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EigenGWAS: finding loci under selection through
genome-wide association studies of eigenvectors in
structured populations

G-B Chen1, SH Lee1,2, Z-X Zhu3, B Benyamin1 and MR Robinson1

We develop a novel approach to identify regions of the genome underlying population genetic differentiation in any genetic data
where the underlying population structure is unknown, or where the interest is assessing divergence along a gradient. By
combining the statistical framework for genome-wide association studies (GWASs) with eigenvector decomposition (EigenGWAS),
which is commonly used in population genetics to characterize the structure of genetic data, loci under selection can be
identified without a requirement for discrete populations. We show through theory and simulation that our approach can identify
regions under selection along gradients of ancestry, and in real data we confirm this by demonstrating LCT to be under selection
between HapMap CEU–TSI cohorts, and we then validate this selection signal across European countries in the POPRES
samples. HERC2 was also found to be differentiated between both the CEU–TSI cohort and within the POPRES sample,
reflecting the likely anthropological differences in skin and hair colour between northern and southern European populations.
Controlling for population stratification is of great importance in any quantitative genetic study and our approach also provides a
simple, fast and accurate way of predicting principal components in independent samples. With ever increasing sample sizes
across many fields, this approach is likely to be greatly utilized to gain individual-level eigenvectors avoiding the computational
challenges associated with conducting singular value decomposition in large data sets. We have developed freely available
software, Genetic Analysis Repository (GEAR), to facilitate the application of the methods.
Heredity (2016) 117, 51–61; doi:10.1038/hdy.2016.25; published online 4 May 2016

INTRODUCTION

In population genetics, eigenvectors have been routinely used to
quantify genetic differentiation across populations and to infer
demographic history (Cavalli-Sforza et al., 1996; Novembre et al.,
2008; Reich et al., 2009). More recently, eigenvectors are commonly
used as covariates in genome-wide association studies (GWASs) to
adjust for population stratification (Price et al., 2006). Eigenvectors are
usually estimated for each individual (individual-level eigenvectors,
involving the inversion of a N×N matrix, where N is sample size).
Theoretical studies have suggested that individual-level primary
eigenvectors are measures of population differentiation reflecting Fst
among subpopulations (Patterson et al., 2006; McVean, 2009; Bryc
et al., 2013) and can be interpreted as the divergence of individuals
from their most recent common ancestor. Eigenvectors can also be
estimated for each single-nucleotide polymorphism (SNP; SNP-level
eigenvectors that involve inversion of a M×M matrix; M is the
number of SNPs) and these SNP-level eigenvectors can be interpreted
as Fst metrics of each SNP (Weir, 1996). SNP-level eigenvectors from a
reference population are useful for revealing the population structure
of independent samples (Zhu et al., 2008) as they can be used to
project, or predict, the eigenvector values of individuals. However,
because of high-dimensional nature of GWAS data (commonly
expressed as M44N), direct estimation of SNP-level eigenvectors
is nearly impossible when using millions of SNPs.

Singular value decomposition (SVD) enables SNP-level eigenvalues
to be obtained in a computationally efficient manner for any set of
genotype data (Chen et al., 2013); however, it is not possible to
determine the SNPs that contribute most to the leading eigenvector, or
to test whether specific SNPs are differentiated along the genetic
gradient described by the eigenvector. Here, we propose an alternative,
simple, fast approach for the estimation of SNP-level eigenvectors. By
using individual-level eigenvectors as phenotypes in a linear regression,
we demonstrate that the regression coefficients generated by single-
SNP regression are equivalent to SVD SNP effects as proposed by
Chen et al. (2013). As the single-SNP regression resembles the popular
single-marker GWAS method, as implemented in PLINK (Purcell
et al., 2007), we call this method EigenGWAS. We show that the
EigenGWAS framework represents an alternative way for identifying
regions under selection along gradients of ancestry.

MATERIALS AND METHODS

HapMap3 samples
HapMap3 samples were collected globally to represent genetic diversity of

human population (Altshuler et al., 2010). HapMap3 contains representative

samples from many continents: CEU and TSI represent population from north

and south Europe, CHB and JPT from East Asia, and CHD Chinese from

Denver, Colorado. Loci with palindrome alleles (A/T alleles or G/C alleles) were

excluded, and 919 133 HapMap3 SNPs were used for the analysis.
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1000 Genomes project
1000 Genomes project samples were used as a prediction set for projecting
eigenvectors (The 1000 Genomes Project Consortium, 2012). We selected the
Puerto Rico cohort (105 samples) and the Pakistan cohort (Punjabi from
Lahore, Pakistan, 95 samples) for analysis.

POPRES samples
POPRES (Nelson et al., 2008) is a reference population for over 6000 samples
from Asian, African and European nations. In this study, we selected 2466
European descendants. The POPRES genotype sample was imputed to a 1000
Genomes reference panel (The 1000 Genomes Project Consortium, 2012).
Imputation for the POPRES was performed in two stages. First, the target data
were haplotyped using HAPI-UR (Williams et al., 2012). Second, Impute2 was
used to impute the haplotypes to the 1000 Genomes reference panel
(Howie et al., 2011). We then selected SNPs that were present across all data
sets at an imputation information score of40.8. A full imputation procedure is
described in https://github.com/CNSGenomics/impute-pipe. After quality
control and removing loci with palindromic alleles (A/T alleles or G/C alleles),
643 995 SNPs for POPRES remained. In addition, we also conducted the
analysis using nonimputed 234 127 common markers between POPRES and
HapMap3. As the results between these two data sets were very similar, this
report focussed on the results from 643 995 SNPs that were more informative.

