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ABSTRACT

The diabetes healthcare provider plays a key role in interpreting blood glucose trends, but few institutions have successfully integrated patient
home glucose data in the electronic health record (EHR). Published implementations to date have required custom interfaces, which limit wide-
scale replication. We piloted automated integration of continuous glucose monitor data in the EHR using widely available consumer technology for
10 pediatric patients with insulin-dependent diabetes. Establishment of a passive data communication bridge via a patient’s/parent’s smartphone
enabled automated integration and analytics of patient device data within the EHR between scheduled clinic visits. It is feasible to utilize available
consumer technology to assess and triage home diabetes device data within the EHR, and to engage patients/parents and improve healthcare pro-
vider workflow.
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INTRODUCTION

Type 1 diabetes is one of the most common chronic diseases of child-
hood, and its incidence and prevalence continue to rise.’™ Tight con-
trol of hyperglycemia (high blood glucose) with intensive insulin
therapy, including in early childhood, decreases the risk of serious
long-term diabetes complications.*"® However, aggressive insulin dos-
ing may result in hypoglycemia (low blood glucose) with risk of
adverse changes in the central nervous system.”® As a result, self-
monitoring of blood glucose is critical for affected children and their
parents to guide mealtime insulin dosing and to facilitate interventions
to avoid hypoglycemia.*® This chronic and intense requirement for in-
terpretation of fluctuating data is stressful for many families, particu-
larly caregivers of young children.®'® The diabetes healthcare provider
plays a key role in interpreting blood glucose trends, but most do not
have easy access to patient data between visits. Although cloud-based
diabetes data applications are available, consistent use by healthcare
providers has been limited, as the electronic health record (EHR) has
become the center of clinician workflow.'™='*

Few institutions have successfully integrated patients’ home glucose
data in the EHR. Previously published implementations have required
custom interfaces, which limit wide-scale replication.’>™"” Given the in-
creasing number of children with Type 1 diabetes and the increasing
adoption of EHRs by physicians, we predict a rising need for home glu-
cose data interpretation that may be addressed through EHR integration
and analytics.">""® In this brief report, we detail how widely available
consumer technology can enable automated integration of patient device
data into a health system EHR in order to triage care between scheduled
clinic visits and simultaneously improve healthcare provider workflow.

MATERIALS AND METHODS

In 2014, a major mobile device company (Apple, Cupertino, CA, USA)
announced an operating system update that enables health data inter-
operability (“HealthKit”). When our EHR vendor (Epic, Verona, WI, USA)

announced that its patient portal app (“MyChart”) would be HealthKit
compatible, our team recognized the opportunity to use this platform
for integration of patient device data into the EHR.'® Subsequently, a
major continuous glucose monitor (CGM) device company (Dexcom,
San Diego, CA, USA) announced compliance of its patient-facing app
with the described platform, and we launched a pilot initiative to as-
sess the feasibility of EHR integration of home-based continuous glu-
cose monitoring. Our Institutional Review Board exempted this quality
improvement initiative from oversight.

Architecture
See Figure 1 for an overview of the architecture.

Dexcom G4 Platinum CGM data collection

The continuous glucose monitor is a popular sensor technology that en-
ables frequent measurement (5-minute intervals) of interstitial glucose
concentration.2’ CGM accuracy is recently approaching that of standard
finger-stick glucometers, and its use provides real-time glucose data to
patients/parents and retrospective data to healthcare providers.?®22
The child/adolescent wears an interstitial glucose sensor that is con-
nected to a transmitter. Sensors are inserted subcutaneously by a pa-
tient or family member at home. Each sensor is approved for 1 week of
use. The transmitter sends glucose information by radio frequency to a
patient’s wireless receiver for display of CGM values. The receiver sends
the glucose information (including concentration and trend) by Bluetooth
connection to the Dexcom Share2 app on a paired Apple mobile device.

