
RECEIVED 1 June 2015
REVISED 8 September 2015

ACCEPTED 3 November 2015
PUBLISHED ONLINE FIRST 16 March 2016

Data-driven health management: reasoning
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ABSTRACT
....................................................................................................................................................

Objective To investigate how individuals with diabetes and diabetes educators reason about data collected through self-monitoring and to draw
implications for the design of data-driven self-management technologies.
Materials and Methods Ten individuals with diabetes (six type 1 and four type 2) and 2 experienced diabetes educators were presented with a
set of self-monitoring data captured by an individual with type 2 diabetes. The set included digital images of meals and their textual descriptions,
and blood glucose (BG) readings captured before and after these meals. The participants were asked to review a set of meals and associated BG
readings, explain differences in postprandial BG levels for these meals, and predict postprandial BG levels for the same individual for a different
set of meals. Researchers compared conclusions and predictions reached by the participants with those arrived at by quantitative analysis of the
collected data.
Results The participants used both macronutrient composition of meals, most notably the inclusion of carbohydrates, and names of dishes and in-
gredients to reason about changes in postprandial BG levels. Both individuals with diabetes and diabetes educators reported difficulties in generat-
ing predictions of postprandial BG; their predictions varied in their correlations with the actual captured readings from r¼ 0.008 to r¼ 0.75.
Conclusion Overall, the study showed that identifying trends in the data collected with self-monitoring is a complex process, and that conclusions
reached by both individuals with diabetes and diabetes educators are not always reliable. This suggests the need for new ways to facilitate individ-
uals’ reasoning with informatics interventions.
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Keywords: chronic disease, self-care

1. BACKGROUND AND SIGNIFICANCE
Diabetes continues to be one of the most devastating chronic dis-
eases, with a significant impact on the affected individuals, their fami-
lies, and communities. As of 2014, 29.1 million people or 9.3% of the
United States population has diabetes,1 with ethnic minorities dispro-
portionally affected.2 Diabetes is associated with a number of compli-
cations, including heart disease and stroke, high blood pressure,
kidney disease, and nervous system disease, and can lead to blind-
ness and amputations.3 Finally, diabetes has a devastating economic
impact; in 2012 alone its costs were estimated at $246 billion.4

Self-monitoring has long been accepted as a critical component of
self-management for a variety of diseases and health conditions, and
particularly for diabetes.5–7 Previous studies conducted with individ-
uals with diabetes suggested that self-monitoring of blood glucose
(BG) levels is associated with better glycemic control and improved
clinical outcomes.8–10 Researchers in personal informatics proposed
that self-monitoring in diabetes can lead to increased self-knowledge,
and to heightened awareness of an individual’s current health status
(e.g., current levels of BG) and changes in this status over time.11

Moreover, combining BG data with records of daily activities, such as
meals and exercise, can help individuals examine the comparative im-
pact of these activities on BG levels and identify behaviors and activi-
ties with either particularly beneficial or particularly detrimental impact
on glycemic control.12–14 This knowledge can help individuals make
informed choices about future actions and refine treatment choices,
e.g., in nutritional therapy.15 Given the growing popularity and avail-
ability of self-monitoring technologies,16 these new abilities can have
a significant impact on diabetes self-management and help to reduce
its significant burden.

However, to realize their full potential to improve health manage-
ment, these new technologies need to help individuals translate cap-
tured data into insight and discovery. Yet the path for this transition
remains unclear. Previous studies of personal informatics solutions in
chronic disease self-management have demonstrated that these tech-
nologies are limited in providing explicit support for discovery of pat-
terns and associations in the captured data.11,12 Moreover, even
though pattern management is encouraged, there exist only a few
published studies on how individuals with chronic diseases reason
about data captured through self-monitoring, find patterns, and make
discoveries.17