Simulation scheme I: null model without population structure
A total of 2000 unrelated samples with 500 000 biallelic markers, which were in
linkage equilibrium to each other, were simulated. The minor allele frequencies
ranged from 0.01 to 0.5, and Hardy–Weinberg equilibrium was assumed for
each locus. All individuals were simulated from a homogeneous population,
with no population stratification. In order to calculate Fst at each locus, we
divided the sample into subpopulations based upon eigenvectors that were
estimated from a genetic relationship matrix calculated using all 500 000
markers (see below).

Simulation scheme II: null model with population structure
In general, this simulation scheme was followed Price et al., 2006. A total of
2000 unrelated samples with 10 000 biallelic markers, which were in linkage
equilibrium to each other, were generated. For each marker, its ancestral allele
frequency was sampled from a uniform distribution between 0.05 and 0.95, and
its frequency in a subpopulation was sampled from β-distribution with
parameters p1�Fst

Fst
and ð1� pÞ1�Fst

Fst
. The β-distribution had mean of P and

sampling variance of P(1−P)Fst. Once the allele frequency for a subpopulation
over a locus was determined as Ps, individuals were generated from a binomial
distribution Binomil(2,Ps). It agreed with the quantity that measures the genetic
distance between a pair of subpopulations (Cavalli-Sforza et al., 1996).

Calculating individual-level eigenvectors
We assume that there is a reference sample consisting of N unrelated
individuals and M markers. Xi ¼ xi1; xi2;y; xiMð ÞT is a vector of the ith

individual’s genotypes along M loci, with x the number of the reference alleles.
An N×N genetic relatedness (correlation) matrix A (matrix in bold font) for

each pair of individuals is defined as Aij ¼ 1
MS

M
l¼1

xil�2f lð Þ xjl�2f lð Þ
2f lð1�f lÞ , in which fl is

the frequency of the reference allele. The principal component analysis (PCA) is
then implemented on the A matrix (Price et al., 2006), generating E, which is a
N×K (K⩽N) matrix, in which Ek is the eigenvector corresponding to the kth

largest eigenvector.

Unified framework for BLUP, SVD and EigenGWAS
Theoretically, PCA can also be implemented on a M×M matrix, but this is
often infeasible because the M×M matrix is very large. However, for individual
i, eigenvector k can also be written as:

Ek:i ¼ bkX
T
i ð1Þ

in which βk is a M×1 SNP-level vector of the SNP effects on Ek, and xi is the
genotype of the ith individual across M loci. In the text below, we denote

individual-level eigenvector as eigenvector (N×1 vector), and SNP-level
eigenvector (M×1) as SNP effects.
We review three possible methods to estimate β given eigenvectors. The first

method is best linear unbiased prediction (BLUP) that is commonly used in
animal breeding and recently has been introduced to human genetics for
prediction (Henderson, 1975; Goddard et al., 2009). The second method is to
convert an individual-level eigenvector to SNP-level eigenvector using SVD, as
proposed by Chen et al. (2013). The third method is the approach outlined
here, EigenGWAS, that is a single-marker regression, as commonly used in
GWAS analysis.

Methods 1 and 2: BLUP and SVD
For a quantitative trait, y=μ+βX+e, in which y is the phenotype, μ is the grand
mean, β is the vector for additive effects, X is the genotype matrix and e is the
residual. Without loss of generality, the BLUP equation can be expressed as:

b̂k ¼ ~X
T
V�1y ð2Þ

in which b̂ is the estimates of the SNP effects, ~X is the standardized genotype
matrix, V is the variance covariance with V ¼ s2AAþ ðs2y � s2AÞI and y is the
trait of interest (Henderson, 1975). Replacing y with individual-level eigen-
vector (Ek), Equation (2) can be written as

b̂k ¼ ~X
T
A�1Ek ð3Þ

in which βk is the BLUP estimate of the SNP effects and Ek is the k
th eigenvector

estimated from the reference sample. The V matrix can be replaced with A
because the eigenvector has no residual error (that is, h2= 1). This method has
also been proposed as an equivalent computing algorithm for genomic
predictions (Maier et al., 2015).
In addition, the connection between PCA and SVD can be established

through the transformation between the N×N matrix to the M×M matrix
(McVean, 2009). Let A=PDP− 1, in which D is a N×N diagonal matrix with
λk, P is N×N matrix with the eigenvectors. Β=XT(PDP− 1)− 1P=XTPD− 1, in
which Β is M×N matrix. This is equivalent to the equation used in Chen et al.
(2013) where BT=D− 1(XTP)T. Thus, eigenvector transformation can be viewed
as a special case of BLUP in which the heritability is 1 (Equation (3)). However,
under SVD another analysis step is then required to evaluate the significance of
the estimated SNP effect. In an EigenGWAS framework an empirical P-value is
produced when estimating the regression coefficient.

