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The first step in binocular stereopsis is to match features on the left retina with

the correct features on the right retina, discarding ‘false’ matches. The physio-

logical processing of these signals starts in the primary visual cortex, where the

binocular energy model has been a powerful framework for understanding the

underlying computation. For this reason, it is often used when thinking about

how binocular matching might be performed beyond striate cortex. But this

step depends critically on the accuracy of the model, and real V1 neurons

show several properties that suggest they may be less sensitive to false matches

than the energy model predicts. Several recent studies provide empirical sup-

port for an extended version of the energy model, in which the same principles

are used, but the responses of single neurons are described as the sum of sev-

eral subunits, each of which follows the principles of the energy model. These

studies have significantly improved our understanding of the role played by

striate cortex in the stereo correspondence problem.

This article is part of the themed issue ‘Vision in our three-dimensional

world’.
1. Introduction
One of the most significant advantages of having two eyes with overlapping

visual fields is that it provides a unique source of visual information about

the three-dimensional structure of our surroundings. Objects will fall at differ-

ent locations on the two retinae, generating a binocular disparity, in a way that

reflects the distance from the observer to that object. In order to measure the

binocular disparity generated by an object, it is first necessary to identify

which image features on the left retina correspond to features on the right

retina (‘correspond’ in the sense that they both represent light coming from

the same point in the three-dimensional world). This problem is called the

stereo correspondence problem and has been widely investigated in both com-

putational and psychophysical studies. Indeed, there are now many algorithms

that work robustly in artificial systems (see [1] for a review), which have

revealed how the constraints imposed by the geometry and the structure of

the natural world make this problem tractable.

Here, we explore how computations performed by neurons in the visual

cortex deal with the correspondence problem. An important constraint on the

solutions available to the brain is that considerable processing of the visual

inputs occurs in the retina of each eye, before any binocular comparisons can

be made. Although some neurons in the lateral geniculate nucleus receive binocu-

lar inputs [2,3], no disparity selectivity has ever been reported there. The first

site in the mammalian brain where disparity selectivity has been observed is in

the primary visual cortex (V1). This initial coding of binocular information pro-

foundly constrains what will be necessary or even possible at subsequent

stages. Although considerable progress has been made in understanding

this important step, the remaining uncertainties make it difficult to elucidate

what computations are required beyond striate cortex. Here, we discuss recent

changes in our understanding of how disparity is computed in V1, and its

implications for subsequent processing.
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Figure 1. The classic BEM and recent extensions that are discussed in this review. A disparity-selective simple cell (upper left) is constructed from two monocular
RFs (labelled ‘left’ and ‘right’). Each RF computes the dot product (a weighted sum) of the image and the RF, and the results from each eye (scalars vL, vR) are
linearly summed. In this example, the RFs are identical in the two eyes, and are both Gabor functions. (Two cycles per degree sinusoidal carrier, Gaussian envelope
0.258. While the scaling of all these figures is arbitrary, we include a scale bar that indicates a plausible size, and that was used for simulations.) After summation,
the response is half-wave rectified and squared ( y ¼ pos(x)2). A second simple cell (lower left) has monocular RFs that are exact inversions of the first simple cell,
thus the monocular responses are �vL and �vR (since both simple cells are presented with the same image). The summed response of these two simple cells can
be described as a single binocular ‘LN element’ that has one binocular RF followed by squaring. The classic BEM complex cell (Cx) is constructed from two LN
elements in quadrature. That is, the phase of all Fourier components is shifted by p/2 between the RFs of the two LN elements. In this diagram, the filled arrows
show all of the summation steps required to produce the classic BEM with physiologically plausible components. Note that once one monocular RF is defined (upper
left), every other step required to generate a complex cell selective for zero disparity is determined. The open arrows show modifications that are minor in the sense
that they use exactly the same principles, but they can nonetheless significantly change the behaviour of the model. Modification (a) is simply to add a squaring
nonlinearity at the output of the complex cell, identical to that postulated for simple cells (since the complex cell response is always positive, half-squaring and full-
squaring are indistinguishable). Modification (b) creates a complex cell with more than two LN elements. Here, the additional element has a slightly different RF
location (but left and right components are still identical to each other), but is otherwise identical. The dashed line marks a corresponding point in both RFs. This is
similar to the elements identified by Sasaki et al. [6]. Modification (c) shows an LN element whose output is subtracted from the complex cell response (as if it
released inhibitory neurotransmitters). In this example, the binocular RF is also different, so that zero disparity now produces a response minimum, and it has a
broader RF. These are all characteristic of the elements identified by Tanabe et al. [7]. In modifications (b,c), the additional elements are not in quadrature with the
LN elements of the classic BEM. Once the requirement for quadrature is relaxed, there are a large number of possible LN elements that could be introduced—these
are just two examples for which empirical support will be discussed later.
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2. The binocular energy model and the stereo
correspondence problem

The binocular energy model (BEM) remains central to our

understanding of how disparity is computed in binocular

neurons. The idea was first suggested by Ohzawa & Freeman

[4] to account for a striking observation in binocular complex

cells. When stimulated with sinusoidal luminance gratings,

these neurons are not selective for the spatial phase of mon-

ocular gratings presented to either eye, and yet are selective

for the difference in phase between the eyes. The quantitative

model was first explicitly described and tested in the classic

paper by Ohzawa et al. [5]. The model was able to account

for the disparity-selective properties of both simple and

complex cells with a very simple mechanism.

