreased 

by one), or in neuron σlk
 receiving 6 spikes (if the number stored in register r is 0).

When the simulation of SUB instruction is completed, the SUB module returns to its initial topological struc-
ture, i.e., there is no synapse in the module. The dynamic transformation of topological structure and the num-
bers of spikes in involved neurons in the SUB instruction simulation with neuron σl j

 (resp. neuron σlk
) finally 

activated is shown in Fig. 5 (resp. Fig. 6).
Module FIN (shown in Fig. 7) – outputting the result of computation.
Assume that at step t the computation in M halts, i.e., the halting instruction is reached. In this case, neuron 

σlh
 in Π receives 6 spikes. At that moment, neuron σ1 contains 5n spikes, for the number n ≥ 1 stored in register 1 

of M. With 6 spikes inside, neuron σlh
 becomes active by using rule a6/a5 → +(a2, {1}), creating a synapse to neu-

ron σ1 and sending 2 spikes to neuron σ1. Neuron σlh
 ends with one spike, and rule a → −(λ, {1}) is used, remov-

ing the synapse to neuron σ1 one step later.
After neuron σ1 receives the 2 spikes from neuron σlh

, the number of spikes in neuron σ1 becomes 5n + 2 and 
rule a2(a5)+/a → +(λ, {0}) is enabled and applied at step t + 2. By using the rule, neuron σ1 consumes one spike 
and creates a synapse to the environment. Neuron σ1 contains 5n + 1 spikes such that spiking rule a(a5)+/a5 → a is 
used, consuming 5 spikes and emitting one spike to the environment at step t + 3. Note that the number of spikes 
in neuron σ1 becomes 5(n − 1) + 1. So, if the number of spikes in neuron σ1 is not one, then neuron σ1 will fire 
again in the next step sending one spike into the environment. In this way, neuron σ1 can fire for n times, i.e., until 
the number of spikes in neuron σ1 reaches one. For each time when neuron σ1 fires, it sends one spike into the 
environment. So, in total, neuron σ1 sends n spikes into the environment, which is exactly the number stored in 
register 1 of M at the moment when the computation of M halts. When neuron σ1 has one spike, rule a → −(λ, {0})  
is used to remove the synapse from neuron σ1 to the environment, and system Π eventually halts.

The dynamic transformation of topological structure of the FIN module and the numbers of spikes in the 
neurons of FIN module and in the environment are shown in Fig. 8.

Based on the description of the work of system Π above, the register machine M is correctly simulated by 
system Π, i.e., N(M) = Nall(Π). We can check that each neuron in system Π has at most three rules, and no limit 
is imposed on the numbers of neurons and the synapses that can be created (or deleted) by using one synapse 
creation (or deletion) rule. Therefore, it concludes N*SPSOall(cre*, del*, rule5) = NRE.

This concludes the proof.

As number acceptor. Register machine can work in the accepting mode. Number n is accepted by register 
machine M′ as follows. Initially, number n is stored in the first register of M′ and all the other registers are empty. 
If the computation starting in this configuration eventually halts, then the number n is said to be accepted by 
register machine M′. The set of numbers accepted by register machine M′ is denoted by Nacc(M′). It is known 



www.nature.com/scientificreports/

8Scientific RepoRts | 6:27624 | DOI: 10.1038/srep27624

that all the sets of numbers in NRE can be accepted by register machine M′, even using the deterministic register 
machine; i.e. the machine with the ADD instructions of the form li: (ADD(r), lj, lk) where lj = lk (in this case, the 
instruction is written in the form li: (ADD(r), lj))44.

Theorem 5. N*SPSOacc(cre*, del*, rule5) = NRE.

Proof. It only has to prove NRE ⊆ N*SPSOacc (cre*, del*, rule5), since the converse inclusion is straightforward 
from the Turing-Church thesis. In what follows, an SN P system Π′ with self-organization working in accepting 
mode is constructed to simulate a deterministic register machine M′ = (m, H, l0, lh, I) working in the acceptive 
mode. Actually, the proof is given by modifying the proof of Theorem 4.

