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Abstract
The main physical features and operating principles of isothermal nanomachines in the microworld, common to both classical and

quantum machines, are reviewed. Special attention is paid to the dual, constructive role of dissipation and thermal fluctuations, the

fluctuation–dissipation theorem, heat losses and free energy transduction, thermodynamic efficiency, and thermodynamic effi-

ciency at maximum power. Several basic models are considered and discussed to highlight generic physical features. This work ex-

amines some common fallacies that continue to plague the literature. In particular, the erroneous beliefs that one should minimize

friction and lower the temperature for high performance of Brownian machines, and that the thermodynamic efficiency at maximum

power cannot exceed one-half are discussed. The emerging topic of anomalous molecular motors operating subdiffusively but very

efficiently in the viscoelastic environment of living cells is also discussed.
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Introduction
A myriad of minuscule molecular nanomotors (not visible in

standard, classical, optical microscopes) operate in living cells

and perform various tasks. These utilize metabolic energy, for

example, the energy stored in ATP molecules maintained at out-

of-equilibrium concentrations, or in nonequilibrium ion concen-

trations across biological membranes. Conversely, they may

replenish the reserves of metabolic energy using other sources

of energy, for example, light by plants, or energy of covalent

bonds of various food molecules by animals [1]. The main

physical principles of their operation are more or less under-

stood by now [2,3], although the statistico-mechanical details of

any single particular molecular motor (e.g., a representative of a

large family of kinesin motors) are not well understood.

The advances and perspectives of nanotechnology have inspired

us to devise our own nanomotors [4-6]. Learning from nature

can help to make the artificial nanomotors more efficient, and

possibly even better than those found in nature. Along this way,
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understanding the main physical operating principles within the

simplest, minimalist physical models can indeed be of help.

First of all, any periodically operating motor or engine requires

a working body undergoing cyclic changes and a source of

energy to drive such cyclic changes. Furthermore, it should be

capable of doing work on external bodies. In the case of ther-

mal heat engines, the source of energy is provided by heat

exchange with two heat reservoirs or baths at different tempera-

tures, T1, and T2 > T1, with the maximum possible Carnot effi-

ciency of ηC = 1 − T1/T2 [7]. This very famous textbook result

of classical thermodynamics (or rather thermostatics) is modi-

fied when the heat flow is considered as a function of time.

Thus, for an infinitesimally slow heat flow occurring over a

finite time, one obtains the Curzon and Ahlborn result,

[7,8]. The analogy with heat engines is,

however, rather misleading for isothermal engines operating at

the same temperature, T1 = T2. Here, the analogy with elec-

trical motors is much more relevant. The analogy becomes

almost literal in the case of rotary ATP-synthase [9] or flagellar

bacterial motors (the electrical nanomotors of living cells).

Here, the energy of a proton electrochemical gradient (an elec-

trochemical rechargeable battery) is used to synthesize ATP

molecules out of ADP and the orthophosphate Pi (the useful

work done), in the case of ATP-synthase, or to produce me-

chanical motion by flagellar motors [1,3]. An ATP-synthase

nanomotor can also operate in reverse [9], and the energy of

ATP hydrolysis can be used to pump protons against their elec-

trochemical gradient to recharge the “battery”. These and simi-

lar nanomotors can operate at ambient temperature in a highly

dissipative environment with nearly 100% thermodynamic effi-

ciency defined as the ratio of useful work done to the input

energy spent. This is the first counter-intuitive remarkable fea-

ture, which needs to be explained. It is easy to derive this result

within the simplest model (see below) for an infinitesimally

slow operating motor at zero power. At maximum power at a

finite speed, the maximum thermodynamic efficiency within

such a model is one-half. This is still believed by many to be the

maximum, theoretically possible, thermodynamic efficiency of

isothermal motors at maximum power. However, this belief is

born from underestimating the role played by thermal fluctua-

tions in nonlinear stochastic dynamics and the role of the

fluctuation–dissipation theorem (FDT) on the nano- and

microscale. It is generally wrong. It is valid only for some

particular dynamics, as clarified below by giving three counter-

examples. The presence of strong thermal fluctuations at

ambient temperature, playing a constructive and useful role,

is a profound physical feature of nanomotors as compared

with the macroscopic motors of our everyday experience.

It is necessary to understand and to develop an intuition for

this fundamental feature. Nanomotors are necessarily

Brownian engines, very different from their macroscopic

counterparts.