Figure 1 illustrates the principles of the model. For simple

cells, it postulates that monocular processing in each eye can

be described by a linear filter (the receptive field, RF), and the

results from the two eyes are linearly summed before passing
through an output nonlinearity. That is, for any image the

monocular response in the left (right) eye is given simply

by the inner product of the image with the monocular RF,

resulting in a scalar which we denote with vL (left eye) and

vR (right eye). The output nonlinearity is typically modelled

with a squaring operator as this has several convenient prop-

erties. The response of one binocular simple cell is then given

by ðvL þ vRÞ2 ¼ v2
L þ v2

R þ 2vLvR. The first two terms in this

equation depend only on the monocular images and RFs,

but the final term computes the covariance between the mon-

ocular responses. This term confers disparity selectivity on

the model neuron, since the magnitude of 2vLvR depends

on the correlation1 between the images after filtering. Because

all processing prior to the output nonlinearity is linear, the

BEM is an instance of the class of ‘linear–nonlinear’ (LN)

models that have been widely used to describe responses in

early visual cortex [8–10].

The squaring used for this simple description is not a real-

istic model of real simple cells, which are better described by
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Figure 2. The correspondence problem after filtering with the binocular BEM,
represented by considering the response of a population of model complex
cells to a single binary noise pattern. This pattern has zero disparity—the
image is identical in both eyes. This simulation was run using the one-dimen-
sional RFs shown in figure 1, with one-dimensional images. The image pixel
size was 0.0058 (100 pixels per cycle of the carrier). (a) The response profile
across a population of neurons that differ only in their position disparity
(smooth red curve; equivalent to the responses of the complex cell shown
in figure 1 to different disparities). The position disparities were introduced
by displacing the RFs in each eye symmetrically, so the mean (cyclopean) RF
position is constant. There is a local maximum at the true disparity, but sev-
eral other local maxima—‘false’ matches. The false matches can have a
greater magnitude than the response to the true disparity. (b) A population
differing in both position disparity and spatial scale (quantified by the pre-
ferred spatial frequency). The colour scale shows relative response (like the
ordinate in (a)), in which each horizontal row has been normalized to a
maximum of unity. The red horizontal line marks the set of model cells
used in (a). Note that while every row in this image has a local maximum
at the true disparity, the locations of the false matches depend on the spatial
scale of the filters. Consequently, a simple summation across spatial scales
can extract the correct disparity in most cases. The blue (less smooth) line
in (a) shows this sum normalized (like the smoother red curve) to a maxi-
mum of unity. Note that here the global maximum is at the true disparity.
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a half-squaring. But the sum of two binocular simple cells,

with RFs that are related by inversion (figure 1), is a physio-

logically natural way to produce these squared responses. We

refer to this slightly abstract construct as an ‘LN element’

(figure 1) to distinguish it from simple cells. The response

of a single LN element will still depend upon the spatial

phase of a luminance grating, and so to build model complex

cells it is usual to combine two LN elements that have RFs in

quadrature (the RF in the second element is obtained by shift-

ing all of the Fourier components through 908). The fact that

the two LN elements are in quadrature confers phase invari-

ance on the model complex cell. The fact that the response of

both LN elements depends on disparity makes the model

sensitive to interocular phase difference.

Note that once a single monocular RF has been defined

(of any shape), these rules completely define a model com-

plex cell selective for zero disparity (with identical RFs in

each eye, as in figure 1). Thus, BEMs can be built with any

shape of RF, although almost all studies have used Gabor

functions to describe the monocular RFs. Although it has

always been recognized that this compact description is

bound to be an oversimplification, it nonetheless provided

a powerful framework for understanding both the responses

of individual neurons and the nature of the correspondence

problem faced by the brain.

The traditional way to challenge correspondence algorithms

is to use them to decode the disparity of random dot stereo-

grams (RDS). The BEM produces a tuning curve for disparity

in RDS that closely reflects the shape of the monocular RF, pro-

vided the tuning curve is constructed by averaging the response

to many different RDS patterns. In response to a single RDS pat-

tern, the response of a BEM to changes in disparity will also

depend upon how each image displacement (necessary to pro-

duce disparity) changes the stimulus within the monocular RFs.

These are the signals that the brain must deal with when trying

to detect disparity in a single image. Figure 2 illustrates a simple

way to view this problem from the perspective of a downstream

visual area. The rules for constructing BEM complex cells tuned

to zero disparity (above) may be generalized to produce a model

population of BEMs, each selective for a different disparity. This

generalization step can be done in several ways, but the most

intuitive is to produce model neurons selective for different

disparities by simply translating the RF in one eye (termed an

RF with ‘position disparity’ [11,12]). One advantage of generat-

ing a population in this way is that there is a symmetry between

disparity in the stimulus and disparity in the RFs: the response

of a BEM with zero RF disparity (figure 1) to a stimulus dis-

parity x, is the same as the response of a BEM with RF

disparity –x to a stimulus with zero disparity. Figure 2a
shows the response of a population of such disparity detectors

to a single RDS at zero disparity (equivalent to the response of

the BEM shown in figure 1 to a single RDS stimulus shown at

different disparities). Figure 2a shows four important properties

of such a population response:

(i) There is a local maximum in the response where the

RF disparity matches the stimulus disparity.2

(ii) There are additional local maxima at other disparities

(false matches).