Each register r of M′ is associated with a neuron σr in system Π′, and for each instruction li of M′ a neuron σl i
 

is associated. A number n stored in register r is represented by 5n spikes in neuron σr.
The system Π′ consists of an INPUT module, deterministic ADD and SUB modules. The INPUT module is 

shown in Fig. 9, where all neurons are initially empty with the exception that input neuron σin has 8 spikes. Spike 
train 10n−11 is introduced into the system through input neuron σin, where the internal between the two spikes in 
the spike train is (n + 1) − 1 = n, which indicates that number n is going to be accepted by system Π′.

Assuming at step t neuron σin receives the first spike. At step t + 1, neuron σin contains 9 spikes, and rule 
a9/a6 → +(a6, {I1, I2}) is used, creating a synapse from neuron σin to neurons σ I1

 and σ I2
. Meanwhile, neuron σin 

sends 6 spikes to the two neurons. In neuron σin, 6 spikes are consumed and 3 spikes remain. With 6 spikes inside, 
neurons σ I1

 and σ I2
 become active at step t + 2. Neuron σ I1

 uses rule a6/a → +(λ, {I2}) to create a synapse to neu-
ron σ I2

; and neuron σ I2
 uses rule a6/a → +(λ, {I1, 1}) to create a synapse to each of neurons σ I1

 and σ1. Each of 
neurons σ I1

 and σ I2
 has 5 spikes left. From step t + 3 on, neurons σ I1

 and σ I2
 fire and begin to exchange 5 spikes 

between them. In this way, neuron σ1 receives 5 spikes from neurons σ I2
 at each step.

At step t + n, neuron σin receives the second spike from the environment, accumulating 4 spikes inside. At step 
t + n + 1, neuron σin fires for the second time by using spiking rule a4/a3 → a3, sending 3 spikes to neurons σ I1

 and 
σ I2

. Each of neurons σ I1
 and σ I2

 accumulates 8 spikes. At step t + n + 2, neuron σ I1
 uses synapse creation rule 

a8/a6 → +(a6, {l0}), creating a synapse to neuron σl0
 and sending 6 spikes to neuron σl0

. This means that system Π′ 
starts to simulate the initial instruction l0 of register machine M′. Meanwhile, neuron σ I2

 uses synapse deletion 
rule a8/a → −(λ, {I1}), removing the synapse from neuron .. to neuron σ I1

. In the next step, neuron σ I1
 creates a 

synapse to neuron σ1 and sends 5 spikes to neuron σ1 by using rule a7 → +(a5, {1}).

Figure 5. The dynamic transformation of topological structure and the numbers of spikes in involved 
neurons in the SUB instruction simulation with neuron σl j

 finally activated.
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From step t + 3 to t + n + 1, neuron σ1 receives 5 spikes in each step from neuron σ I2
, thus in total accumulat-

ing 5(n − 1) spikes. Neuron σ1 receives no spike at step t + n + 2, and gets 5 spikes from neuron σ I2
 at step 

t + n + 3. After that, no more spikes are sent to neuron σ I2
. Neuron σ1 contains 5n spikes, which indicates the 

number to be accepted by register machine M′ is n. At step t + n + 4, neuron σ I2
 uses rule a2 → −(λ, {1}), deleting 

the synapse to neuron σ1.
The dynamic transformation of topological structure of INPUT module and the numbers of spikes in the 

neurons of INPUT module are shown in Fig. 10.
The deterministic ADD module is shown in Fig. 11, whose function is rather clear. By receiving 6 spikes, neu-

ron σl i
 becomes active, creating a synapse and sending 5 spikes to each of neurons σr, σli

(1) and σli
(2). The number 

of spikes in neuron σr is increased by 5, which simulates the number stored in register 1 is increased by one. In the 
next step, neuron σl i

 uses rule λ→ −a l l r( , { , , })i i
(1) (2) , removing the synapses from neuron σl i

 to neurons σr, 
σli

(1) and σli
(2). In neurons σli

(1) and σli
(2), there are 5 spikes. The two neurons become active by using rule 

a5/a4 → +(a3, {lj}). Each of them creates a synapse to neuron σl j
 and emits 3 spikes to neuron σl j

. In this way, neu-
ron σl j

 accumulates 6 spikes inside, which means the system Π′ goes to simulate instruction lj of M′. The synapses 
from neuron σli

(1) and σli
(2) to neuron σl j

 will be removed by using synapse deletion rule a → −(λ, {lj}) in neurons 
σli

(1) and σli
(2).