Review
Fluctuation–dissipation theorem, the role of
thermal fluctuations
Motion in any dissipative environment is necessarily related to

the dissipation of energy. Particles experience a frictional force,

which in the simplest case of Stokes friction is linearly propor-

tional to the particle velocity with a viscous friction coefficient

denoted as η. When the corresponding frictional energy losses

are no longer compensated for by an energy supply, the motion

will eventually stop. However, this does not happen in micro-

world for micro- or nanosized particles. Their stochastic

Brownian motion can persist forever even at thermal equilib-

rium. The energy necessary for this is supplied by thermal fluc-

tuations. Therefore, friction and thermal noise are intimately

related, which is the physical context of the fluctuation–dissipa-

tion theorem [10]. Statistical mechanics allows the develop-

ment of a coherent picture to rationalize this fundamental fea-

ture of Brownian motion.

We start with some generalities that can be easily understood

within a standard dynamical approach to Brownian motion that

can be traced back to pioneering contributions by Bogolyubov

[11], Ford, Kac and Mazur [12,13], and others. Consider a

motor particle with mass M, coordinate x, and momentum p. It

is subjected to a regular, dynamical force f(x,t), as well as the

frictional and stochastically fluctuating forces of the environ-

ment. The latter are modeled by an elastic coupling of this

particle to a set of N harmonic oscillators with masses

mi, coordinates qi, and momenta pi. This coupling is of the

form , with spring constants κi. This

is a standard mechanistic model of nonlinear, classical

Brownian motion known within quantum dynamics as the

Caldeira–Leggett model [14] upon modification of the coupling

term or making a canonical transformation [13]. Both classi-

cally and quantum mechanically [13] (in the Heisenberg

picture) the equations of motion are

(1)

(2)

In the quantum case, x, qi, p, pi are operators obeying the

commutation relations , , [x,qi] = 0,
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[p,pi] = 0. Force, f(x,t), is also operator. Using Green's function

of harmonic oscillators, the dynamics of bath oscillators can be

excluded (projection of hyper-dimensional dynamics on the

(x,p) plane) and further represented simply by the initial values

qi(0) and pi(0). This results in a generalized Langevin equation

(GLE) for the motor variables

(3)

where

(4)

is a memory kernel and

(5)

is a bath force, where  are the frequencies of the

bath oscillators. Equation 3 is still a purely dynamical equation

of motion that is exact. The dynamics of [x(t),p(t)] is complete-

ly time-reversible for any given qi(0) and pi(0) by derivation,

unless the time-reversibility is dynamically broken by f(x,t) or

by boundary conditions. Hence, time-irreversibility within dissi-

pative Langevin dynamics is a statistical effect due to aver-

aging over many trajectories. Such an averaging cannot be

undone, i.e., there is no way to restore a single trajectory from

their ensemble average. Considering a classical dynamics ap-

proach first, we choose initial qi(0) and pi(0) from a canonical,

hyper-dimensional, Gaussian distribution, ρ(qi(0),pi(0)), zero-

centered in pi(0) subspace and centered around x(0) in qi(0)

subspace, and characterized by the thermal bath temperature T,

like in a typical molecular dynamics setup. Then, each ξ(t)

presents a realization of a stationary, zero-mean, Gaussian

stochastic process, which can be completely characterized by its

autocorrelation function, . Here,  denotes statis-

tical averaging done with ρ(qi(0),pi(0)). An elementary calcula-

tion yields the fluctuation–dissipation relation (FDR), also

named the second FDT by Kubo [10]:

(6)

Notice that it is valid even for a thermal bath consisting of a

single oscillator. However, a quasi-continuum of oscillators is

required for the random force correlations to decay to zero in

time. This is necessary for ξ(t) to be ergodic in correlations.