(iii) The response map is much smoother than the pixela-

tion of the original image (reducing the number of

false matches), which simply reflects the fact that the

monocular RFs pool over a finite spatial extent.
(iv) The peaks associated with false matches can be larger

than those for the true match. So a simple rule that

found the maximum response in this population would

frequently report the incorrect disparity. Note, however,

that the locations of the false matches depend on the par-

ticular dot pattern, and so if responses like these are

averaged across enough different dot patterns (or equiva-

lently, across enough neurons with no-overlapping RFs),

the mean response will have a global maximum at the

stimulus disparity.
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The response profiles in figure 2a illustrate how the corres-

pondence problem might appear to a visual area downstream

of striate cortex. What rule applied to this response profile will

yield a correct disparity estimate? Using only the population of

neurons shown in figure 2a, this is still a challenging problem

[13]. But recall that this population was generated from a

single monocular Gabor RF. If a similar map is generated for

the same stimulus, but using Gabor RFs of a different sizes

(corresponding to neurons with different spatial frequency pref-

erences, figure 2b), a simple readout becomes possible. While

there is a local maximum at the true disparity for all frequencies,

the locations of the false matches are different across spatial

frequency preferences. Consequently, simply summing these

responses across V1 neurons with different spatial frequency

preferences might be an effective but simple way for extrastriate

cortex to solve for stereo correspondence. An appropriately

weighted summation of BEMs can perform even better [14].

This is closely related to the ‘coarse-to-fine’ principle identified

in the earliest correspondence algorithms [15]. The summation

of responses shown here is simpler than those early algorithms,

which proposed a nonlinear interaction between scales with a

progression from coarse scales to fine scales over time. The sum-

mation in figure 2 might better be described as ‘coarse AND

fine’. But both methods exploit the same principle that the

false matches are different at different scales, while the correct

matches are aligned.
3. The matching problem in V1 neurons: similar
to the binocular energy model

Note that this description is based entirely on simulation

results with the BEM. The response of a large population of

real V1 neurons to a single random dot stimulus has not been

studied. As a result, our current understanding of the problem

faced by extrastriate cortex (which has access to a response map

like figure 2b) depends critically on the BEM providing an ac-

curate account of the responses of V1 neurons. Many lines of

evidence indicate that the basic architecture of the model is

approximately correct, and accounts for several aspects of per-

ception. The size of the monocular RF should limit the finest

detectable modulation in disparity [16]. This is true for single

neurons, and appears to explain the poor spatial resolution

for disparity that is found psychophysically [16,17]. Similarly,

the temporal integration of the monocular RF limits the ability

to detect temporal modulation in disparity, again in line with

human psychophysics [18]. Perhaps the most striking confirm-

ation of the principles of the BEM is the effect of presenting

images of opposite contrast to the two eyes (anticorrelation).

Inverting the contrast of an image is equivalent to multipli-

cation by 21 (if the image is described with deviations from

mean luminance). Since monocular processing in the BEM is

linear, this means that the monocular response must also be mul-

tiplied by 21. In the BEM, this means that the term 2vLvR above

(§2) must become �2vLvR (only one eye’s image is inverted).

Since it is this term alone that produces the disparity-selective

response, this predicts that the disparity-selective response

should be inverted when anticorrelated stimuli are presented.

This inversion is indeed found [5,19].

However, while the inversion observed with anticorrelated

stimuli provided strong evidence for the model architecture, it

also revealed a quantitative failure: the magnitude of the res-

ponse modulation was substantially weaker for anticorrelated
stimuli than for correlated stimuli [19]. This discrepancy is par-

ticularly interesting as it suggests that neurons are specialized

for realistic inputs, in a way that the model does not explain.

The anticorrelated stimuli do not have the properties of correct

disparity matches (e.g. in figure 2b no disparity would produce

consistent peaks across spatial frequencies, although they would

produce consistent troughs [20]). These stimuli are ‘unnatural’ in

the sense that it is impossible to achieve anticorrelation in natural

viewing.3 The viewing geometry imposes some close relation-

ships between spatial frequency and interocular phase

difference [11,13,21], and anticorrelation represents the lar-

gest possible deviation from these naturally occurring

relationships [21]. It is presumably the ‘unnatural’ binocular

structure that produces the weak responses in real neurons,

but the BEM is not sensitive to this. That suggests some

specialization at the level of V1 that helps to eliminate false

matches, and this in turn implies that extrastriate cortex

may face a simpler problem than is suggested by figure 2b.

Thus, the BEM provides an excellent starting point for

describing V1, but requires some modification before we

can understand the role of V1 in stereo correspondence.
4. Extending the energy model
Identifying what mechanism is responsible for these attenuated

responses is therefore an important step in understanding how

the cortex deals with the correspondence problem. For many

cells, this could in principle be explained by proposing that

the complex cell response also passes through an output non-

linearity [22,23] as illustrated in figure 3a. (Although note

there is not yet any evidence that this is the correct explanation.)

However, for neurons with odd-symmetric tuning (‘near–far’

types, figure 3b), a simple output nonlinearity cannot generate

the asymmetry seen in real cells [23]. The responses in odd-

symmetric cells can be explained without changing the

underlying structure of the model if the neuron receives

inputs from a broader range of simple cells than the quadrature

pairs used in the classic model and the simple cell nonlinearities

are not just half-squaring (illustrated in figure 3c) [21,24].

This extended model is still very similar to the BEM, which

also proposes that disparity-selective complex cells are the sum

of several LN elements. The original model used a squaring

nonlinearity and just two LN elements that were in quadrature.

Real neurons do not behave exactly as predicted by this model,

but may be explained by a more general form of the same

mechanism: a sum of more than two LN elements, with a mix-

ture of nonlinearities. Despite the subtlety of this change, the

behaviour of this extended model, e.g. in simulations like

those shown in figure 2, can be quite different from the classic

version. This makes the extended model more flexible, but

until recently the evidence supporting the idea was indirect.