Method 3: estimating SNP effects on eigenvectors with EigenGWAS
Given the realized genetic relationship matrix A, for unrelated homogeneous
(i.i.d.) samples, E(Aij)= 0 (i ≠ j), and consequently E(A)= I, an identity matrix.
Because of sampling variance of the genetic relationship matrix A, the off
diagonal is a number slightly different from zero even for unrelated samples
(Chen, 2014). If we replace the matrix with its mathematical expectation—
the identity matrix—Equation (3) can be further reduced to bk ¼ ~X

T
Ek,

equivalent to single-marker regression Ek= a + bx + e, as implemented in
PLINK (Purcell et al., 2007). Furthermore, standardization for X is not required
because it will not affect P-value. Thus, SNP effects can be estimated using the
single-marker regression that is computationally much easier in practice and is
implemented in many software packages. Each SNP effect, b̂k:m, is estimated
independently, and the P-value of each marker can be estimated that requires
additional steps in BLUP and SVD.
We summarize the properties and their transformation of SVD, BLUP and

EigenGWAS as below:

(1) Ek is determined by the A matrix, or in another words, it is determined by
the genotypes completely. If we consider each Ek is the trait of interest—a
quantitative trait—its heritability is 1.

(2) h2= 1. SVD and BLUP are both computational tools in converting a vector
from N×N matrix to a M×M matrix. SVD is a special case to BLUP when
h2= 1 for BLUP.

(3) h2= 1 and E(A)= I. When these two conditions are set, BLUP is further
reduced to single-marker association studies that is EigenGWAS as
suggested in this study.
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Recently, in an independent work Galinsky et al. (2016) introduced an
approximation to find the proper scaling for SNP effects (‘SNP weight’ in
Galinsky’s terminology) estimated from SVD in order to produce accurate P-
values. In our EigenGWAS framework, P-values for individual-level SNP
eigenvector are automatically generated. In practice, it is conceptually easier
to conduct EigenGWAS on eigenvectors than to conduct BLUP/SVD. In
addition, if computational speed is of concern, EigenGWAS can be easily
parallelized for each chromosome, each region or even each locus.

Interpretation for EigenGWAS signals
We can write a linear regression model Ek= a + βx + e, in which Ek is
standardized. Assuming that a sample has two subdivisions that have sample

size n1 and n2, b ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
wð1�wÞ

p
ðp1�p2Þffiffiffiffiffi

2pq
p , w ¼ n1

n1þn2
and the sampling variance for β

is s2b ¼ s2e
ns2x

. The χ2 test for β is

E w21
� � ¼ 4nwð1� wÞFNst ð4Þ

in which FNst ¼ p1�p2ð Þ2
2pq is Nei’s estimator of genetic difference for a

biallelic locus (Nei, 1973). Furthermore, FWst ¼ 4wð1� wÞFNst , in which

FWst ¼ 2
P2

i¼1
wi ½ðpi�pÞ2 �
pq

for a pair of subpopulations as defined in Weir (1996).

Hence, Eðw21Þ ¼ nFWst .
As the proportion of the variance explained by the largest eigenvalue is equal

to Fst
W in PCA (McVean, 2009), l1EF

W
st ´ n, in which F

W
st characterizes the

average divergence for a pair of subpopulations. When the test statistic,
Equation (4), is adjusted by the largest eigenvalue λ1, an equivalent technique

in GWAS for the correction of population stratification, Eðw21jl1 Þ ¼
nFWst
l1

¼ FWst
F
W
st

.

Hence,

E w21jl1
� �

¼ FWst

F
W
st

ð5Þ

after the adjustment of the largest eigenvalue, the EigenGWAS test statistic on
E1 immunes of population stratification, at least for a divergent sample.
For a locus under selection, it should have a greater Fst than Fst the

background divergence. Hence, the statistical power for detecting whether a
locus is under selection is determined by the strength of selection, and this can
be defined as the ratio between Fst of a particular locus and Fst the average
divergent in the sample. It is analogous to consider the χ2 test with
noncentrality parameter (NCP), NCP ¼ FWst

F
W
st

� 1. Otherwise specified, in this
study Fst is referred to the one defined in Weir (1996).

Validation and prediction for population structure
Once βk is estimated, it is straightforward to get genealogical profile for an
independent target sample. In general, it is equivalent to genomic prediction,
and the theory for prediction can be applied (Daetwyler et al., 2008; Dudbridge,
2013). The predicted genealogical score can be generated as

~Ek ¼ b̂k:mX ð6Þ
in which ~Ek is the predicted kth eigenvector, b̂k:m is the estimated SNP effects
and X is the genotype for the target sample. We focus on the correlation
between the predicted eigenvectors and the direct eigenvectors, and thus it does
not matter whether X or ~X is used.
In contrast to conventional prediction studies that focus on a metric

phenotype of interest, prediction of population structure is focussed on a
‘latent’ variable. This latent variable is the genetic structure of population
that is shaped by allele frequency and linkage disequilibrium of markers.
Thus, expectations of prediction accuracy differ from what has been established
for conventional prediction (Daetwyler et al., 2008; Dudbridge, 2013)

R2 ¼ h2 h2

h2þM
N

� �
oh251. We therefore assess prediction of accuracy for E1

across markers when using different prediction thresholding (Purcell et al., 2009).
Here we proposed an equation for prediction accuracy, especially for E1

R2 ¼
h2 þ M

Ne

� �2

h2 1þ 2MNe

� �
þ M

Ne
ð1þ M

Ne
Þ
E

1

1þ Ne=M
ð7Þ

when there is no heritability, the predictor can be simplified to R2 ¼ 1
1þNe

M

,

meaning that as the number of markers increases prediction accuracy should

rapidly reach 1. Here the h2 is interpreted as the genetic difference in the source

population, or real ancestry informative markers. For a homogeneous popula-

tion, the genetic difference is large because of genetic drift, and h2 ≈ 0.
For this study, the genetic relationship matrix, PCA and BLUP estimation

were conducted using GCTA software (Yang et al., 2011a). Single-marker
GWAS was conducted using PLINK (Purcell et al., 2007) or GEAR (https://
github.com/gc5k/GEAR/wiki/EigenGWAS; https://github.com/gc5k/GEAR/
wiki/ProPC).