Kubo obtained this FDT in a very different way, namely by

considering the processes of dissipation caused by phenomeno-

logical memory friction characterized by the memory kernel

η(t) (i.e., heat given by the particle to the thermal bath) and

absorption of energy from the random force ξ(t) (i.e., heat

absorbed from the thermal bath). Here, both processes are

balanced at thermal equilibrium, and the averaged kinetic

energy of the Brownian particle is kBT/2. This is in accordance

with the equipartition theorem in classical equilibrium statis-

tical mechanics. This is a very important point. At thermal equi-

librium, the net heat exchange between the motor and its envi-

ronment is zero for arbitrarily strong dissipation. This is a pri-

mary, fundamental reason why the thermodynamic efficiency of

isothermal nanomotors can in principle achieve unity in spite of

strong dissipation. For example, the thermodynamic efficiency

of an F1-ATPase rotary motor can be close to 100% as recent

experimental work has demonstrated [15]. For this to happen,

the motor must operate most closely to thermal equilibrium in

order to avoid net heat losses. One profound lesson from this is

that there is no need to minimize friction on the nanoscale. This

is a very misleading misconception that continues to plague

research on Brownian motors. For example, the so-called dissi-

pationless ratchets are worthless (more on this below). Very

efficient motors can work at ambient temperature and arbi-

trarily strong friction. There is no need to go to deep, quantum

cold temperatures, which require a huge energy expenditure to

create in a laboratory.

Every thermal bath and its coupling to the particle can be char-

acterized by the bath spectral density

[13,14,16]. It allows η(t) to be expressed as

and the noise spectral density via the Wiener–Khinchin

theorem, , as S(ω) = 2kBTJ(ω)/ω.

The strict ohmic model, J(ω) = ηω, without a frequency cutoff,

corresponds to the standard Langevin equation:

(7)

wi th  uncor re la ted  whi te  Gauss ian  thermal  no ise ,

. Such noise is singular, and its

mean-square amplitude is infinite. This is, of course, a very

strong idealization. A frequency cutoff must be physically
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present, which results in a thermal GLE description with corre-

lated Gaussian noise.

The above derivation can also be straightforwardly repeated for

quantum dynamics. This leads to a quantum GLE, which for-

mally looks the same as Equation 3 in the Heisenberg picture

with only one difference: The corresponding random force

becomes operator-valued with a complex-valued autocorrela-

tion function as shown in Equation 8 [13,16,17].

(8)

Here, the averaging is done with the equilibrium density oper-

ator of the bath oscillators. The classical Kubo result

(Equation 6) is restored in the formal limit . To obtain a

quantum generalization of Equation 7, one can introduce a fre-

quency cutoff, J(ω) = ηωexp(−ω/ωc) and split  into a sum

of zero-point quantum noise, , and thermal quantum

noise contributions, , so that .

This yields

(9)

with

(10)

where  is the characteristic time of thermal

quantum fluctuations. Notice the dramatic change of quantum

thermal correlations, from a delta function at , to an alge-

braic decay  for finite τT and t >> τT. The total inte-

gral of δT(t) is unity, and the total integral of the real part of the

T = 0 contribution is zero. In the classical limit, , δT(t)

becomes a delta function. Notice also that the real part of the

first complex-valued term in Equation 9, which corresponds to

zero-point quantum fluctuations, starts from a positive singu-

larity at the origin t = 0 in the classical, white noise limit,

ωc→∞, and becomes negative  for t > 0. Hence, it

lacks a characteristic time scale. However, it cancels precisely

the same contribution, but with the opposite sign stemming for-

mally from the thermal part in the limit t >> τT at T≠ 0. Thus,

quantum correlations, which correspond to the Stokes or ohmic

friction, decay nearly exponentially for ωc >> 1/τT, except for

the physically unachievable condition of T = 0. Here, we see

two profound quantum mechanical features in the quantum

operator-valued version of the classical Langevin equation

(Equation 7) with memoryless Stokes friction: First, thermal

quantum noise is correlated. Second, zero-point quantum noise

is present. This is the reason why quantum Brownian motion

would not stop even at absolute zero of temperature T = 0. A

proper treatment of these quantum mechanical features pro-

duced a controversial discussion in the literature in the case of

nonlinear quantum dynamics when f(x) is not constant or has a

nonlinear dependence on x(see [16,17] for further references

and details). Indeed, dissipative quantum dynamics cannot be

fundamentally Markovian, as already revealed by this short ex-

planation. This is contrary to a popular approach based on the

idea of quantum semi-groups, which guarantees a complete

positivity of such a dynamics [18]. The main postulate of the

corresponding theory (the semi-group property of the evolution

operator expressing the Markovian character of evolution)

simply cannot be justified on a fundamental level, thinking in

terms of interacting particles and fields (a quantum field theory

approach). Nevertheless, Lindblad theory and its allies, for ex-

ample, the stochastic Schroedinger equation [16], are extremely

useful in quantum optics where the dissipation strength is very

small. The application to condensed matter with appreciably

strong dissipation should, however, be done with a great care.