The long-term goal of this research is to develop novel informatics
solutions that can help individuals with diabetes engage in analysis
and reflection on data collected through self-monitoring, and use these
data to improve their self-management behaviors and, ultimately,
their health. As the first step toward this goal, we conducted a mixed-
methods study investigating how individuals with diabetes and experi-
enced diabetes educators engage with data collected through
self-monitoring. In this mixed methods study, 12 participants (n¼ 12),
including individuals with diabetes (n¼ 10), and diabetes educators
(n¼ 2) were asked to examine a collection of dietary records, com-
bined with BG records before and after each meal (2 such datasets
were used in the study). Our specific questions included: 1) what as-
pects/properties of captured activities individuals include in their rea-
soning about the impact of these activities on changes in BG levels; 2)
how they use these data to identify recurring trends and patterns; and
3) to what degree they can incorporate lessons learned from past re-
cords to project the impact of future actions. These questions are
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important because they can help identify what properties of individ-
uals’ activities, specifically meals, need to be captured by self-moni-
toring technologies. In addition, they can guide the development of
new methods for automatically detecting recurring patterns and corre-
lations in the data collected through self-monitoring, identifying activi-
ties that have a significant impact on glycemic control, and helping
individuals make more informed self-management decisions.

2. METHODS
Participants
Twelve participants (n¼ 12), including 2 certified diabetes educators
(CDEs) and 10 individuals with diabetes, were recruited for a mixed-
methods study. The participants with diabetes (both types 1 and 2)
were recruited among members of TuDiabetes community, an online
health forum for individuals with diabetes, using an advertisement on
the forum’s website. Two of these individuals (both with type 2 diabetes)
had previously participated in a self-monitoring study that generated
datasets for the reasoning study described here. The datasets included
images of meals captured by the participants with their brief textual de-
scriptions, and BG levels before and after meals. The participants were
instructed to capture at least 1 but possibly more postprandial BG levels,
one at 2 h postmeal, and other at participants’ discretion. The self-moni-
toring study was conducted in October–November of 2014; the reason-
ing study described here was conducted in May–July of 2015. The
other 8 participants with diabetes (both types 1 and 2) did not participate
in the self-monitoring study and were not previously exposed to the data
collected during that study.

Study Design
Each of the 12 participants took part in an interview that included 2
essential phases, a retrospective association analysis phase, and a
prospective forecasting phase. During the first phase, the retrospective
association analysis, the participants reviewed images of 5 days of
meals and BG readings before and after these meals (see Figure 1).
The 2 participants who collected the data were each presented with
their own datasets; the other participants with diabetes were randomly
assigned to 1 of the 2 available datasets. Each CDE reviewed both
datasets, each during separate interviews. The participants were
asked to review each image and its description, examine BG readings
before and after the meal, and explain what properties or components
of the meal could have been associated with the recorded changes in
postprandial BG level. At the end of this phase, each participant was
asked to discuss any recurring patterns associated with both desirable
and undesirable changes in BG levels. During the next phase, the

prospective forecasting, the participants were presented with a differ-
ent set of images for another 5 days from the same dataset (not in-
cluded in the first part) and their descriptions and premeal BG level,
and were asked to predict postprandial BG levels and explain their
prediction. We limited the data used in the study to 10 days (out of 28
days with records), mostly due to pragmatic considerations.
Discussing each meal took 1–2 min; as a result, each interview lasted
between 1 and 1.5 h. Including more data in the interviews would
have extended them beyond what was reasonable.

The reasoning interviews were conducted either in person or over
the phone or Skype and were audio recorded and transcribed verbatim
for analysis. The Institutional Review Board of the Columbia University
Medical Center approved the study.

Data Analysis
The analysis of the data included several distinct steps.

First, 2 registered dietitians assessed the meals in the datasets on
the inclusion of macronutrients commonly associated with glycemic
control (carbohydrate, protein, fat, and fiber).

Next, all captured meals were grouped according to the premeal/
postmeal BG differences (which we will refer to as a meal’s glycemic
impact) into four distinct categories: 1) stable: meals with a glycemic
impact of<20 mg/dl; 2) low impact: meals with a glycemic impact be-
tween 20 and 39 mg/dl; 3) medium impact: meals with a glycemic im-
pact between 40 and 59 mg/dl, and 4) high impact: meals with a
glycemic impact of 60 mg/dl and above. These categories were devel-
oped together with the 2 diabetes educators on our team; they are
representative of the way diabetes educators typically classify meals
recorded by their patients.