Determining the extent to which the responses of real V1

neurons are captured with the extended model remains an

essential step in understanding the structure of the stereo

correspondence problem in visual cortex.
5. Physiological evidence in favour of the
extended energy model: multiple subunits

A number of recent studies have provided clear evidence in

favour of the extended model. The most ‘hands-off’ of these
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tical. Subtracting one from the other then produces odd-symmetric tuning. Note that these two subunits do not form a quadrature pair, so that (c) represents
another instance of the extended BEM.
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used independent white noise stimuli presented to the two

eyes. From a large set of these random images, only a fraction

will produce spikes. This ‘spike-triggered ensemble’ of images

is identified by picking all images that occurred at a fixed time

delay before each spike. Given a large set of images that pro-

duce spikes, and a large set that do not, it is possible to infer

the set of LN elements that explain which images fall into the

spike-triggered ensemble. This can be done simply by applying

principal component analysis to the spike-triggered ensemble

(a technique known as spike-triggered analysis of covariance,

STC [10,25]). When applied to disparity-selective neurons

recorded in monkey striate cortex, this revealed that most neur-

ons do require more than two LN elements to describe their

responses adequately [7]. It also revealed that the majority of

neurons require that some LN inputs be suppressive—certain

stimulus features reduced the probability of spiking. There

were several systematic relationships between the suppressive

and excitatory LN elements (illustrated by modification (c) in

figure 1). First, they had complementary disparity selectiv-

ity—disparities that caused the strongest excitation also

produce the weakest inhibition. That is, they seem to have a

‘push–pull’ organization. Second, the inhibitory elements

were at a coarser spatial scale (with a peak frequency approx.

one octave lower than the excitatory elements). This interaction

between spatial scales has much in common with the coarse-to-

fine computation that reduces false matches as described in §2.

Because the suppressive inputs have inverted disparity selec-

tivity, they produce ‘disinhibition’ at the preferred disparity

of the excitatory subunits, so the effect is similar to summation

over spatial scales (illustrated in figure 2). Finally, the effects of

the suppressive images are slightly delayed, by about 7 ms [26].
The origin of this delay is unknown, but it is tempting to specu-

late that it represents the delay introduced by passing

excitatory inputs through inhibitory interneurons in the

cortex. In classic coarse-to-fine algorithms, the coarse scale is

represented earlier in time, so the summation over scales in

V1 neurons does not implement exactly those algorithms.

But they clearly exploit the same principle that combining

over coarse and fine scales helps to resolve ambiguity. It is

also important to note that combining excitation at one scale

with inhibition over a broader scale has the effect of ‘sharpen-

ing’ the disparity tuned response of the sum. Consequently,

the responses of single neurons do move from coding coarser

scales to finer scales over a period of 20–50 ms [7,26–28]. The

early coarse-to-fine algorithms imagined this combination hap-

pening at a stage after the initial binocular filtering [15]. That so

many components of this are visible in the responses of V1

neurons indicates a surprisingly sophisticated computation,

and yet one that can be performed by the extended BEM.

The contribution of multiple subunits can be demonstrated

in a more direct way if a sufficiently large stimulus set is used to

probe disparity signals in different sub-regions of the RF [6].

Figure 4 illustrates the principle used. Suppose a thin strip of

random dots is placed at one end of the RF in both eyes—

figure 4a shows them in the upper half. The classic BEM will

signal disparity in these dots, regardless of whether these are

presented in the upper half, or at the symmetrical location in

the lower half. Now suppose the dots are placed in the upper

half of the RF in the left eye, but the lower half in the right

eye. The classic BEM still displays selectivity, because the

dots produce the same response in the monocular RF at both

ends. That is, because the terms vL and vR are the same in all
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three cases, the model response must be identical. However, if

the cell were composed of two distinct subunits as illustrated in

figure 4d, then no disparity selectivity will be seen when the

dots are at different locations in the two eyes, because they acti-

vate different subunits. That is, if YL and YR indicate the

vertical position of the dots, a classic BEM will show disparity

selectivity that is a separable function of YL and YR (figure 4c).

If the cell is composed of two subunits, each of which is a BEM,

and they have different Y locations, then the cell’s response

will be an inseparable function of YL, YR, elongated along

the diagonal (figure 4e). The extent of this elongation can be

used to estimate a minimum number of subunits, and a sub-

stantial number of neurons recorded by Sasaki et al. [6]

needed more than three subunits to account for the responses.

This combination of spatially offset subunits was illustrated by

modification (b) in figure 1.

These two methods complement one another in important

ways. The major strength of STC is that it gives a full descrip-

tion of the RF properties of each subunit. However, this

comes at a significant price: the conclusion only holds under

the assumptions of the model—that the cell really is composed

of a set of LN subunits. If other nonlinear processes influenced

the firing rate (e.g. if some dot patterns led to changes in the

contrast gain), the set of LN filters recovered by STC may be

quite different from the true RF subunits of a given cell. The

method of Sasaki et al. [6] requires far fewer assumptions—

the fact that dots that are separated but still within the

RF show no binocular interaction clearly indicates that the RF

is divided into subunits with distinct binocular RFs, regard-

less of any nonlinearities within those sub-regions. The

disadvantage of this method is that it gives a much less
complete picture of the properties of those subunits. It is

clear that they occupy different spatial locations, but little

else can be said about their properties.

Fortunately, the same principle can be extended to explore

other differences between subunits, such as differences in select-

ivity for spatial frequency [29]. Here, the stimuli were sinusoidal

luminance gratings in which the spatial frequency was manipu-

lated separately in the two eyes (SFL, SFR), and for each

frequency combination the strength of disparity modulation

was measured. This requires a very large number of grating

stimuli, that exhaustively explored all combinations of four par-

ameters: spatial frequency (left and right) and spatial phase (left

and right). By the same logic as illustrated in figure 4 for

location, their finding that disparity modulation is an insep-

arable function of SFL, SFR indicates the presence of multiple

binocular subunits selective for different frequencies. As in

the study by Tanabe et al. [7], this also provides a substrate

for a ‘coarse-to-fine’ interaction that helps to reduce false

matches. Thus, all of these studies support the same general

conclusion—typical V1 complex cells behave as if they receive

input from more than two LN elements, and the effect of this

combination is to reduce the problem of false matches.