This could lead to clearly incorrect results, which contradict

exactly solvable models [16]. Nonlinear quantum Langevin dy-

namics is very tricky, even within a semi-classical treatment,

where the dynamics is treated as classical but with colored clas-

sical noise corresponding to the real part of  treated as a

c-number. As a matter of fact, quantum dissipative dynamics is

fundamentally non-Markovian, which is a primary source of all

the difficulties and confusion. Exact analytical results are practi-

cally absent (except for linear dynamics), and various

Markovian approximations to nonlinear non-Markovian dynam-

ics are controversial, being restricted to some parameter

domains (e.g., weak system–bath coupling or a weak tunnel

coupling/strong system–bath coupling). Moreover, they are

susceptible of producing unphysical results (such as violation of

the second law of thermodynamics) beyond their validity

domains.

Furthermore, a profoundly quantum dynamics has often just a

few relevant discrete quantum energy levels, rather than a con-

tinuum of quantum states. A two-state quantum system serves

as a prominent example. Here, one may prefer a different ap-

proach to dissipative quantum dynamics (e.g., the reduced den-

sity operator method), leading to quantum kinetic equations for

level populations and system coherence [19-22]. This provides
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Figure 1: (a) Simplest model for a periodic ratchet potential  with depth ε. Bias Δμ < 0 per one rotation turn introduces directional rotations.
(b) Discrete state model that corresponds to (a) with forward, ωf, and backward, ωb, rates calculated, e.g., by solving the Smoluchowski equation, see
the text. This picture also holds quantum mechanically with quantum mechanical effects entering the rates in some models, where diagonal and off-di-
agonal elements of the reduced density matrix are completely decoupled in the energy basis of localized states depicted. (c) The general modeling
route is inspired by enzyme dynamics, where an enzyme molecule cycles periodically between a substrate-free state E, a state with bound substrate
ES and a state with bound product EP, which correspond to the three metastable states of an enzyme within a continuum of conformational states. Δμ
corresponds to the free energy released by transformation S→P which drives the cyclic rotations of a “catalytic wheel” [24-26], see in (d). This energy
can be used to do work against a loading force fL, which is not shown. For example, an enzyme is an ion pump utilizing the energy of ATP hydrolysis,
where ATP is the substrate, and ADP+Pi is the product. The useful work done is transfer of an ion across a membrane against the corresponding
electrochemical transmembrane gradient.

a description on the ensemble level and relates to the quantum

Langevin equation in a similar manner as the classical

Fokker–Planck equation (ensemble description) relates to the

classical Langevin equation (description on the level of single

trajectories).

Minimalist model of a Brownian motor
A minimalist model of a motor can be given by 1D cycling of

the motor particle in a periodic potential, , as

shown in Figure 1. This models the periodic turnover of the

motor within a continuum of intrinsic, conformational states [3],

where  is a chemical cyclic reaction coordinate. The motor

cycles can be driven by an energy supplied by a constant

driving force or torque, F, with free energy Δμ = 2πF spent per

one motor turn. The motor can perform useful work against an

opposing torque or load, fL, so that the total potential energy is

. Overdamped Langevin dynamics is

described by

(11)

where , with uncorrelated white Gaussian

t h e r m a l  n o i s e  ξ ( t ) ,  .  B y

introducing the stochastic dissipative force ,

i t  can be understood as a  force balance equation.

The  ne t  hea t  exchange  wi th  the  env i ronment  i s

[ 2 3 ] ,  w h e r e   d e n o t e s  a n

ensemble average over many trajectory realizations.

Furthermore,  is the

e n e r g y  p u m p e d  i n t o  t h e  m o t o r  t u r n o v e r s ,  a n d

 is the useful work

done against external torque. The fluctuations of the motor

energy  are bounded and

can be neglected in the balance of energy in the long run, since

Q(t), Ein(t), and W(t) typically grow linearly (or possibly sublin-

early in the case of anomalously slow dynamics with memory,

see below) in time. The energy balance yields the first law of

thermodynamics: Q(t) + W(t) = Ein(t). The thermodynamic effi-

ciency is obviously

(12)

and independent of the potential . It reaches unity at the

stalling force . Then, the motor operates infinitesi-

mally slow, . Henceforth, a major interest present the

efficiency Rmax at the maximum of the motor power

. This one is easy to find in the absence of potential

, i.e., for f(x) = 0. Indeed, .