Module SUB remains unchanged, as shown in Fig. 4. Module FIN is removed, with neuron σlh
 remaining in 

the system, but having no rule inside. When neuron σlh
 receives 6 spikes, it means that the computation of register 

machine M′ reaches instruction lh and stops. Having 6 spikes inside, neuron σlh
 cannot become active for no rule 

can be used. In this way, the work of system Π′ halts.

Figure 6. The dynamic transformation of topological structure and the numbers of spikes in involved 
neurons in the SUB instruction simulation with neuron σlk

 finally activated.

Figure 7. Outputting the computation result. 
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Based on the description of the implementation of system Π′ above, it is clear that the register machine M′ 
in acceptive mode is correctly simulated by the system Π′ working in acceptive mode, i.e., Nacc(M′) = Nacc(Π′).

We can check that each neuron in system Π′ has at most five rules, and no limit is imposed on the numbers 
of neurons and the synapses that can be created (or deleted) with using one synapse creation (or deletion) rule. 
Therefore, it concludes N*SPSOacc(cre*, del*, rule5) = NRE.

As function computing device. A register machine M can compute a function f : Nk → N as follows: the 
arguments are introduced in special registers r1, r2, …, rk (without loss of the generality, it is assumed that the 
first k registers are used). The computation starts with the initial instruction l0. if the register machine halts, i.e., 
reaches HALT instruction lh, the value of the function is placed in another specified register, labelled by rt, with all 
registers different from rt storing number 0. The partial function computed by a register machine M in this way is 
denoted by M(n1, n2, …, nk). All Turing computable functions can be computed by register machine in this way.

Several universal register machines for computing functions were defined. Let (ϕ0, ϕ1,…) be a fixed admissible 
enumeration of the unary partial recursive functions. A register machine Mu is said to be universal if there is a 
recursive function g such that for all natural numbers x, y we have ϕx(y) = Mu(g(x), y). As addressed by Minsky, 
universal register machine can compute any ϕx(y) by inputting a couple of numbers g(x) and y in registers 1 and 2,  
and the result can be obtained in register 047.

In the following proof of universality, a specific universal register machine Mu from47 is used, the machine 
Mu = (8, H, l0, lh, I) presented in Fig. 12. In this universal register machine Mu, there are 8 registers (numbered 
from 0 to 7) and 23 instructions, and the last instruction is the halting one. As described above, the input numbers 

Figure 8. The dynamic transformation of topological structure of the FIN module and the numbers of 
spikes in the neurons of FIN module and the environment. 

Figure 9. The INPUT module of system Π′. 
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(the “code” of the partial recursive function to compute and the argument for this function) are introduced in 
registers 1 and 2, and the result is outputted in register 0 when the machine Mu halts.

A modification is necessary to be made in Mu, because the subtraction operation in the register where the 
result is placed is not allowed in the construction of the previous Theorems, but register 0 of Mu is subject of such 
operations. That is why an extra register is needed - labeled with 8 - and the halt instruction lh of Mu should be 
replaced by the following instructions:

′ ′ .l l l l l l: ( (0), , ), : ( (8), ), :h h22 23 23 22SUB ADD HALT

Therefore, the modified universal register machine ′Mu has 9 registers, 24 ADD and SUB instructions, and 25 
labels. The result of a computation of ′Mu is stored in register 8

Theorem 6 There is a universal SN P system with self-organization having 87 neurons for computing functions.

Proof. An SN P system with self-organization Π″ is constructed to simulate the computation of the universal 
register machine ′Mu. Specifically, the system Π″ consists of deterministic ADD modules, SUB modules, as well as 

Figure 10. The dynamic transformation of topological structure of INPUT module and the numbers of 
spikes in the neurons of INPUT module. 
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an INPUT module and an OUTPUT module. The deterministic ADD module shown in Fig. 11 and SUB module 
shown in Fig. 4 can be used here to simulate the deterministic ADD instruction and SUB instruction of ′Mu. The 
INPUT module introduces the necessary spikes into the system by reading a spike train from the environment, 
and the OUTPUT module outputs the computation result.