Further, interview transcripts were analyzed to identify properties
and components of meals used by the participants to construct their
explanations; in the rest of this paper, we refer to these simply as
“key terms.” For example, for the following explanation: “And I expect
there’s probably a little bit of a contribution from the carrots and red
peppers and maybe from the tomato but generally, I think it’s mostly
from the rice in the gumbo,” we would extract the following words
and phrases: “carrots,” “red peppers,” “tomato,” “rice,” and “gumbo”
as key terms that were used to explain the impact of this meal.

To identify key terms that were mentioned as recurring reasons for
changes (or lack thereof) in postprandial BG levels, all meals for each
dataset were categorized by glycemic impact category (stable, low,
medium, and high as discussed above), and key terms for each of the
categories were aggregated across meals.

Finally, we extracted all statements that expressed participants’
perceptions regarding recurring patterns in the datasets, as well as

Figure 1: Screenshot of the data presented to the participants during the retrospective association analysis part of the interviews.
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their general beliefs about the impact of nutrition on postprandial BG
levels, for example: “Protein slows down absorption [of glucose in
food] and delays rise of BG levels.”

Evaluation with Data Science Methods
Two different approaches were used to evaluate participants’ intuitions
recorded during the reasoning study with computational data analysis.
First, we examined correlations between macronutrient content of the
recorded meals and changes in individuals’ postprandial BG levels us-
ing Spearman’s correlation test.

Second, we examined correlations between predictions generated
by the participants with the actual postmeal BG levels using Spearman
correlation tests for nonparametric data.

To account for multiple tests, we used a Bonferroni correction: for
the total of 21 tests of correlation, the P value was reduced to 0.002381.

4. RESULTS
4.1. Participant Demographics
Two CDEs and 10 individuals with diabetes took part in this study.
Each CDE had over 20 years of practice and research experience in di-
abetes education. One educator was trained as a nurse practitioner,
and another as a dietitian; both were certified by the National
Certification Board for Diabetes Educators. Among the participants
with diabetes, six had type 1 diabetes (P3, P4, P5, P7, P8, P10), and
four had type 2 diabetes (P1, P2, P6, P9). The average age of the par-
ticipants with diabetes was 55 years (ranging from 45 to 70), and their
average time from diagnosis was 30 years (ranging from 10 to 50). All
of the participants with diabetes self-identified as committed to proac-
tive diabetes self-management (as is also indicated by their member-
ship in the online diabetes forum), and all had some experience with
self-monitoring (kept records of BG readings at least on paper).

4.2. Retrospective Association Analysis
When asked to explain differences between the premeal and postmeal
(postprandial) BG levels associated with different meals, most partici-
pants began by identifying sources of carbohydrates in the meals and
estimating their potential impact. Several participants considered car-
bohydrates the only source of change in postprandial BG levels. Others
included other macronutrients in their analysis as factors that could ei-
ther amplify the impact of carbohydrates or reduce it, for example:
“Mayonnaise will slow the absorption because of the fat” (P11).

Both CDEs and 3 participants with diabetes spontaneously en-
gaged in carbohydrate counting—estimating the actual weight of car-
bohydrate in each meal—and used that estimate to explain the impact
of the meal on postprandial BG levels. Others approached it more ho-
listically, without generating precise numeric estimates: “Scrambled
eggs, pretty neutral in terms of blood glucose and carbo
wise, . . . they have a combination of strawberries and blueberries, is
going to have a significant impact on blood glucose” (P5).

In addition, some participants paid attention to the glycemic index of
the meal, which they defined as the rate of absorption of carbohydrates.
However, these participants reported general lack of knowledge and of
reliable information on the glycemic index of different foods.

The analysis of the 10 most common key terms used to explain
changes in postprandial BG levels are presented in Table 1. Notably,
carbohydrates are at the top of this list for both CDEs and participants
with diabetes for both datasets. However, other items beyond carbo-
hydrates vary considerably between the 2 datasets and between CDEs
and participants with diabetes. For example, while the names of mac-
ronutrients are consistent between the datasets, the names of the ac-
tual foods are specific to the dietary choices of the individuals who
collected the data (e.g., “squash bread” and “half-and-half” in
Dataset 1 and “apple” and “almond butter” in Dataset 2). In addition,
whereas CDEs tended to refer to macronutrients, the participants with

diabetes more often referred to the actual products and dishes, such
as “squash bread” and “strawberries.”