Apple mobile device data consolidation to the Epic EHR

Following a one-time enable step, the Dexcom Share2 app passively
shares glucose values, including date and time, on the device with the
Apple Health app via the HealthKit interface (https://developer.apple.
com/healthkit/). The glucose data is stored locally on the i0S device,
but is not shared with Apple. There is a 3-hour time lag in data
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Figure 1: Qverview of the CGM data communication bridge architecture.
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transfer from Share2 to HealthKit as mandated by Dexcom receiver
Food and Drug Administration device classification. Once the glucose
values reach HealthKit, they are passively shared with the Epic
MyChart app (https://www.epic.com/software-phr.php). The MyChart
patient portal is a component of the Epic EHR and uses the same data-
base, and the CGM values populate a standard glucose flowsheet in
the patient’s chart. This connection is initially established when a pro-
vider places an order in a patient’s electronic chart, resulting in a re-
quest to the patient within the MyChart app. Once the patient or
patient proxy (parent) accepts this connection request on the mobile
device, a communication bridge is established between HealthKit and
MyChart enabling population of CGM data as frequently as every 5
minutes. All provider workflow is in the EHR.

Patient enroliment

To assess this communication bridge and optimize analytic tools in
our EHR, we conducted a quality improvement pilot limited to 10 pa-
tients (Table 1) from a single provider (R.B.K.). The lead author se-
lected the first 10 interested patients during standard pediatric
diabetes clinic visits who were already using a Dexcom CGM and used
an i0S device. Those patients whose CGM receivers did not have
Bluetooth-enabled functionality (2 patients) were loaned an equipped
receiver for the duration of the 3-month pilot.

Participation required confirmation of Bluetooth pairing of the CGM re-
ceiver to a mobile device, updating the mobile device with the most recent
version of the operating system, Dexcom Share2 app, Epic MyChart app,
and confirming or establishing a username and password for all accounts,
including a parent’s/adolescent’s Epic MyChart account. Setup time aver-
aged 45-60 minutes in addition to the scheduled clinic visit. During this
time, there was specific verbal and written notification to the patients/par-
ents that the diabetes healthcare team would not be actively monitoring

or have real-time access to CGM data, which was out of scope for this pi-
lot. The patients/parents were advised that they should continue to contact
the diabetes care team by established means for any urgent questions/
concerns. Additionally, patients/parents were advised to maintain updates
for their linked mobile devices, including the latest operating system and
app updates, to maintain communication of CGM data.

EHR visualization and analytics

Given the data volume of up to 288 glucose readings per day, the
standard flowsheet did not support visualizing a patient’s trends over
weeks to months. Therefore, we implemented modal day visualization
with a custom web-service embedded in the EHR (Figure 2). Design of
this clinical decision support tool could be a barrier for other health-
care delivery systems that might want to replicate our workflow. We
therefore have made it publically available at https://gluvue.stanford
childrens.org/. This tool enables a provider to designate target glucose
range and define nighttime hours when visualizing data over a given
date range.

An analytic report was also designed to triage patients based on
glycemic control at home. The intention of this functionality was not to
substitute regular monitoring by patients/parents, but rather to identify
actionable trends by retrospective review between scheduled quarterly
clinic visits. As such, no alerts or provider in-basket messages were
utilized to identify specific glucose values out of a patient’s target
range. At setup, we used verbal and written notification to establish
appropriate patient/parent expectations regarding only intermittent
provider monitoring. The report pulled data from the standard glucose
flowsheets in the EHR and displayed days of sensor use/available glu-
cose readings, estimated hemoglobin A1c values (derived from mean
CGM glucose value), percent hypoglycemia, and episodic nocturnal hy-
poglycemia for each patient. This report was generated every 2
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weeks, though specific glucose data was reviewed earlier if prompted

Table 1: Pilat group demographics and disease characteristics by a patient/parent.
Age Age at Gender Insulin Provider workflow
d!abete§ . method When prompted by patient/parent request, or by summary information
diagnosis in the analytic report, the pediatric diabetes provider assessed glucose
21 months 4 months M MDI patterns using modal d_ay visualization within the EHR. The provider
sent messages summarizing the assessment from the EHR to the par-
5 years 21 months M MDI ent/adolescent via MyChart. Messages also included questions regard-
9 years 7 years F MDI ing specific trends, insulin dosing parameters, and other
9 vears 7 vears M Pum recommendations. The provider was alerted within the EHR in-basket
y y P if a parent/adolescent did not read the message within 48 hours.
10 years 5 years F Pump MyChart messages can be pasted into more formal documentation for-
11 years 8 years M Pump mats for billing purposes.
12 years 10 years F MDI RESULTS
15 years 12 years M MDI Over a 45-day period we enrolled 10 patients ranging in age from 21
16 years 13 years F Pump months to 17 years. Six patients utilized their own Apple iPhone with a
cellular data plan, 2 conveyed glucose readings intermittently using a
17 years 14 years F Ml parent’s iPhone with a cellular data plan, and 2 conveyed glucose