This shows a parabolic dependence on fL and reaches the

maximum at fL = F/2. Therefore, Rmax = 1/2. Given this simple

result, many have believed until now that this is a theoretical
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bound for the efficiency of isothermal motors at maximum

power.

Digression on the role of quantum fluctuations. Within the

simplest model considered (f(x) = 0) the quantum noise effects

do not asymptotically play any role for T > 0. This is not gener-

ally so, especially within the framework of nonlinear dynamics

and at low temperatures where it can be dominant [27]. Most

strikingly, the role of the zero-point fluctuations of vacuum

(i.e., quantum noise at T = 0) is demonstrated in the Casimir

effect: Two metallic plates will attract each other in an attempt

to minimize the “dark energy” of electromagnetic standing

waves (quantized) in the space between the two plates [28].

This effect can be used, in principle, to make a one-shot motor,

which extracts energy from zero-point fluctuations of vacuum,

or “dark energy” by doing work against an external force, fL.

No violation of the second law of thermodynamics and/or the

law of energy conservation occurs because such a “motor”

cannot work cyclically. In order to repeatedly extract energy

from vacuum fluctuations, one must again separate two plates

and invest at least the same amount of energy in this. This ex-

ample shows, nevertheless, that the role of quantum noise

effects can be highly nontrivial, very important, poorly under-

stood, and possibly confusing. And a possibility to utilize “dark

energy” to do useful work in a giant, cosmic “one-shot engine”

is really intriguing!

Thermodynamic efficiency of isothermal engines at
maximum power can be larger than one-half
Here it is demonstrated that the belief that Rmax = 1/2 is a theo-

retical maximum is completely wrong, and in accord with some

recent studies [29-32], Rmax can also achieve unity within a

nonlinear dynamics regime. For this, we first find stationary

 in a biased periodic potential. This can be done by

solving the Smoluchowski equation for the probability density

P(x,t), which can be written as a continuity equation,

, with the probability flux J(x,t)

written in the transport form

(13)

This Smoluchowski equation is an ensemble description and

counter-part to the Langevin equation (Equation 11). Here, D is

the diffusion coefficient related to temperature and viscous fric-

tion by the Einstein relation, D = kBT/η, and β = 1/kBT is the

inverse temperature. For any periodic biased potential, the

constant flux, J = ω/(2π) = constant, driven by Δμ < 0, as well

as the corresponding nonequilibrium steady state distribution,

, can be found by twice-integrating Equation 13, using

 and periodicity of . This

yields the famous Stratonovich result [33-35] for a steady-state

angular velocity of phase rotation

(14)

with forward rotation rate

(15)

and backward rate ωb(Δμ,fL) defined by the second equality in

Equation 14. This result is quite general. The motor power is

PW(fL) = fLωf(Δμ,fL)[1 − exp(β(Δμ + 2πfL)) and in order to find

Rmax one must find  by solving dPW(fL)/dfL = 0. Then,

. In fact, Equation 14 is very general. It holds

beyond the model of washboard potential, leading to the result

in Equation 15. For example, given well-defined potential

minima, one can introduce a picture of discrete states with clas-

sical Kramers rates for the transitions between those, as de-

scribed in Figure 1b. Accordingly, within the simplest enzyme

model, one has three discrete states. E corresponds to an empty

enzyme with energy E1. ES corresponds to an enzyme with a

substrate molecule bound to it and energy E2 of the whole com-

plex. EP corresponds to an enzyme with product molecule(s)

bound to it and energy E3. The forward cyclic transitions

E→ES→EP→E are driven by the free energy per one mole-

cule Δμ released in the S→P transformation facilitated by the

enzyme, while the backward cycling, E→EP→ES→E, requires

backward reaction, P→S. This is normally neglected in the

standard Michaelis–Menthen-type approach to enzyme

kinetics as it is very unlikely to occur. This generally cannot

be neglected for molecular motors. The simplest possible

Arrhenius model for the forward rate of the whole cycle is

(16)

where 0 < δ < 1 describes the asymmetry of the potential drop.