The 10 most popular key terms identified separately for meals that
led to a significant rise in BG levels (over 60 mg/dl) and meals that did
not lead to a considerable rise in BG levels (< 20 mg/dl) across partici-
pants produced the results shown in Table 2.

Here, beside the typically frequent use of the term “carbohy-
drates,” the terms used to explain high-impact meals and low-impact
meals differed considerably between Datasets 1 and 2. In Dataset 1,
the 4 most frequently used key terms to explain high-impact meals
(besides “carbohydrates”) included “squash bread” (n¼ 10), “pro-
tein” (n¼ 9), “yogurt” (n¼ 9), and “pancake” (n¼ 8). In Dataset 2,
the 4 other most frequent terms included “apple” (n¼ 13), “almond
butter” (n¼ 8), “avocado” (n¼ 6), and “medication” (n¼ 5).
Similarly, for meals in the “Stable” category, the 4 most frequent
terms for Dataset 1 were “fat” (n¼ 12); “protein” (n¼ 11); “almonds”
(n¼ 5); and “butter,” “chicken,” and “raising” (each with n¼ 5). These
terms for Dataset 2 included “pears” (n¼ 16); “salsa” (n¼ 8); “pro-
tein” (n¼ 7); and “bread,” “fat,” and “medication” (all with n¼ 6).

As far as recurring trends and patterns in the datasets, for Dataset
1, most participants mentioned significant amounts of carbohydrates

Table 1: Ten most common key terms used to explain the
impact of the meals on postprandial BG levels; the numbers
indicate percent of this particular term to all key terms re-
corded by this user group for each of the datasets

Dataset 1

CDEs % Participants %

Carbohydrates 7.3 Carbohydrates 7.3

Fat 4.7 Protein 4.1

Protein 4.4 Squash bread 3.4

Fiber 3.6 Strawberries 3.4

Squash bread 2.5 Blueberries 2.9

Vegetables 2.5 Yogurt 2.7

Half and half 2.2 Fat 2.4

Strawberries 2.2 Chicken 2.2

Sugar 2.2 Salad 2.0

Yogurt 2.2 Sugar 2.0

Dataset 2

Carbohydrates 10.4 Carbohydrates 13.0

Fat 5.5 Apple 5.1

Fiber 4.3 Pears 4.3

Apple 3.7 Protein 3.6

Protein 3.7 Salsa 3.6

Vegetables 4.3 Medication 3.2

Cheese 3.1 Almond butter 2.9

Almond butter 2.5 Bread 2.9

Avocado 2.5 Ham 2.9

Bread 2.5 Vegetables 2.5

The results are presented separately for the two datasets, and for
CDEs and participants with diabetes. The numbers indicate the percent
of the given factor to all the factors extracted from the transcripts.
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in breakfasts as the main reason for frequent high after-breakfast
readings. In addition, a long time interval between lunch and dinner
was viewed as a potential reason for high after-dinner readings. For
Dataset 2, most participants noticed a recurring spike in BG levels af-
ter lunch meals that included a very limited amount of carbohydrates
and generated several theories explaining these trends, from over-re-
striction in carbohydrates (P2, CDE1, CDE2) to suboptimal dose of
morning medication (P4, P6) to lack of exercise in the afternoons (P2,
P4, P6, P10). The full set of recurring trends reported by the partici-
pants is included in Appendix A.

4.3. Prospective Forecasting
All participants reported considerable difficulties generating predic-
tions of postprandial BG levels for specific meals; this was the case
even for the 2 participants whose datasets were used in the study.
First, they found it difficult to identify the exact composition of the
meals: “ . . . being able to look at a plate to say what’s in it is some-
thing that comes with both experience knowledge and it’s trial and er-
ror on top of that, but that one is a very key part of the whole big
picture on that when it comes to meals.” Second, the participants
found it difficult to determine the unique reaction of the person who
collected the data to different ingredients in the meals. Finally, all par-
ticipants with diabetes commented on the difficulties in disambiguat-
ing the impact of meals from other factors that influence BG: “I could

never quite figure out why the same meal wouldn’t necessarily have
the same effect, and trying to figure out what made the difference is
tricky” (P1).