RESULTS

Properties of the estimating SNP effects for eigenvectors
We applied EigenGWAS to the HapMap cohort, a known structured
population. Eigenvectors were estimated via PCA based on the A
matrix using all 919 133 SNPs. We conducted EigenGWAS for
HapMap, using Ek, the kth eigenvector, as the phenotype and
investigated the performance of EigenGWAS from E1 to E10. From
E1 to E10, we found 546 716 significant signals (231 677 quasi-
independent signals after clumping) on E1 and gradually reduced to
236 (163 after clumping) selection signals on E10 (Figure 1). The large
numbers of genome-wide significant loci are likely because HapMap3
comprised samples from different ethnicities, and these loci can be
interpreted as ancestry informative marker (AIM). For each Ek, its
associated eigenvalue was highly correlated with the λGC, the genomic
inflation factor that is commonly used in adjusting population
stratification for GWAS (Devlin and Roeder, 1999), resulted from its
EigenGWAS. The top five eigenvalues associated to HapMap samples
were 100.14, 47.66, 7.168, 5.92 and 4.40, and the corresponding λGC of
EigenGWAS were 103.72, 44.69, 6.47, 5.17, and 3.96, respectively
(Table 1). The large eigenvalues observed were consistent with
previous theory that the magnitude of eigenvalues indicate structured
population (Patterson et al., 2006). The connection between λGC and
eigenvalues provides a straightforward interpretation: a large λGC
indicates underlying population structure (Equation (5)). Therefore,
correction for λGC will filter out signals due to population stratifica-
tion, allowing loci under selection to be identified. For example, after
correction for λGC, the number of GWAS hits was reduced for each
EigenGWAS. For HapMap, EigenGWAS hits on E1 dropped from
548 716 to 6 loci only, and for POPRES from 10 885 to 152, indicating
that AIMs were largely driven by the genetic drift. These observations
agreed well with our theory (see Materials and methods).
We demonstrate theoretically that for EigenGWAS, the estimated SNP

effects using single-marker GWAS are approximately equivalent to the
estimates from BLUP, and the correlation between the estimates from
these two methods was very high (greater than R2 40.98 on average;
Figure 2), even in HapMap samples that consist of a mix of ethnicities
where the Amatrix is non-zero for off-diagonal elements (Supplementary
Figure 1). This confirms that our EigenGWAS approach provides an
accurate representation of the SNP effects on eigenvalues.
We also conducted EigenGWAS on the POPRES samples, from which

we selected 2466 European samples. On E1, there were 10 885 (3004
quasi-independent signals after clumping) genome-wide significant
signals, and reduced to 1639 (90 after clumping) on E10 (Table 1). As
in the HapMap sample, we observed a concordance between eigenvalues
and λGC in POPRES. The top five eigenvalues were 5.104, 2.207, 2.157,
2.077 and 1.971, and their associated EigenGWAS λGC were 5.005, 1.929,
1.910, 1.464 and 1.866, respectively (Table 1), indicating population
structure. The genetic relationship matrix estimated from the POPRES
data resembled a diagonal matrix that had off-diagonal elements close to
zero, suggesting that POPRES is a more homogenous samples as
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compared with HapMap (Supplementary Figure 1). Correlations between
the estimates from EigenGWAS and BLUP were high, with an average of
40.999 from E1 to E10 (Supplementary Figure 2), close to one as
expected.

The χ2 statistics of the estimated SNP effects on eigenvectors from
EigenGWAS were correlated with Fst for each SNP, such as on
HapMap samples E1 (Supplementary Figure 3), consistent with
previous established relationship between eigenvectors and Fst

Figure 1 Manhattan plots for EigenGWAS for top 10 eigenvectors for HapMap. Using Ei as the phenotype, the single-marker association was conducted for
nearly 919 133 markers. The left panel illustrates from E1 to E5 and the right panel from E6 to E10. The horizontal lines indicate genome-wide significance
after Bonferroni correction.
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(Patterson et al., 2006; McVean, 2009). Using naive threshold of Ek 4
0, 2466 POPRES samples were divided into nearly two even groups
that would be served as two subgroups in calculating Fst. E1 4 0 split

the POPRES samples into North and South Europe; samples from UK,
Ireland, Germany, Austria and Australia were in one group, and
samples from Italy, Spain and Portugal were in the other group;

Table 1 EigenGWAS signals for HapMap and POPRES

HapMap POPRES

Eigenvector (Ei) Eigenvalue GWAS λGC
a No. of GWAS hitsb No. after clumpingc Eigenvalue GWAS λGC