Accordingly, the backward rate is ωb(Δμ,fL) = ω0exp[β(1 −δ)

(Δμ + 2πfL)]. This model allows one to realize under which

conditions Rmax can exceed one-half. Here we rephrase a recent

treatment in [29,30] and come to the same conclusions. Rmax is

a solution of dPW(fL)/dfL = 0, which leads to a transcendental

equation for Rmax

(17)
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(19)

Figure 2: (a) Dependence of the net rotation rate, ω, on the net bias, , for the most asymmetric sawtooth model depicted in Figure 1a, for two
values of the effective barrier height, βε. (b) Dependence of the output power, PW, on the thermodynamic efficiency, R, for βε = 1 and several values
of the scaled driving force, β|Δμ|. (c) The maximum power efficiency as a function of driving force for the direct and inverse operation, when the roles
of driving force and load are interchanged.

where r = |Δμ|/(kBT), b = (kBT/2π)∂ln ωf(Δμ,fL)/∂fL. For Equa-

tion 16, b = −δ. The limiting case b = 0 of extreme

asymmetry is especially insightful. In this special case,

Rmax = [LW(e1+r) − 1]/r exactly, where LW(z) denotes the

Lambert W-function. This analytical result shows that

Rmax→1/2 as r→0, while Rmax→1 as r→∞. Therefore, a

popular statement that Rmax is generally bounded by 1/2 is

simply wrong. While it is true that in some models this Jacobi

bound exists, it is generally not so. Even the simplest model of

molecular motors, as considered here by following [29], com-

pletely refutes the Jacobi bound as the theoretical limit. Further

insight emerges in the perturbative regime, r << 1, which yields

in the lowest order of r

(18)

This is essentially the same result as in [30]. Hence, for

0 ≤ δ < 1/2, Rmax > 1/2 for a small r, the effect is small for

r << 1, but it exists.

The discussed model might seem a bit too crude. However, the

result that Rmax can achieve a theoretical limit of unity survives

also within a more advanced, yet very simple model. Indeed, let

us consider the simplest kind of sawtooth potential (Figure 1)

inspired by the above discrete-state model with δ = 0. Then,

Equation 15 explicitly yields Equation 19.

The dependence of ω(Δμ,fL) on := |Δμ| − 2πfL is very asym-

metric within this model, as shown in Figure 2a.

This is a typical diode-type or rectifier dependence, if the same

model is applied to transport of charged particles in a spatially

periodic potential, with ω(Δμ,fL) corresponding to a scaled cur-

rent and  to voltage. Clearly, within the latter context, if an

additional, sufficiently slow, periodic voltage signal, Acos(ωt),

is applied at the conditions  = 0, it will be rectified because

of asymmetric I–V characteristics. This gives rise to a direc-

tional, dissipative current in a potential unbiased on average

(both spatial and time averages are zero). The effect resulted in

a huge amount of literature on rocking Brownian ratchets, in

particular, and on Brownian motors, in general as described in a

review article [36]. Coming back to the efficiency of molecular

motors at maximum power within our model, we see clearly in

Figure 2c that it can be well above 1/2, and even close to one. A

sharply asymmetric dependence of PW on R = fL/F (Figure 2b)

beyond the linear response regime, PW = 4PmaxR(1 −R), which

is not shown therein because of a very small Pmax, provides an

additional clue on the origin of this remarkable effect. Interest-

ingly, if the work of the motor is reversed, i.e., fL provides the

supply of energy and useful work is done against F ≤ fL, then

the motor rotates in the opposite direction on average. This

occurs, for example, in such enzymes as F0F1-ATPase [1,3,9],

which presents a complex of two rotary motors F0 and F1

connected by a common shaft. The F0 motor uses an electro-

chemical gradient of protons to rotate the shaft which transmits

the torque on the F1 motor. The mechanical torque applied to

the F1 motor is used to synthesize ATP out of ADP and the

phosphate group, Pi. This enzyme complex primarily utilizes
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the electrochemical gradient of protons to synthesize ATP. It

can, however, also work in reverse and pump protons using the

energy of ATP hydrolysis [9]. Moreover, in a separate

F1-ATPase motor, the energy of ATP hydrolysis can be used to

create mechanical torque and do useful work against an external

load, which is experimentally well studied [15]. For the reverse

operation, our minimalist motor efficiency becomes

, where  and . In this

case,  indeed cannot exceed 1/2, as shown in Figure 2c in

the lower curve. Such a behavior is also expected from

the above discrete-state model, because this corresponds to

δ→1 = −b in Equation 18. This argumentation can be inverted:

If a motor obeys the Jacobi bound, Rmax ≤ 1/2, then it can

violate it when working in reverse. Hence, the concept of the

Jacobi bound as a fundamental limitation is clearly a dangerous

misconception that should be avoided.