These challenges were not specific to the study, but common in
participants’ everyday lives: “ . . . every meal is a stress because you
have to sit down and calculate the stuff out. The more comfortable
you are with feeling that, the better off you’re going to be, but you also
have to accept that you’re going to make a lot of mistakes” (P5).

Notably, when the readings in the dataset were inconsistent with
participants’ expectations, they used trends in the data to inform their
predictions. For example, most of the participants who examined dataset
2 noticed frequent spikes in after-lunch BG levels following low-carbohy-
drate lunch meals. While many participants found this trend puzzling,
they nonetheless used it to predict similarly high postprandial BG levels
after low-carbohydrate meals: “I’m going to give that 160 as well be-
cause the person tends to—the blood sugar tends to go up a little after
lunch, even though there’s nothing in there to really kick it up” (P6).

4.4. Validation of participants’ perceptions
4.4.1. Impact of macronutrients
To examine the associations between the inclusion of different macro-
nutrients and changes in individuals’ premeal/postmeal BG levels, we
used Spearman correlation analysis for each of the macronutrients
(carbohydrates, protein, fat, and fiber) and differences between post-
meal and premeal BG levels. The results of this analysis are presented
in Table 3.

Consistently with the participants’ expectations, the amount of car-
bohydrates was positively correlated with high glycemic impact for
both datasets. In Dataset 1, this impact was present only at 1 h post-
meal and was diminished by the 2-h mark; for Dataset 2, it was still
significant at the 2-h mark. However, other theories generated by the
participants were only partially confirmed, or not confirmed at all.
For example, fat was indeed correlated with high postprandial BG lev-
els at 2 h postmeal, but only in Dataset 1. Protein was not correlated
with changes in BG levels in either dataset, and fiber was positively
correlated with high glycemic impact, despite the common perception
that fiber minimizes the impact of carbohydrates.

4.4.1. Accuracy of predictions
The results of correlation analysis between predictions generated us-
ing different methods and the actual captured postmeal BG levels (for
1 and 2 h postmeal for Dataset 1 and for 2 h postmeal for Dataset 2)
are presented in Table 4.

Participants’ predictions varied in their accuracy between low
(r¼ 0.018) to high (r¼ 0.75). Despite the participants’ confusion
about the mysterious spikes after low-carbohydrate lunches in Dataset
2, most predictions for this dataset were highly correlated with the ac-
tual recorded readings. In contrast, for Dataset 1, while most partici-
pants were able to relatively accurately predict postprandial BG levels
at 1 h postmeal, their predictions for BG levels at 2 h postmeal were
considerably off-mark with correlations for that time point, ranging
from r¼ 0.008 to r¼ 0.45.

5. DISCUSSION
The increasing volumes of person-generated data open new horizons
for promoting self-knowledge and self-awareness.12 This has a partic-
ular significance for individuals with chronic diseases who could po-
tentially use such data to identify beneficial self-management
strategies. However, to take advantage of these data, individuals need
to be able to examine and analyze it, identify and test recurring pat-
terns and associations between their activities and changes in relevant
biomarkers, and incorporate their discoveries into their future choices.
In this study, we took initial steps toward understanding these

Table 2 Common terms used in explanations of meals with
high impact on BG (over 60 mg/dl difference in BG between pre-
meal and postmeal) and meals with stable impact on BG (under
20 mg/dl difference in BG between premeal and postmeal)

High—Dataset 1 High—Dataset 2

Term Frequency Term Frequency

Carbohydrates 17 Apple 13

Squash bread 10 Carbohydrates 9

Yogurt 9 Almond butter 8

Protein 9 Avocado 6

Pancake 8 Medication 5

Blueberries 7 Fat 4

Half and half 7 Low carbohydrate 4

Sugar 7 Protein 4

Fat 6 Wine 4

Peanut butter 6 Celery 3

Stable—Dataset 1 Stable—Dataset 2

Carbohydrates 15 Carbohydrates 17

Fat 12 Pears 16

Protein 11 Salsa 8

Almonds 5 Protein 7

Butter 5 Bread 6

Chicken 5 Fat 6

Raisins 5 Medication 6

Avocado 4 Fiber 5

Gelato 4 Ham 5

Salmon 4 Wine 5
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processes with the goal of informing the design of future self-monitor-
ing and self-management technologies.