a No. of GWAS hitsb No. after clumpingc

1 100.135 103.715 546 716 (6) 231 677 5.104 5.005 10 885 (152) 3004

2 47.658 44.686 382 867 (7) 161 022 2.207 1.929 1254 (802) 289

3 7.168 6.471 33 317 (36) 15 344 2.157 1.910 1201 (713) 340

4 5.923 5.173 21 935 (51) 12 401 2.077 1.464 1353 (1,074) 331

5 4.402 3.964 9554 (66) 4727 1.971 1.866 781 (273) 76

6 2.449 1.982 1113 (36) 567 1.871 1.295 1162 (878) 111

7 2.285 1.986 593 (22) 389 1.843 1.337 1239 (1027) 130

8 2.107 1.742 236 (6) 171 1.818 1.486 1259 (940) 152

9 2.056 1.729 268 (3) 174 1.807 1.503 1701 (1086) 113

10 2.0217 1.661 236 (14) 163 1.798 1.492 1639 (1287) 90

Abbreviation: GWAS, genome-wide association study.
HapMap has 988 samples and 919 133 single-nucleotide polymorphisms (SNPs); its GWAS hits had P-values o5.44e−08 given α=0.05. POPRES has 2466 European samples and 643 995
SNPs; its GWAS hits had P-value o7.76e−08 given α=0.05.
aλGC was calculated as the ratio between the median of observed χ2 from EigenGWAS to the median of χ2 value that is 0.455.
bThe GWAS hits were counted without λGC correction, and with λGC correction in parentheses.
cAfter clumping, the reported numbers were quasi-independent GWAS hits. Within 250K bp and linkage disequilibrium of r2 40.5 only the most significant GWAS hit was counted as a GWAS hit
(see PLINK –clump default option). See Supplementary Tables 2 and 3 for pruned POPRES results.

Figure 2 Linear correlation for the SNP effects estimated using EigenGWAS and BLUP for HapMap3. The x axis represents EigenGWAS estimation for SNP
effects, and the y axis represents BLUP estimation for SNP effects. The left panel illustrates from E1 to E5 and the right panel from E6 to E10. As illustrated
at top left in each plot, the correlation, measured in R2, is nearly 1.
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samples from Switzerland and France were nearly evenly split into two
groups. Fst for each SNP was consequently calculated based on these
two groups. For every eigenvector until E10, we observed strong
correlations between Fst and the χ2 test statistics for EigenGWAS
signals (Figure 3), and the averaged correlation was 0.925 (s.d., 0.067).
For example, the correlation was 0.89 (P-value o1e− 16) between χ2
test statistics and Fst for E1 in POPRES (Supplementary Table 1). This
correlation is consistent with our theory where Fst has a strong linear
relationship with its EigenGWAS χ2 test statistic.
We also validated our results in the simulation scheme I, in which

there was neither selection nor population stratification. Given 2000
simulated samples, each of which had 500 000 unlinked SNPs, the
EigenGWAS showed few GWAS signals, 2 genome-wide significant
signals on E2 (Supplementary Figure 4). As expected, λGC ranged from
∼ 1.124 to 1.130, with a mean of 1.127 for EigenGWAS on the top 10
eigenvectors, indicating little population stratification for the simulated
data. After correction for λGC, no loci were significant, indicating that
the type-I error rate was controlled. After splitting the samples into
two groups depending on Ei 4 0, the correlation between χ2 test

statistics and Fst is ∼ 0.67 from E1 to E10 (Supplementary Figure 5).
Furthermore, as expected, after correction for λGC, the P-values
followed a uniformed distribution for EigenGWAS from E1 to E10
(Supplementary Figure 6).
Furthermore, we also validated the theory in the simulation scheme

II, in which there was population stratification. We wanted to know
whether the adjustment of the test statistic with the greatest eigenvalue
could render the distribution of the test statistics immunes of
population stratification. Given various sample sizes for two subdivi-
sions, after the adjustment for the test statistic with the largest
eigenvalue, the test statistic followed the null distribution that was
the χ2 distribution of 1 degree of freedom (Supplementary Figure 7),
indicating a well control of population stratification after correction.
The statistical power of EigenGWAS was also evaluated. As

demonstrated, the power of EigenGWAS in detecting a locus under
selection was determined by the ratio between the specific Fst of a
locus and the averaged population stratification in the sample
(Supplementary Figure 8).

Figure 3 The correlation between Fst and w21 for EigenGWAS SNP effects for POPRES. For each eigenvector, upon Ei 40 or Ei ⩽0, POPRES samples were
split into two groups, upon which Fst was calculated for each locus. The correlation, at top left in each plot, was measured in R2.

EigenGWAS for selection
G-B Chen et al

56

Heredity



Using EigenGWAS to identify loci under selection in structured
populations
We propose EigenGWAS as a method of finding loci differentiated
among populations, or across a gradiant of ancestry. Intuitively, every
EigenGWAS hit is an AIM that differs in allele frequency along an
eigenvector because of genetic drift or selection. A locus under
selection should be more differed across populations than genetic
drift can bring out. Thus, correction for λGC controls for background
population structure, providing a test of whether an AIM shows
greater allelic differentiation than expected under the process of
genetic drift.
We pooled together CEU (112 individuals) and TSI (88 individuals)

that represent Northwestern and Southern European populations in
HapMap. EigenGWAS was conducted on E1 that partitioned CEU and
TSI into two groups accurately using E1 4 0 as threshold
(Supplementary Figure 9). We corrected for λGC, which was 1.723,
for CEU and TSI. Adjustment for λGC significantly reduced population
stratification (Supplementary Figure 10), and was consequently
possible to filter out the baseline difference between these two cohorts.
After correction, we found evidence of selection at the lactose
persistence locus, LCT (P-value= 1.21e− 20, Figure 4). Because of
hitchhiking effect, the region near LCT also showed divergent allele
frequencies. For example, the DARS gene, 0.15 M away from LCT, was
also significantly associated with E1 (P-values= 1.51e− 23). HERC2
was slightly below genome-wide significance level (P-value= 8.22e−08),
indicating that anthropological difference reflected geographic loca-
tions of two cohorts but not under selection as strong as LCT. For the
TSI and CEU example, given 200 individuals and 919 133 markers, it
used ∼ 6 min and 1.9G RAM to complete the following three steps
involved in EigenGWAS, developed in Java: (1) generate correlation
matrix for 200 individuals using 919 133 markers; (2) estimate the first
eigenvector, 919 133 elements, from the correlation matrix; and (3)
run the linear regression model for every marker.
We then conducted EigenGWAS in the POPRES sample by treating