“One participant has partial pancreatic agenesis and the rest have type ~ readings intermittently using an iPhone without a cellular data plan
1 diabetes; MDI = multi-daily insulin injections; Pump = insulin pump. (WiFi only). Upon establishing the communication bridge for the initial
2 patients, the system imported 2623 and 3857 glucose readings

Figure 2: Modal day visualization of 2 weeks of CGM data for a single participant with a custom web-service embedded in the EHR (avail-

able at https://gluvue.stanfordchildrens.org) A pattern of nocturnal hypoglycemia is readily identified.
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previously recorded in their respective CGM receivers. This initial high-
volume data communication resulted in Epic MyChart app error
messages and functionality freezing. For the subsequent patients, we
limited retrospective glucose reading import to the preceding 24 hours
(ranging from 4 to 257 initial data points), and there were no further
reports of error messages. For those patients whose CGM receiver
had only intermittent proximity to an iPhone, prospective data integra-
tion was also truncated to the preceding 24 hours. Accordingly, we
asked the parents of these 4 patients to assure proximity of their CGM
receiver to the paired iPhone, and internet connection for the phone,
at least once daily to facilitate communication of all available glucose
readings. Of note, there is now the option of using a smartphone as
the receiver (http://www.dexcom.com/g5-mobile-cgm). For all pa-
tients, glucose data were not available for durations when a CGM
transmitter was out of range of the CGM receiver, e.g., when a patient
left the receiver at home or it was charging in a different room. Some
patients chose not to wear a sensor daily, but most utilized the CGM
near daily for the duration of the pilot. No participant expressed chal-
lenges in maintaining updates for the apps or mobile device operating
system.

The pediatric endocrinologist providing recommendations for these
patients (R.B.K.) found that after successful enroliment, the system
enabled secure communication, timely access to information, and en-
hanced interpretation of large volumes of patient device data. Despite
tens of thousands of data points per patient recorded in the EHR glu-
cose flowsheet by the end of the pilot, chart access was not slowed,
although viewing this specific flowsheet (rather than using the modal
day viewer, which has rapid display) did take 1 to 2 minutes to
display.

For one toddler, intermittent nocturnal hypoglycemia was identi-
fied, prompting communication with his mother. Discussion revealed
that on occasions when the patient had hyperglycemia at bedtime, his
family administered additional rapid-acting insulin using his dinner-
time dose regimen. Less aggressive late-evening dosing was recom-
mended, and a new insulin dose calculation sheet was securely
forwarded to the family via MyChart. Subsequent monitoring demon-
strated resolution of nocturnal hypoglycemia.

Unlike typical experiences with conventional communication, the 4
adolescents in the pilot were more actively engaged in their care be-
tween visits using MyChart messaging. A conversation was initiated
with 1 teen and her mother to explore notable post-mealtime hyper-
glycemia. Despite the recommendation of more aggressive insulin
dosing for mealtime carbohydrate (carb) intake, remote monitoring
demonstrated only minimal improvement. Further discussion helped to
identify that she was not including number of servings when calculat-
ing mealtime carb content. This prompted a nutritionist visit to review
carb-counting technique, resulting in an improvement in post-meal hy-
perglycemia. Another teen was noted to have recurring nocturnal hy-
poglycemia on 2 specific weeknights. When he and his mother were
made aware of this pattern, he offered that the highlighted nights fol-
lowed sports practice and likely a related decrease in insulin require-
ment. He suggested a decreased dose of basal insulin on those
specific weeknights from that point forward, resulting in resolution of
the pattern.

DISCUSSION

We believe this is the first published report detailing how widely avail-
able consumer technology can enable automated integration of patient
data into a health system EHR. Here we demonstrate two things: first,
continuous information delivery is feasible through the use of com-
monly owned mobile devices. Second, passive EHR-based data

delivery, coupled with automated triage and intuitive visualization, fa-
cilitates more efficient provider workflow for reviewing data and im-
proved communication with patients. In our pilot, this was associated
with better care between scheduled clinic visits.