The study included 3 types of participants who in our view represent
the 3 most typical scenarios in which self-monitoring technologies can
be used. The 2 individuals who participated in the self-monitoring study
are exemplars of experienced individuals with diabetes who reflect on
their own records, arguably the most typical case of self-monitoring.
The other participants with diabetes were representative of newly diag-
nosed individuals, who have no developed intuitions about their body’s
reactions to dietary changes. Finally, the experience of 2 diabetes edu-
cators was similar to a typical consultation between a new patient with
diabetes and their diabetes educator. As a result, the findings discussed
here can inform new solutions in all 3 of these spaces.

In regards to the retrospective association analysis, the study sug-
gested that the participants used both macronutrient composition of
meals and specific ingredients to reason about the meals’ impact on
BG levels. However, whereas participants with diabetes often relied on
ingredients and food groups, experts’ explanations more frequently in-
cluded macronutrients. This distinction is important, as reasoning on
the macronutrient level can help individuals generalize between differ-
ent products similar in their macronutrient composition.

Across datasets and participants, the inclusion of carbohydrates
was the single most important and consistent information used to ex-
plain the change in postprandial BG levels. This intuition was con-
firmed by quantitative analysis of the datasets; the amount of
carbohydrates was strongly and positively correlated with postprandial
BG. However, beyond carbohydrates, the participants’ perceptions re-
garding the impact of macronutrients were varied, often contradictory,
and not always supported by the data. For example, in both datasets,
fat and protein were noted as common key terms associated with
meals with low glycemic impact, yet data analysis did not detect any
correlation between protein and changes in postprandial BG levels, and
fat was positively correlated with high postprandial BG levels in Dataset
1 at 2 h postmeal. A similar lack of consistency was typical for partici-
pants’ general beliefs about the impact of nutrition on BG levels; e.g.,
their beliefs about alcohol ranged from “raises BG levels” to “lowers BG
levels” to “has no impact on BG.” This suggests the need for further re-
search and education on the impact of nutrition on BG levels, especially
as it relates to macronutrients and meal composition.

In regards to prospective forecasting, all participants reported
experiencing significant challenges in generating predictions for glyce-
mic impact of different meals. Perhaps as a result, these predictions
varied in their correlation with the actual captured BG levels from cor-
relation coefficient r close to 0 to r as high as 0.75. Many of the pre-
dictions were informed by the nutritional composition of meals. Others
were based on consistent trends observed within the datasets, even
when these trends were contradictory to the participants’ prior

expectations or knowledge of diabetes pathophysiology, as was the
case with the consistently high impact of low-carbohydrate meals in
Dataset 2. Yet not all acknowledged trends led to high-accuracy pre-
dictions: while most participants observed that BG in Dataset 1 often
returned to premeal levels by the 2-h mark, they did not incorporate
this discovery into their predictions.

Overall, these findings showed that reasoning about data collected
through self-monitoring is challenging and conclusions reached with
such data can be less than reliable. This underscores the need for
more systematic methods for using data to generate conclusions and
discoveries and has several implications for the design of future infor-
matics interventions for data-driven health self-management. First, it
suggests the importance of both rich textual descriptions and macro-
nutrient composition of meals to individuals’ ability to analyze captured
records for trends and associations. Yet the vast majority of diet-moni-
toring technologies, including computational methods for automated
analysis of captured meals, continue to focus on caloric assessment
of meals18,19; this information is important for weight loss, but less
valuable for diabetes self-management. Refocusing these technologies
from general calorie counts to macronutrient composition could signifi-
cantly reduce the burden associated with diet monitoring and provide
individuals with the necessary information. Second, it suggests that
names of dishes and ingredients, often captured as part of diet track-
ing, can provide additional valuable information to facilitate reasoning
and decision-making. These descriptions could be analyzed by natural
language processing and data mining methods on their associations
with high or low glycemic impact in a way similar to how they were
used by the participants in the study. These computational methods,
however, would need to be combined with interaction mechanisms to
examine and validate the discoveries. Finally, it suggests the need for
new ways to help individuals anticipate the glycemic impact of their
future meals. Previously, researchers proposed computational endo-
crine models that can forecast glycemic response to nutrition in meals,
particularly to the amount of carbohydrates.20,21 While these models