With each register r of ′Mu, a neuron σr in system Π″ is associated; the number stored in register r is encoded 
by the number of spikes in neuron σr. If register r holds the number n ≥ 0, then neuron σr contains 5n spikes. 
With each instruction li in .., a neuron σl i

 in system Π″ is associated. If neuron σl i
 has 6 spikes inside, it becomes 

active and starts to simulate the instruction li. When neuron σ ′l h
 (associated with the label l′h of the halting 

instruction of ′Mu) receives 6 spikes, the computation in ′Mu is completely simulated by the system Π″; the number 
of spikes emitted into the environment from the output neuron, i.e., neuron σ8, corresponds to the result com-
puted by ′Mu (stored in register 8).

The tasks of loading 5g(x) spikes in neuron σ1 and 5y spikes in neuron σ2 by reading the spike train 10g(x)−1 
10y−11 through input neuron σin can be carried out by the INPUT module shown in Fig. 13.

Initially, all the neurons contain no spike inside, with the exception that neuron σin has 15 spikes. It is assumed 
at step t neuron σin reads the first spike from the environment. With 16 spikes inside, neuron σin becomes active by 
using rule a16/a6 → +(a6, {I1, I2}) at step t + 1. It creates a synapse and sends 6 spikes to each of neurons σ I1

 and σ I2
. 

Subsequently, neuron σin keeps inactive (for no rule can be used) until the second spike arrives at step t + g(x). 

Figure 11. The deterministic ADD module of system Π′. 

Figure 12. The universal register machine Mu from47.
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Neuron σ I1
 has 6 spikes and uses rule a6/a → +(λ, {I2, 1}) at step t + 2 it creates a synapse to neurons σ I2

 and σ1 and 
sends 5 spikes to each of the two neurons. Meanwhile, neuron σ I2

 creates a synapse to neuron σ I2
 and sends 5 spikes 

to it. From step t + 3 on, neuron σ I1
 sends 5 spikes to neuron σ I1

 and exchanges 5 spikes with neuron σ I2
 in each step.

At step t + g(x), neuron σin receives the second spike from the environment. By then it accumulates 11 spikes 
inside. At step t + g(x) + 1, neuron σin fires by using spiking rule a11/a3 → a3, and sends 3 spikes to neurons σ I1

 and 
σ I2

. Each of neurons σ I1
 and .. contains 8 spike, which will be remained in σin.

At step t + g(x) + 2, neuron σ I1
 applies synapse deletion rule a8/a → −(λ, {I1}) and removes the synapse to 

neuron σ I0
, meanwhile neuron σ I2

 removes the synapse to neuron σ I1
. The two neurons stop to exchange spikes 

with each other. At step t + g(x) + 3, neuron σ I1
 has 7 spikes and fires by using spiking rule a7/a5 → a5, and sends 

5 spikes to neuron σ1. In the next step, neuron σ I1
 removes the synapse to neuron σ1, and cannot send spikes to 

neuron σ1.
In general, in each step from step t + 3 to t + g(x) +1, neuron σ1 receives 5 spikes from neuron σ I1

, in total 
receiving 5(g(x) − 1) spikes; at step t + g(x) + 2, no spike arriving in neuron σ1, and at step t + g(x) + 3, 5 spikes 
reaching neuron σ1. In this way, neuron σ1 accumulates 5g(x) spikes, which simulates number g(x) is stored in 
register 1 of ′Mu.