In addition to revealing multiple subunits, Baba et al. [29]

found that some cells shared an interesting property across

the subunits. As in an earlier study [30], some cells responded

best when the SF presented to the two eyes was different. In

these cells, Baba et al. showed that the interocular difference

in preferred SF was preserved across subunits. This provides

an ideal arrangement for detecting surfaces that are tilted

around a vertical axis, which produces interocular SF differ-

ences in the stimulus [31]. Having multiple subunits helps
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both to sharpen the selectivity for slant in these neurons and

reduce the number of false matches produced by slanted sur-

faces. More recently, Kato et al. [32] extended this analysis to

explore different orientations between the eyes, and again

found evidence for multiple subunits, with matched interocu-

lar differences in preferred orientation. This seems to be a

specialization for detecting surfaces tilted around a horizon-

tal axis [33]. Thus, the extended model helps to eliminate

false matches not only for stimuli with uniform disparity,

but also for more natural surfaces with a variety of slants.
 g
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6. Testing the extended energy model:
suppressive subunits?

Although it is possible that these studies reveal the same

underlying mechanism, at first sight the descriptions differ in

one important respect. Tanabe et al. [7] identified a suppressive

contribution from lower SFs, whereas Baba et al. [29] did not

find evidence for suppressive inputs. Because the conclusions

of Baba et al. are derived from measures of disparity modu-

lation, it might be that the modulation at lower SFs was

produced by suppressive mechanisms, while that at higher

SFs derives mainly from excitatory mechanisms. Although

this is a possible resolution, Baba et al. present some compelling

arguments against such a simple account.

The stimulus used by Tanabe & Cumming [26] was con-

structed by adding together a number of sinusoidal gratings,

and in each image a random number of these components

were included (this construction was performed indepen-

dently for the two eyes). This allowed them to demonstrate

the presence of disparity-selective suppression in a more

direct way. They compared the mean response for two sub-

sets of the stimuli: (i) all stimuli containing a given

component in both eyes at the null disparity, and (ii) all

stimuli in which this component was absent in both eyes.

For most neurons, it was possible to identify a component

for which (i) was a lower rate than (ii), clearly indicating sup-

pression. If the neuron’s response represents the sum of many

LN elements, then this observation clearly indicates the pres-

ence of LN elements with a suppressive effect. But once

again, if more complex nonlinearities are present, this is

less clear. An important candidate here is cross-frequency

suppression—when a cell is stimulated with its preferred

SF, adding a second SF to the stimulus is often suppressive

[34]. This may reflect the inputs to a contrast gain mechanism

[35]. If this suppression occurred monocularly, in a cell where

there was an excitatory binocular interaction, it would be

compatible with the data of both studies above. When a bin-

ocular stimulus is presented, raising responses above

baseline, suppressive effects of adding a single frequency to

one eye are often seen [36]. It is therefore possible that over

the range of stimuli explored in all these studies, the two

descriptions are functionally equivalent. Put another way, if

there were monocular regulation of contrast gain, the best

fitting LN model is likely to account for these effects with

suppressive elements. Consequently, it is possible that a ver-

sion of the extended model that also includes contrast gain

control would account for the data in all of these studies

with the same model. This in turn means these studies do

not imply that that disparity processing is fundamentally

different in cats (used by Baba et al.) and monkeys (used by

Tanabe et al.).
7. The extended model resolves one
longstanding puzzle

In the classic BEM, the shape of the monocular RF largely

determines the shape of the disparity tuning curve [37].

For example, if the monocular RFs are Gabors, the disparity

tuning will also be a Gabor, and its parameters are determined

by the parameters of the monocular RFs.4 As a result, some

simple measures made monocularly predict properties of

the disparity tuning curve. For example, the preferred spatial

frequency measured monocularly determines the spatial scale

(distance between preferred and null disparities) of the dis-

parity tuning to RDS.5 It has been recognized for many

years that this is not true in real neurons [38,39], but this mis-

match remained unresolved. One hallmark of a mechanism

that combines BEM subunits is that these simple relationships

need no longer hold. This can be appreciated from figure 3c,

where the two BEM subunits could be constructed with

elements that have identical monocular spatial frequency

tuning. The preferred disparity of one subunit can be chan-

ged (simply by applying a translation to one monocular

RF) without altering spatial frequency tuning. These changes

in preferred disparity of the subunits lead to changes in the

spatial scale of the disparity tuning curve, without changing

the monocular spatial frequency tuning. Thus, in principle,

the extended BEM might account for the observed neuronal

properties [38,39]. Two recent studies suggest that this expla-

nation is correct: the observed mismatch is largely explained

by the effects of summing across the inferred set of LN sub-

units. One [26] used the ‘push–pull’ model reconstructed

with STC that best described the responses of each cell [7],

and showed that this did account quantitatively both for

the tuning to spatial frequency observed monocularly, and

for the spatial scale of disparity selectivity. Baba et al. [29]

also found that a model based on the subunits they identified

reproduced this property. Thus, these methods for identify-

ing multiple subunits seem finally to have resolved a

longstanding discrepancy between real disparity-selective

neurons and the BEM. They have improved our description

of the mechanism by which disparity selectivity is generated,

and show that this allows real neurons to be less sensitive to

‘false’ matches than the classic BEM.
8. The extended model does not explain the
effects of anticorrelation