E1 as a quantitative trait, and calculated the approximate Fst for each
SNP given two groups split by the threshold of E1 4 0

(Supplementary Figure 11). Given 643 995 SNPs, the genome-wide
threshold was P-value o7.76e− 08 for the significance level of
α= 0.05 (Figure 5). As expected for POPRES, λGC= 5.00 indicated
substantial population stratification. Correcting for λGC systematically
reduced the EigenGWAS χ2 test statistics (Supplementary Figure 12),
and we replicated the significance of LCT (P-value= 1.23e− 22) and
DARS (P-value= 8.99e− 22) (Table 2), suggesting selection at these
regions. HERC2 was also replicated with P-value 8.15e− 09, and with
Fst of 0.041. The results were consistent after SNP pruning for
POPRES (Supplementary Tables 2 and 3).

Prediction accuracy for projected eigenvector
We investigated three aspects of EigenGWAS prediction: (1) the
number of loci needed to achieve high accuracy for the projected
eigenvectors; (2) the required sample size of the training set; (3) the
importance of matching the population structure between the training
and the test sets.
Using the POPRES samples, we split 5% (125 individuals), 10%

(250 individuals), 20% (500 individuals), 30% (750 individuals), 40%
(1000 individuals) and 50% (1250 individuals) of the sample as the
training set, and used the remainder of the samples as the test set.
Eigenvectors were estimated using all markers in each training set. As
predicted by our theory (Equation (7)), the prediction accuracy of the
projected eigenvector was consistent with R2 ¼ 1

1þNe
M

in which
Ne= 1000 for E1 empirically. If only 100 and 1000 random SNPs
were sampled as predictors, the expected maximal is R2= 0.091 and
0.5, respectively, and accuracy reached almost 1 if 4100 000 SNPs
were sampled. In agreement with our theory (Figure 6), if the number
of predictors were too small, the prediction accuracy was poor, with
prediction accuracy increasing with the addition of more markers for
E1. When the sample size of the discovery was ⩾ 1000, maximal
prediction accuracy was achieved, as predicted in our theory. There-
fore, a discovery with a sample size of 41000 should be sufficient to
predict the first eigenvector of an independent set, provided that
population structure is the same across the discovery and prediction
samples (Figure 6). In contrast, the prediction accuracy for prediction
eigenvectors decreased (Figure 6) quickly for eigenvectors other than
E1. For example, the prediction accuracy for E2 was below R2 o0.2

Figure 4 EigenGWAS for CEU (112 samples) and TSI (88 samples) from
HapMap. (a) Manhattan plot for EigenGWAS on E1 without correction for
λGC. When there was no correction, we found LCT on chromosome 2, MICA
on chromosome 6 (HMC region), HIF1A on chromosome 14 and HERC2 on
chromosome 15. The line in the middle was genome-wide significant level at
α=0.05 given multiple correction. (b) Manhattan plot for EigenGWAS on E1
with λGC correction; LCT was still significant, and HERC2 was slightly below
whole genome-wide significance level. The genome-wide significance
threshold was P-value=5.44e−08 for α=0.05.

Figure 5 EigenGWAS for POPRES samples on eigenvector 1. (a) Manhattan
plot for EigenGWAS without correction for λGC. (b) After correction for
λGC, we found LCT on chromosome 2, SLC44A4 on chromosome 6 and
HERC2 on chromosome 15. The genome-wide significance level was
P-value=7.76e−08 given α=0.05.
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and R2 o0.15 for E3. For E4–E10, the prediction accuracy dropped
down to nearly zero. This is consistent with the top 2–3 eigenvectors
explaining the majority of variation (McVean, 2009), if the training
and the test sets had their population structure matched.
If EigenGWAS SNPs of low P-value were likely to be AIMs, we

would hypothesize that AIM markers would be more efficient in
giving high accuracy for the predicted eigenvectors (Figure 6). For E1,
the prediction accuracy reached 1 more quickly by using markers
selected by P-value thresholds. The prediction accuracy for projected
E2 was dependent upon the threshold. For projected E2 given a 50:50
split of POPRES sample, applying the threshold of P-value o1e− 6
(927 SNPs), R2= 0.136, as high as using all markers. For other
projected eigenvectors, the pattern of accuracy did not change much
after applying P-value thresholds because, in general, the prediction
accuracy was low. This indicated that eigenvectors other than the first
two eigenvectors capture little replicable population structure in
POPRES.
In practice, the training and the test set may not match perfectly on

population structure, and this will likely lead to a reduction in
prediction accuracy. To demonstrate this, we split the POPRES
samples into two sets: pooling Swiss (991 samples) and French (96
samples) samples into one group (SF), and the rest of the samples into
the other group (NSF). We used SF as the training and the NSF as the
testing. As SF was almost an average of North European and South
European gene flow, making a less stratified population, its Eigen-
GWAS effects would be consequently small and less ‘heritable’. When
using all SNPs effects estimated from SF set, the observed prediction
accuracy for NSF set was R2= 0.33 and 0.005 for E1 and E2,

respectively. These results indicate that a matched training and test
set is important for prediction accuracy of the projected eigenvectors.
Ancestry information may still be elucidated well even if the training