Minimalist model of a quantum engine
In the quantum case, discrete state models naturally emerge. For

example, energy levels depicted in Figure 1b can correspond to

the states of a proton pump driven by a nonequilibrium electron

flow. This is a minimalist toy model for pumps like the

cytochrome c oxidase proton pump [1,37]. The driving force is

provided by electron energy, Δμ, released by dissipative tunnel-

ing of electrons between donor and acceptor electronic states of

the pump. This process is complex. It requires, apart from intra-

molecular electron transfer, also uptake and release of electrons

from two baths of electrons on different sides of a membrane,

which can be provided, for example, by mobile electron carriers

[1]. However, intramolecular electron transfer (ET) between

two heme metalloclusters seems to be a rate limiting step. Such

ET presents vibrationally assisted electron tunneling between

two localized quantum states [38,39]. Given the weak electron

tunneling coupling between the electronic states, the rate can be

calculated using the quantum-mechanical Golden Rule. Within

the classical approximation of nuclei dynamics (but not that of

electrons!), and the simplest possible further approximations,

one obtains the celebrated Marcus–Levich–Dogonadze rate,

(20)

for forward transfer, and ωb(Δμ,Δμp = 0) = ωf(Δμ,Δμp = 0)

exp[Δμ/(kBT)]. Here,  is a quantum

prefactor, where Vtun is the tunneling coupling, and λ is the

reorganization energy of the medium. The energy released in

the electron transport is used to pump protons against their elec-

trochemical gradient, Δμp, which corresponds to 2πfL within the

previous model. Hence, R = Δμp/|Δμ|. Of course, our model

should not be considered as a realistic model for cytochrome c

oxidase. However, it allows a possible role of quantum effects

to be highlighted that are contained in the dependence of the

Marcus–Levich–Dogonadze rates on the energy bias Δμ.

Namely, the existence of an inverted ET regime when the rate

becomes smaller with a further increase of |Δμ| > λ, after

reaching a maximum at |Δμ| = λ (activationless regime). The

inverted regime is a purely quantum-mechanical feature. It

cannot be realized within a classical adiabatic Marcus–Hush

regime, for which the rate expression formally appears the same

as Equation 20 but with a classical prefactor, ω0. Classically,

the inverted regime simply makes no physical sense. This

fact can be easily realized upon plotting the lower adiabatic

curve for the underlying curve crossing problem (within the

Born–Oppenheimer approximation), and considering the perti-

nent activation barriers – the way the Marcus parabolic depen-

dence of the activation energy on the energy bias is derived in

textbooks [38]. The fact that the inverted ET regime can be used

to pump electrons was first realized within a driven spin–boson

model [22,40-42]. The model here is, however, very different,

and pumping is not relied on in the inverted ET regime. How-

ever, the latter can be used to arrive at a high Rmax, close to one.

Indeed, within this model, the former (Arrhenius rates) parame-

ter b becomes b = −1/2 + (|Δμ| − Δμp)/(4λ), and Equation 17 is

now replaced by

(21)

A new control parameter c = λ/(kBT) enters this expression. The

perturbative solution of Equation 21 for r = |Δμ|/kBT << 1 yields

(22)

to the lowest second order in |Δμ |/kBT (compare with

Equation 18). Hence, Rmax > 1/2 for λ < 3kBT and Rmax < 1/2

for λ > 3kBT in the perturbative regime. However, beyond this,

Rmax can essentially be larger than 1/2, as shown in Figure 3a.

These results are also expected for the pump working in reverse

when Δμ→−Δμ. Here, we also see a huge difference with the

model based on Arrhenius rates. The dependence of the rota-

tion rate, ω, on  = |Δμ| − Δμp is symmetric in this case. How-

ever, it exhibits a regime with a negative differential part, where

, for  exceeding some critical value that ap-

proaches λ for small T, as shown in Figure 3b. Here, the reason

for the high performance is very different from the case of the

asymmetric Arrhenius rates, or asymmetric . Rmax can be

close to one for . For this to happen, the motor should

be driven deeply into the inverted ET regime. Hence, the effect
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Figure 3: (a) Dependence of Rmax on the absolute value of driving
energy Δμ in units of kBT for two values of λ/kBT. Within the perturba-
tive regime, Equation 22 predicts the initial dependence well. (b) De-
pendence of enzyme velocity ω on . Notice the existence of a
maximum ω and negative differential regime.

is quantum-mechanical in nature, even if the considered setup

looks purely classical. In this respect, the Pauli quantum master

equation for the diagonal elements of the reduced density

matrix decoupled from the off-diagonal elements has mathemat-

ical form of the classical master equation for population proba-

bilities, and the corresponding classical probability description

can be safely used. The rates entering this equation can, how-

ever, reflect such profound quantum effects as quantum-me-

chanical tunneling and yield non-Arrhenius dependencies of

dissipative tunneling rates on temperature and external forces.