These successes, combined with the theoretical principle

illustrated in figure 3, suggest that the extended model might

also provide a good description of the attenuated responses

shown by V1 neurons to anticorrelated stimuli. The LN

elements reconstructed with STC allow this to be tested

directly. For each individual cell, this method yields a recon-

structed model that is the best estimate of the extended

model describing that cell. If the extended model correctly

describes the responses of V1 neurons, the model reconstructed

by STC should then correctly predict all responses. The

responses to anticorrelated stimuli are then a good test of the

model’s success. However, the reconstructed model systemati-

cally fails to reproduce this feature of the responses in real

neurons—the reconstructed models all showed very similar

modulation for correlated and anticorrelated stimuli [7].



rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

371:20150255

8
Interestingly, further analysis of the responses of the neurons

themselves may explain why. The study presented a forward

correlation analysis6 to estimate responses to positive and

negative correlations that occurred by chance in the uncorrel-

ated random sequence. Neuronal responses here were

equally strong to negative correlations and positive correl-

ations—there was no attenuation of responses to negative

correlation. If this attenuation is absent in the data used to

reconstruct the model, it may explain why the reconstructed

model also does not predict any attenuation for anticorrelated

RDS. The random stimulus produces a limited range of cor-

relation strengths (correlations of þ1 and 21 are extremely

rare by chance), so it is possible the same analysis applied

to stimuli covering a wider range of binocular correlation

would reveal an extended model that explains the attenu-

ation for anticorrelation. It is hard to imagine how the

extended model could produce this change purely as a func-

tion of dynamic range (of binocular correlation), but we

cannot currently exclude this possibility with certainty.

Importantly, Tanabe et al. [7] showed that the same neurons

did exhibit this attenuation in traditional tuning curves.

That is, individual neurons that showed attenuation in

traditional tuning curves did not show that attenuation

when tested with forward correlation in the binocularly

uncorrelated noise stimulus.

This observation itself is informative about how neurons

might produce attenuated responses to anticorrelation. In a

traditional tuning curve, responses are attenuated, but in

the forward correlation analysis they are not. There are only

two differences between traditional tuning curves and the

forward correlation—one (or both) of these differences must

be responsible. The first is that, as noted above, the range

of binocular correlation values contained in the forward cor-

relation is small. If the attenuation is only produced by

correlations close to 21, it would be absent in the forward

correlation analysis. The second difference is that the forward

correlation measures responses to single video frames (with a

duration of only 10 ms in [7]). It may be that the process

responsible for attenuation develops too slowly to be

engaged by such brief stimuli. Indeed, there is some evidence

that the response attenuation gets a little stronger over time

[40]. Both of these explanations seem like nonlinearities that

are difficult to produce with a summation of LN elements,

but more experiments are required before it is clear which

of these factors is important.
9. Going beyond the linear – nonlinear
framework

(a) A possible role for gain control
Whichever factor is responsible, this suggests that the mechan-

ism producing attenuated responses to anticorrelated stimuli is

not encompassed by the extended model—neurons producing

the attenuation in this way should have shown attenuation in

the forward correlation analysis. This carries the implication

that some other nonlinearity plays an important role in shaping

disparity selectivity. One possibility is that recurrent proces-

sing is important, as suggested by Samonds et al. [40], who

demonstrated that the attenuated responses to anticorrelation

show some changes on long timescales. It may also be that

more well-documented processes play an important role. A
potentially important factor is contrast gain control—when

the contrast of a visual stimulus is reduced, neuronal responses

are not reduced proportionally, but compensate for the low

contrast by increasing their gain [35,41]. In disparity-selective

simple cells, this has been shown to be a largely monocular

phenomenon [42], which may have profound consequences for

disparity-selective responses, even when contrast is not explicitly

manipulated. This depends critically upon what aspects of an

image regulate monocular contrast gain. If the gain in each eye

is determined by the RMS contrast of a large area, then it

should have little consequence for responses to random patterns.

If the gain is determined by the contrast energy over a small

range of spatial frequencies in a restricted part of the image,

then there could be substantial fluctuations in monocular

contrast gain when neurons are stimulated with RDS.

The lack of any contrast gain control in the BEM leads to a

curious property in the variability of model responses

(figure 5). If a random dot stimulus has little contrast energy

in the spatial frequencies that activate the RF, then the binocu-

lar response will be weak regardless of the disparity. When the

relevant contrast energy is present, responses will be much

larger at the preferred disparity than the null disparity. This

results in enormous overlap between the response distri-

butions for different disparities, and a variability in model

responses changes substantially with disparity (figure 5a).

The reason why the BEM produces these particular distri-

butions it not important for the argument here, but for

completeness it is described in the next paragraph.

(b) Explanation for afficionados
The major effect of disparity is to change the kurtosis of the

response distributions. This is a consequence of three factors.

First, the distribution of monocular responses (vL and vR) to

RDS is close to Gaussian with zero mean (figure 5c). Second,

squaring these responses produces a x2 distribution (with

1 d.f.) that is kurtotic and skewed (figure 5d). Third, at the pre-

ferred disparity, vL and vR are perfectly correlated, so the sum

shows the same distribution as the monocular responses. That

is, one LN element stimulated with RDS at the preferred dis-

parity generates responses described by a x2 distribution

with 1 d.f. As disparity is moved towards the null disparity

(as defined in figure 2), this correlation becomes weaker.

At the null disparity, vL and vR are negatively correlated (but

with a correlation greater than 21). When the stimulus is bino-

cularly uncorrelated, the distribution of the term vLvR

resembles a x2 distribution with a lower mean than that for

v2
L. Disparities on the flanks of the disparity tuning curve,

which place non-overlapping parts of the image in the left

and right RFs, behave exactly like an uncorrelated stimulus.