Table 3 Correlations between the amount of different macro-
nutrients and the magnitude of change in premeal/postmeal
BG levels

Dataset1 1 h Dataset1 2 h Dataset2 2 h

R P-value r P-value r P-value

Carbohydrates 0.31 .003* 0.14 .23 0.56 < .001*

Protein 0.12 .23 0.16 .17 �0.5 .69

Fat 0.17 .17 0.27 .02* 0.1 .4

Fiber 0.24 .023* 0.1 .37 0.38 .001*

*The asterisks (or minus signs) indicate negative correlation with a
negative correlation coefficient r.

Table 4 Correlations between predictions generated by CDEs
(E1,E2) and participants with diabetes (P1-P10) and the ac-
tual captured postmeal BG readings

Dataset 1 Dataset 2

1 h postmeal 2 h postmeal 2 h postmeal

R P-value r P-value r P-value

E 1 0.17 .52 0.008 .98 0.72 < .001*

E 2 0.69 .002* �0.06 .82 0.75 < .001*

P 1** 0.56 .019 0.12 .42 N/A N/A

P 2** N/A N/A N/A N/A 0.73 .002*

P 3 0.57 .017 0.068 .8 N/A N/A

P 4 N/A N/A N/A N/A 0.55 .034

P 5 0.55 .024 0.45 .084 N/A N/A

P 6 N/A N/A N/A N/A 0.58 .023

P 7 0.67 .003* 0.018 .95 N/A N/A

P 8 N/A N/A N/A N/A 0.71 .003

P 9 0.49 .073 0.094 .74 N/A N/A

P 10 N/A N/A N/A N/A 0.57 .029

*Results with statistical significance from adjusted significance level of
P¼ .0024.
**Participants who took part in the self-monitoring study.
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are still in their infancy, they can provide another venue for reducing
the burden associated with diabetes self-management.

Together, these new methods can build a foundation for creating
personalized informatics interventions for diabetes self-management.
In recent years, precision medicine—an approach to the delivery of
medical treatment that is tailored to an individual’s genetic and molec-
ular makeup—has been suggested as the way that medicine will be
practiced in the future.22 In a similar manner, we propose that data
collected with self-monitoring can enable precision health informatics,
in which behavioral strategies for self-management of chronic dis-
eases are tailored based on individuals’ personal data. However, fur-
ther research is needed to make this vision a reality.

This study has a number of limitations. First, it included a limited
number of participants who all had substantial experience (typically
over 20 years) of managing diabetes, and as a result may have been
more knowledgeable about diabetes self-management than an aver-
age individual with diabetes. The reasoning and judgment may be dif-
ferent for individuals who are newly diagnosed. In addition, it was
based on only 2 datasets, which may have had atypical patterns.
Reasoning on different datasets may be different as well.

6. CONCLUSIONS
This study examined how individuals with diabetes and diabetes edu-
cators reason and form conclusions about data collected with self-
monitoring, including dietary records and BG readings captured before
and after meals. Overall, the study showed that identifying trends in
the data collected with self-monitoring is a complex process, and that
conclusions reached by both individuals with diabetes and diabetes
educators are not always reliable. This suggests the need for new
ways to facilitate individuals’ reasoning with informatics interventions.
We propose that these methods could focus on helping individuals de-
termine the nutritional composition of their meals, using Natural
Language Processing (NLP) methods to identify associations between
key words describing meals and undesired changes in BG levels, and
using predictive endocrine models to forecast an individual’s reaction
to future meals based on previous records.
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