Workflow integration has repeatedly been shown to be a critical
success factor for clinical decision support systems, yet the workflow
used for diabetes care today is far from optimized.>*° The current
standard for reporting interval CGM data requires patients to perform
multiple manual steps. As a result, this data is generally available to
providers only at quarterly clinic visits. Given the voluminous amount
of data trends over the preceding 3 months, diabetes providers can
only realistically focus on the most recent 2 to 4 weeks of glucose val-
ues, which often are biased by recent iliness, changes in diet and/or
activity during school breaks, and other factors. In contrast, our model
eliminates the need for intermittent CGM device download. As an addi-
tional clinic time-saver, descriptions of glycemic trends and any medi-
cal advice provided since the preceding visit are documented in
MyChart messages, negating the need for lengthy additional docu-
mentation and further increasing available face-to-face time with
patients.

Our patient portal not only served as the infrastructure for sharing
data, but simultaneously facilitated secure discussion among adoles-
cents, parents, and providers. Adolescents are adept with electronic
media, and the majority have their own mobile phone — including
youth from low-income families, who are more likely to access the
internet from their phone than a computer.?5? Given the leading role
that adolescents play in their own diabetes care, we recognize this
tool as an additional means of building their self-management skills
before adulthood.?® However, establishing patient portal access for
this unique age group is challenging, given the importance of privacy
and confidentiality issues specific to their health and proxy access.
Our health institution systematically addressed these concerns to facil-
itate secure access for all of our pediatric patients.”®

In reviewing previous efforts to integrate home glucose data in the
EHR, we learned the importance of managing patient/parent expecta-
tions to enrich their experience and decrease medicolegal concerns.*
We stressed both verbally and via written patient notification (After
Visit Summary) that real-time glucose monitoring was out of scope of
this pilot (although certainly something we will explore in future de-
ployments and studies) and advised that patients/parents continue to
contact their diabetes care team by established means for any urgent
questions/concerns. While hyperglycemia and hypoglycemia values
were transmitted for every patient during the pilot, no patient or parent
expressed concern or frustration that they were not contacted regard-
ing each instance. Rather, participants frequently expressed gratitude
that actionable trends were brought to their attention. Some also for-
got they were transmitting CGM data and were pleased when they re-
ceived our intermittent retrospective data review.

Importantly, the workflow described here requires no institutional-
level customization and is agnostic to EHR vendor. While HealthKit is
only available with Apple devices, we anticipate that Android mobile
devices will offer a similar secure exchange platform for diabetes data
in the future (https://developers.google.com/fit/?hl=en). The only cus-
tomization we developed was the modal day glucose viewer
(Figure 2), which we have now released as a cloud-based clinical de-
cision support tool available to all healthcare delivery systems. Thus,
we expect that others can easily leverage our methods for similar de-
livery of clinically relevant data to improve workflow.

Beyond the enormous potential to assess actionable trends on a con-
tinuous basis, the data-driven model deployed and piloted here supports
proposed criteria for meaningful use of EHRs.22 With this approach
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patients/parents actively participate in their health management and have
direct engagement with healthcare providers from a smartphone or com-
puter via the secure patient portal, and their data is stored and easily re-
trieved. This methodology also holds the potential to facilitate telehealth
diabetes care in regions with insufficient access to pediatric diabetes pro-
viders, and for those patients who do not benefit from quarterly visits.>®

CGM integration with the EHR may raise concern for strained pro-
vider resources, as most diabetes care between visits (including review
of insulin pump data) is a nonbillable service. However, analysis and in-
terpretation of CGM data is a billable service (relative value units =
1.22) up to monthly by a physician or midlevel provider using Current
Procedural Terminology code 95251.343% This analysis does not need
to be performed in person, and reimbursement for review of CGM data
between visits, in addition to accomplished meaningful use criteria,
may protect or increase provider resources for enhanced diabetes
care.®® With evolving technology and healthcare practices, we are opti-
mistic that national reimbursement models for pediatric chronic disease
will be updated to facilitate effective precision medicine.*’

This brief report demonstrates that it is feasible to utilize available
consumer technology to integrate home glucose data in the EHR and
enhance healthcare team workflow. Implementation on a larger scale
of providers and patients is necessary to demonstrate impact on dia-
betes outcome measures.
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