(c) Stimulus-related variability
When we examined BEM responses to RDS across all dispar-

ities, we found that the predicted variance is equal to the

square of the mean response. Note that this is a steeper depend-

ence than the proportionality of variance and mean (not mean

squared) typical of cortical neurons [43,44]. It is also important

to note that this variability is all caused by stimulus variation—

the model used here has no noise added that is independent

of the stimulus. The model therefore shows no variability

when stimulated with deterministic stimuli (e.g. gratings),

while neurons have variance proportional to mean even with

deterministic stimuli. It appears that this stimulus-driven
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Figure 5. The distribution of responses to different random dot patterns in the BEM. The responses of a BEM complex cell to 10 000 different instances of an RDS
were computed. The stimulus was 100% correlated and presented at one of two disparities—preferred and null (as defined in figure 3). This uses the classical
complex cell exactly as shown in figure 1, using a pixel size of 0.0058 for simulations (as in figure 2). (a) The frequency histogram of these responses when the
stimulus was at the preferred disparity (blue) or the null disparity (red). Both distributions are ‘heavy tailed’, but the main effect of disparity is to increase this. That
is, the difference in mean response between preferred and null disparities is largely driven by a small fraction of images that produce very large responses. (b) The
same data with an expanded ordinate, where the difference in the tails of the distributions is more clearly visible. These distributions follow directly from the
distributions of the monocular responses, shown in (c). In almost all cases, the monocular responses follow a nearly Gaussian distribution, with a mean of
zero. If the stimulus were Gaussian noise, the stimulus would dictate this Gaussian distribution. Were the stimulus a single point that was either black or
white, this distribution would reflect only the RF shape (full-wave rectified). With binary noise, the central limit theorem ensures this approximates a Gaussian,
provided there are sufficient noise elements in the RF. If the noise pattern has large elements or the RF is very small, so that each RF contains very few dots,
deviations from a Gaussian can be seen. The red line (with multiple peaks) shows responses where the width of the noise elements is 0.258—half of the spatial
period of the RF, and 50 times larger than used for the simulation shown in black (nearly Gaussian distribution). This change in noise element size is equivalent to
using an unchanged stimulus with an RF that is 50 times smaller than that illustrated in figure 1. The multiple peaks here are not the result of random fluctuations
in the simulation. With very large elements, the details of RF shape give rise to this structure. (d ) The same values after squaring. Thus, the shape seen in (a) is
largely the result simply of squaring a set of Gaussian responses, producing a x2 distribution. (e) The response of a modified BEM in which there was a simple
monocular normalization. Here, the monocular response in the right eye was given by vR=ð0:25þ cRÞ, where cR is the response of a monocular complex cell with
quadrature RFs that are identical to those in the binocular complex cell. This term simply estimates contrast energy in the monocular RF. The monocular responses of
this model are shown with blue lines in (c,d ). The bimodal distribution of the raw responses means that the squared responses show less kurtosis. This then makes
the binocular response distribution less heavy tailed, especially at the preferred disparity, and hence this version of the model predicts smaller changes in variability
with stimulus disparity in RDS. The exact shape of these distributions is quite sensitive to the equation used for normalization, so this figure illustrates the principle
that normalization might play an important role, rather than providing a definitive account of that role.
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variance predicted by the BEM is greatly reduced in cortical

neurons, although currently available data do not permit a

simple test of this prediction. In a traditional tuning curve,

measured with RDS, multiple different frames are presented,

so that the neuron’s mean response is the mean of many samples

from the distributions shown in figure 5. This results in a

stimulus-driven variance which is proportional to the mean,

but with a slope less than unity (the exact value depends on

the stimulus duration, framerate, and the temporal integration

in the neuron). Nonetheless, the model clearly predicts higher

response variability in response to random dot patterns than

deterministic stimuli (where the stimulus-driven variance is

zero). No published study has explicitly examined this question

for disparity-selective neurons. We therefore re-examined data
from neurons recorded in previously published studies

[37,45,46] where disparity tuning had been measured with

RDS and with sinusoidal gratings in the same neurons. The

relationship between variance and mean was no steeper for

RDS stimuli compared with gratings (B. Cumming 2000, 2001,

unpublished data).

This then suggests that much of the variability that different

dot patterns should produce, according to the BEM, is not

observed in real neurons. What properties of real neurons

might explain this? The extended model itself may explain

some of this. Each additional LN element adds a new pick

from the distribution of responses shown in figure 5a, so the

sum becomes more Gaussian (central limit theorem). A

second possibility is contrast gain control. Dot patterns at the
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preferred disparity that produce weak responses in model com-

plex cells do so because that pattern lacks contrast energy in the

spatial passband of the RF. If these dot patterns produced com-

pensatory changes in contrast gain, then while the BEM predicts

a weak response, the increase in contrast gain makes the neur-

on’s response stronger than predicted by the BEM. This

produces monocular responses that are not Gaussian, and so

can produce less kurtosis in the squared responses (figure 5c,e).

The changes produced by contrast gain control in figure 5

are modest, and certainly not sufficient to remove a dis-

parity-dependent change in response variability. Equally, the

control of contrast gain in real neurons is probably more com-

plex than the very simple scheme used to make figure 5. This

simulation does, however, illustrate the principle that monocu-

lar regulation of gain can substantially alter the binocular

responses, especially their variability across random dot pat-

terns. As this type of variability is an important part of what

produces the false peaks in figure 2, it seems possible that con-

trast gain control will reduce the magnitude of false peaks in

the V1 population response. Given the empirical observation

that there is substantial monocular regulation of contrast gain

[42], this suggests that incorporating this process into future

models of disparity selectivity will be important to understand

how the population activity in V1 can be used to solve the

correspondence problem.