set and the test set do not match well in their population structure.
Using HapMap3 as the training set, we also tried to infer the ancestry
of the Puerto Rican cohort (105 individuals) and Pakistani cohort (95
individuals) from 1000 Genomes project (The 1000 Genomes Project
Consortium, 2012). A total of 907 614 common SNPs were found
between HapMap3 and 1000 Genomes project. As illustrated, using
these SNPs between HapMap3 and 1000 Genome projects, the
projected eigenvectors accurately revealed the demographic history
of Puerto Rican cohort, an admixture of African and European gene
flows, and Pakistan cohort, an admixture of Asian and European gene
flows (Figure 7).
As a negative control, we replicated the prediction study for

simulated data used in the previous section. The simulated data were
split to two equal sample size. As there was no population structure in
the simulated data, the prediction accuracy was poor, R2 o0.01 from
E1 to E10. This demonstrates that prediction can be used to validate
whether population structure exists within a genotype sample.
We concluded that to achieve high prediction accuracy of

projected eigenvectors for independent samples, there are several
conditions to be met: (1) the training set should harbour sufficient
population stratification; (2) the sample size of the training should
be sufficiently large; (3) the test sets should be as concordant as
possible in its population structure; (4) when there is no real
population structure, the prediction accuracy is very low close to

Table 2 Gene discovery using EigenGWAS

Gene Lead SNP Position Allele P-valuea MAF (TSI:CEU) Fstb Annotation

CEU and TSI samples
LCT rs6719488 2:135817629 G/T 6.68e−34

(1.21e−20)
0.733:0.206 0.558 Lactose persistent locus

DARS rs13404551 2:135964425 C/T 8.18e−39
(1.51e−23)

0.756:0.206 0.604 Genetic hitchhiking because of LCT

MICA rs2256175 6:31412672 T/C 8.94e−10
(2.60e−6)

0.665:0.360 0.183 MHC class I polypeptide-related sequence A

HIF1A rs2256205 14:61670944 A/G 1.51e−10
(8.86e−7)

0.464:0.179 0.192 HIF-1A thus plays an essential role in embryonic vascularization,
tumour angiogenesis and pathophysiology of ischaemic disease.

HERC2 rs8039195 15:26189679 C/T 2.75e−12
(8.22e−08)

0.403:0.122 0.212 Genetic variations in this gene are associated with skin/hair/eye
pigmentation variability

Gene Lead SNP Position Allele P-valuea MAF (Southern Europeans:
Northern Europeans)

Fstb Annotation

POPRES European samples
LCT rs3754686 2:135817629 T/C 3.30e−106

(1.23e−22)
0.514:0.279 0.110

DARS rs13404551 2:135964425 C/T 6.32e−102
(8.99e−22)

0.518:0.293 0.106

SLC4A4 rs605203 6:31819235 C/A 8.94e−44
(5.77e−10)

0.214:0.343 0.040 Defects in this gene can cause sialidosis, a lysosomal storage disease

HERC2 rs1667394 15:26189679 C/T 3.90e−38
(8.15e−09)

0.276:0.173 0.041

Abbreviations: GWAS, genome-wide association study; MAF, minor allele frequency; SNP, single-nucleotide polymorphism.
The P-value cutoff for CEU and TSI was 5.44e−08 (919 133 SNPs) and for POPRES was 7.76e−08 (643 995 SNPs) at genome-wide significance level of α=0.05. λGC=1.725 for CEU and TSI
and λGC=5.00 for POPRES.
aP-values without λGC correction, and with λGC correction in parentheses.
bFst is calculated by partitioning the sample into two groups upon E1 40. For TSI and CEU set, partitioning on E1 perfectly separated TSI (88 samples) and CEU (112 samples). For POPRES,
partitioning on E1 separated southern European population (1092 samples) and northern European population (1374 samples).
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zero; and (5) depending on the population, high prediction was
largely achievable for the projected E1.

DISCUSSION

Eigenvectors have been routinely employed in population genetics,
and various approaches have been proposed to offer interpretation and
efficient algorithms (Patterson et al., 2006; Rokhlin et al., 2009;
McVean, 2009; Chen et al., 2013; Galinsky et al., 2016). In this study,
we created a GWAS framework for studying and validating population
structure, and offer an interpretation of the GWAS signals for
eigenvectors within this framework. Without prior information about
the structure/grouping of the sample, the EigenGWAS framework
(least square) identifies ancestry informative markers and loci under
selection across gradients of ancestry. Although EigenGWAS resembles
the conventional GWAS, it should be noted that EigenGWAS has its
phenotype generated from the genotypes via PCA. Hence, EigenGWAS
is a GWAS but does not use phenotypes in conventional sense. The
effects estimated in EigenGWAS can be alternatively estimated via
BLUP or SVD (Equation (3)), but two major differences should be
noticed: (1) BLUP or SVD will be computationally infeasible when

there are many markers involved, whereas EigenGWAS reduces the
computation into simple regression and largely avoids this problem;
(2) it is not obviously how to obtain the P-values for BLUP or SVD
estimates, but EigenGWAS makes it possible to conduct a standard
z-score test for an estimated SNP effect.
We integrated SVD, BLUP and single-marker regression into a

unified framework for the estimation of SNP-level eigenvectors. SVD
is a special case of BLUP when heritability is of 1 for the trait and the
target phenotype is an eigenvector. Furthermore, the BLUP is
equivalent to the commonly used GWAS method for estimating
SNP effects. As demonstrated, the correlation between BLUP and
GWAS is almost 1 for the estimated SNP effects. EigenGWAS offers an
alternative way in estimating Fst that can replace conventional Fst when
population labels are unknown, populations are admixed or differ-
entiation occurs across a gradient. As demonstrated for CEU–TSI
samples, EigenGWAS brings out nearly identical estimation of Fst
compared with conventional estimation.
Different from conventional GWAS, which requires conventional