At step t + g(x) + 2, neuron σin contains 8 spikes such that rule a8/a6 → + (a6, {I3, I4}) is used, creating a synapse 
and sends 6 spikes to each of neurons σ I3

 and σ I4
. At step t + g(x) + 3, neurons σ I3

 and σ I4
 create synapses to each 

other, meanwhile neuron σ I3
 creates a synapse to neuron σ2. From step t + g(x) + 4 on, neuron σ I3

 begins to 
exchange 5 spikes with σ I4

 and send 5 spikes to neuron σ2 in each step. At step t + g(x) + y, neuron σin receives the 
third spike from the environment, accumulating 3 spikes inside. One step later, it fires by using spiking rule 
a3/a2 → a2, sending 2 spikes to neurons σ I1

, σ I2
, σ I3

 and σ I4
. With 2 spikes inside, neuron σ1 removes its synapse to 

neuron σ1 by rule a2 → −(λ, {1}); while neuron σ I2
 forgets the two spikes by forgetting rule a2 → λ. By receiving 2 

spikes from neuron σin, neurons σ I3
 and σ I4

 contain 7 spikes. At step t + g(x) + y + 2, neuron σ I3
 fires by using rule 

a7/a3 → a3 and sends 3 spikes to neurons σ2 and σ I4
. The number of spikes in neuron σ2 is 5(y − 1) + 3. Neuron σ I4

 
consumes 6 spikes, creates a synapse and sends 6 spikes to neuron σl0

. This means system Π'' starts to simulate the 
initial instruction l0 of ′Mu.

At step t + g(x) + y + 3, neuron σ I3
 has 4 spikes, and it becomes active by rule a4/a → −(λ, {I4}), and removes 

its synapse to neuron σ I3
 and ends with 3 spikes. In the next step, neuron σ I3

 fires by using spiking rule a3/a2 → a2, 
emitting 2 spikes to neuron σ2. In this way, the number of spikes in neuron σ2 becomes 5(y − 1) + 3 + 2 = 5y, 
which indicates number y is stored in register 2 of ′Mu.

The deterministic ADD module shown in Fig. 11 and SUB module shown in Fig. 4 can be used to simulate 
ADD and SUB instructions of ′Mu. The FIN module shown in Fig. 7 can be used to output the computation result 
with changing neuron σ1 into σ8.

Until now, we have used

•	 9 neurons for 9 registers,
•	 25 neurons for 25 labels,
•	 20 neurons for 10 ADD instructions,
•	 28 neurons for 14 SUB instruction,
•	 5 additional neurons in the INPUT module,

Figure 13. The INPUT module of system Π″. 
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which comes to a total of 87 neurons.
This concludes the proof.

Discussion and Future Works
In this work, a novel variant of SN P systems, namely SN P systems with self-organization, is introduced. As 
results, it is proven that the systems are Turing universal, i.e., they can compute and accept the family of sets of 
Turing computable natural numbers. With 87 neurons, the system can compute any Turing computable recursive 
function, thus achieving Turing universality.

There has been a research focus on the construction of small universal SN P with less computing resource, i.e. 
less number of neuron in use17,48–52. It is of interest that whether we can reduce the number of neurons in univer-
sal SN P systems with self-organization as function computing devices. A possible way is to construct ADD-ADD, 
ADD-SUB and SUB-ADD modules to perform particular consecutive ADD-ADD, ADD-SUB, and SUB-ADD 
instructions of ′Mu.

SN P systems with learning function/capabiliy is a promising direction. Learning strategies and feedback 
mechanism have been intensively studied and investigated in conventional artificial neural networks. It is worthy 
to look into these techniques and transplant these ideas into SN P systems with self-organization.

In research of using artificial neural networks to recognize digital English letters, database MNIST (Mixed 
National Institute of Standards and Technology database) is widely used for training various letter recognition 
systems53, and for training and testing in the field of machine learning54. For further research, SN P systems with 
self-organization may be used to recognize handwritten digits letters and other possible pattern recognition prob-
lems. Since the data structure of SN P systems is binary sequences, an extra task of transmitting letters or pictures 
into binary sequences should be addressed. A possible way is transmitting digital numbers of pixels of pictures to 
binary form. Also, local binary pattern method, can be used to transmit pictures to binary forms.

Bioinformatics is s an interdisciplinary field that develops methods and software tools for understanding bio-
logical data55. Artificial intelligence based methods and data mining strategy have been used in processing bio-
logical data, see e.g.56–62, it is worthy to processing biological data by SN P systems, such as DNA motif finding63,64, 
nuclear export signal identification65,66.
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