Introducing monocular contrast gain control has a second

interesting consequence. If it normalizes responses on the

basis of RMS contrast in each eye, it would mean that responses

do not simply represent covariance, but come closer to repre-

senting normalized cross-correlation. It is clear that they do

not do exactly this—perfect normalization would imply that

neuronal responses do not increase with contrast. Nonetheless,

normalizing the responses with a term that is related to the

monocular contrast comes closer to calculating a normalized

correlation coefficient than the classic BEM.
10. Summary and implications
The BEM provides an elegant account of a simple, physiologi-

cally plausible, mechanism that produces disparity-selective

signals. It does this using subunits that perform linear oper-

ations on the binocular image (a dot product of the image

and the RF) and pass the result through a mathematically

simple nonlinearity (squaring). Thus, it belongs to the class

of LN models that have been widely used in describing

responses of sensory neurons. It achieves something very simi-

lar to computing the binocular cross-correlation between two

filtered image patches. Recent advances in analytical tools

have allowed neuronal responses to be described by extended

versions of the model, incorporating multiple LN subunits.

These provide a more precise description of the properties of

single neurons. Importantly, they also show that the LN sub-

units are related in ways which help to reduce the problem of

identifying false matches when decoding disparity from a

population of neurons. This allows us to build a more realistic

description of the correspondence problem faced by extrastri-

ate cortex, which has the task of determining disparity from

a population of activity like that shown in figure 2.

However, even the extended model fails to explain some

properties of real neurons, and two of these unexplained

properties are likely to play an important role in shaping

the population response. First, it is clear that real neurons
show considerable regulation of contrast gain that is a mon-

ocular property [42], and this could substantially alter the

binocular responses. A better understanding of exactly

what features of an arbitrary image set the contrast gain is

needed in order to evaluate how this influences the corres-

pondence problem. Second, the attenuated responses seen

in response to anticorrelated stimuli remain challenging to

explain. Although several explanations are possible in prin-

ciple (ranging from the use of multiple LN elements to

nonlinear recurrent processes), there is no clear evidence

that any of these is the correct explanation for real neurons.

Because there is not yet a consensus on how best to

replace the BEM, it remains widely used as a way of repre-

senting the information available about stereopsis in V1.

While this may be a good enough approximation for some

purposes, it is important to recognize how the approximation

fails. V1 neurons approximately implement a ‘correlation-

based’ computation, but the results with anticorrelated dots

indicate that their response is not a linear function of binocu-

lar correlation—it is not a ‘pure correlation’ computation.

Recently, an ingenious series of psychophysical experiments

by Doi et al. [47,48] have demonstrated that human stereo

matching in some stimuli cannot be explained by a matching

scheme based on pure correlation. They have suggested that

this requires two separate matching mechanisms, and show

that a model with two mechanisms neatly describes the

data [49]. One of these mechanisms is a pure correlation

detector (linear response to correlation), similar to the BEM,

but not to V1 neurons. If observations explained by pure cor-

relation detectors can also be explained by correlation

detectors that are not perfectly linear, it remains possible

that a single mechanism, based on elements whose response

is not a linear function of correlation, can also account for

human responses. Once we have a good model of that

single mechanism, it will be simpler to devise psychophysical

tests that distinguish it from two separate mechanisms.

Because there is no agreed upon alternative model, Doi

et al. did not test any models based on a single mechanism

(other than the classic BEM). It therefore remains possible

that a single computation, based on an extended model,

might explain their results.

There is little doubt that further processing downstream of

V1 plays an important role in refining responses to false

matches. But until we have a clearer picture of how V1

responds to false matches, it will be difficult to construct and

test specific models that describe how connections between

neurons beyond V1 allow the brain to solve the stereo

correspondence problem.

Competing interests. The authors declare that they have no competing
financial interests.

Funding. This work was supported by the Intramural Research
Program of the National Institutes of Health, National Eye Institute.
Endnotes
1Strictly speaking, vLvR equals the covariance only when the means of vL

and vR are zero. This term is also often referred to as ‘correlation’, but it is
not a normalized correlation coefficient. Thus, if the variances of vL and
vR are increased, but the correlation coefficient is kept constant, the
absolute magnitude of disparity-selective responses in the model
increases proportionally. In most experiments (where contrast is not
varied), these variances are constant, so the distinction is rarely
important.
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2Although this is typically true, in rare cases there is a local minimum
at the stimulus disparity. There is always a local extremum [13].
3False matches can have any value of correlation, so could
(very infrequently) produce local anticorrelation purely by chance.
Since anticorrelation in natural viewing is only ever a property
of false matches, attenuated responses to anticorrelation can be
seen as reducing responses to false matches.
4Strictly speaking, the phase parameter of the disparity tuning
is not determined by the phase of one monocular RF, but is
determined by the difference in phase between left and right RFs.
5More formally, the Fourier amplitude spectrum of the disparity
tuning curve should be the same as the product of the spatial
frequency tuning for luminance gratings measured in each eye.
6The study used independent noise patterns in the two eyes, so
that on average the binocular correlation is zero. But on any
given video frame the correlation at a given disparity might be
positive or negative, simply because of the particular random
sample used to construct that frame. Video frames were separated
into three groups, with correlations less than zero, near zero and
greater than zero (at a given disparity). A set of video frames
that have, for example, a correlation of 20.1 for a disparity of
zero, are equivalent to a stimulus with a correlation of 20.1 at
zero disparity constructed by the experimenter. When neuronal
responses to these three groups of images were examined,
it revealed modulation of equal amplitudes for positive and
negative correlations.
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