phenotypes, the proposed EigenGWAS provides a novel method for
finding loci under selection based on eigenvectors that are generated
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Figure 6 Prediction accuracy of the projected eigenvectors for POPRES samples. Given 2466 POPRES samples, the data were split to 5:95%, 10:90%,
20:80%, 30:70%, 40:60% and 50:50%, as training and test sets. The left columns represent prediction accuracy (R2) using randomly selected numbers
(100, 1000, 10 000, 100 000, all) of markers, and the 95% confidence interval were calculated from 30 replication for resampling given number of
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from the genotype data itself. An EigenGWAS hit may reflect the
consequence of process and thus additional evidence is needed to
differentiate selection from drift. LCT is a known locus under selection
that differs in its allele frequency as indicated by Fst statistic between
Northern and Southern Europeans (Bersaglieri et al., 2004). We
replicated the significance of LCT in CEU and TSI samples and
POPRES European samples. DARS has been found in association with
hypomyelination with brainstem and spinal cord involvement and leg
spasticity (Taft et al., 2013). In addition, we also found HERC2 locus
independently that may indicate the existence of anthropological
difference in certain characters, such as hair, skin or eye colour across
European nations (Voight et al., 2006; Visser et al., 2012).
Although by definition selection and genetic drift are different

biological processes, both lead to allele frequency differentiation across
populations and it is often difficult to tear them apart. In this study,
with and without adjustment for λGC, EigenGWAS offers a straight-
forward way to filter out population stratification. For example, with
adjustment for λGC, LCT and DARS were still significant in both
EigenGWAS, whereas HERC2 was only significant in POPRES. If
adjustment for λGC removed the average genetic drift since the most
recent common ancestor for the whole sample, it might indicate that
HERC2 reflected the anthropological difference between subsamples
but not under selection as strong as that for LCT. Nevertheless, LCT
was differentiated because of selection that was on top of genetic drift,
and for DARS, it might be significant because of hitchhiking effect.
Hence, LCT, DARS and HERC2 were significant in EigenGWAS for
different mechanisms.
In EigenGWAS application, it provides a clear scenario that λGC is

necessary if genetic drift/population stratification should be filtered
out. It has been debated whether correction for λGC is necessary for
GWAS (Yang et al., 2011b). If the inflation is because of population
stratification, as initially λGC introduced, it seems necessary to control
for it. In contrast, if it is because of polygenic genetic architecture, then
correction for λGC will be a overkilling for GWAS signals. Interestingly,
Patterson et al. (2006) found that the top eigenvalues reflect popula-
tion stratification, and in our study we found λGC from EigenGWAS

was numerically so similar to its corresponding eigenvalues. It in
another aspect indicates that λGC captures population stratification.
Hence, in concept and implementation, the correction for λGC is
technically reasonable. Of note, Galinsky et al. (2016). also proposed a
similar procedure to filter out population stratification in a study
similar to ours, but we believe our framework is much easier to
understand and implement in practice.
Once we have EigenGWAS SNP effects estimated, it is straightfor-

ward to project those effects onto an independent sample. The
prediction of population structure was that of recent studies (Chen
et al., 2013). We found that the prediction accuracy for the top
eigenvector could be as high as almost 1. Given a training set of ∼ 1000
samples, the prediction accuracy could be very high if there were a
reasonable number of common markers in the order of 100 000. This
number, which needs to be available in both reference set and the
target set, is achievable. Further investigation may be needed to check
whether this number of markers is related to effective number or
markers after correction for linkage disequilibrium for GWAS data.
When the population structure of the test sample resembles the
training sample, high accuracy will be achieved for the leading
projected eigenvectors. Therefore, this approach is likely to be
extremely beneficial for extremely large samples, such as UK Biobank
samples and 23andMe, both of which have more than half million
samples where direct eigenvector analysis may be infeasible. Our
results suggest that sampling ∼ 1000 individuals from the whole
sample as the training set and subsequently project EigenGWAS
SNP effects to the reminding samples will be sufficient to reach a
reasonable high resolution of the population structure.
Many improvements to the inference of ancestry using projected

eigenvectors have been suggested (Chen et al., 2013). As the
concordance of population structure between the training and test
sets is often unknown (population structure, upon from genetic or
social–cultural perspectives, its definition can be difficult or contro-
versial), improvement of the inference of ancestry may or may not be
achieved dependent upon the scale of the precision required for a
sample. However, for classification of samples at ethnicity level,
projected eigenvectors are likely to have high accuracy, as demon-
strated in the Puerto Rican cohort and the Pakistani cohort. Therefore,
when identifying ethnic outliers, using projected eigenvectors from
HapMap is likely to be sufficient in practice.
Eigenvector analysis of GWAS data is an important well-utilized

data technique, and here we show that its interpretation depends on
many factors, such as proportion of different subpopulations and Fst
between subpopulations. Our EigenGWAS approach provides intuitive
interpretation of population structure, enabling AIMs to be identified,
and potentially loci under selection to be identified. To facilitate the
use of projected eigenvectors, we provide estimated SNP effects from
HapMap samples and POPRES and software that can largely reduce
the logistics involved in conventional way in generating eigenvectors,
such as reference allele match, and strand flips.
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