The corresponding quantum generalizations of classical results

become rather straightforward. The theory of quantum nanoma-

chines with profound quantum coherence effects is, however,

still in its infancy.

Can a rocking ratchet do useful work without
dissipation?
As we just showed, strong dissipation is not an obstacle for

either classical or quantum Brownian machines to achieve a

theoretical limit of performance. This already indicates that to

completely avoid dissipation is neither possible nor desirable to

achieve to develop a good nanomachine on the nanoscale. Con-

versely, the so-called rocking ratchets without dissipation

[43,44] are not capable of performing any useful work, despite

that they can produce directional transport. However, this direc-

tional transport cannot continue against any non-zero force

trying to stop it, as will now be demonstrated. The stalling force

can become negligibly small, and the thermodynamical effi-

ciency of such a device is zero, very different from genuine

ratchets, which must be characterized by a non-zero stalling

force [36]. Therefore, a ratchet current without dissipation

clearly presents an interesting but futile artefact. The rocking

ratchets without dissipation should be named pseudo-ratchets to

distinguish them from genuine ratchets characterized by a non-

zero stalling force.

Let us consider the following setup. A particle in a periodic

potential ,  V(x) ,  is  driven by a t ime-periodic force,

, with period . Then, U(x,t) = V(x) −xg(t), or

f(x,t) = f(x) + g(t) in Equation 7. For strong dissipation

and overdamped Langevin dynamics, M→ 0, the rectification

current can emerge in potentials with broken space-

inversion symmetry, like one in Figure 1a, under a fully sym-

metric driving, g(t) = Acos(Ωt), . A broken space-

inversion symmetry means that there is no such x0, so that

V(−x) = V(x + x0). Likewise, a periodic driving is symmetric

with respect to time reversal if such a t0 exists (or equivalently,

a phase shift ), such that g(−t) = g(t + t0). Otherwise it

breaks the time-reversal symmetry. Also, higher moments of

driving,

where n = 2,3,… are important with respect to a nonlinear

response reasoning. The latter moments can also be defined for

stochastic driving, using a corresponding time-averaging, with

. For overdamped dynamics, the rectification current

already appears in the lowest second order of , for a

potential with broken spatial-inversion symmetry, and in the

lowest third order of  for potentials which are sym-

metric with respect to inversion x→−x[36]. These results were

easy to anticipate for memoryless dynamics, which displays

asymmetric current–force characteristics in the case of an

applied static force (broken spatial symmetry), or a symmetric

one (unbroken symmetry), respectively. They hold also quan-

tum mechanically in the limit of strong dissipation. The case of

weak dissipation is, however, more intricate both classically and

quantum mechanically. A symmetry analysis based on the Curie

symmetry principle has been developed in order to clarify the

issue [36,43]. The harmonic mixing driving [45],

(23)

is especially interesting in this respect. Here, ψ is a relative

phase of two harmonics, which plays a crucial role.  is an

absolute initial phase, which physically cannot play any role

because it corresponds to a time shift t→t + t0 with 

and hence must be averaged out in the final results, if they are

of any physical importance in real world. Harmonic mixing

driving provides a nice testbed, because this is the simplest

time-periodic driving which can violate the time-reversal

symmetry. This occurs for any ψ ≠ 0,π. On the other hand,
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. Hence, , for ψ ≠ π/2,3π/2.

Interestingly,  is maximal for time-reversal

symmetric driving. Conversely, , when the time

reversal symmetry is maximally broken. Moreover, one can

show that all odd moments , n = 1,2,3,…,

vanish for ψ = π/2 or 3π/2. The vanishing of odd moments for a

periodic function means that it obeys a symmetry condition

. Also, in application to potentials of the

form , these results mean

that , and , for the correspond-

ing spatial averages. Hence, for a space-inversion symmetric

potential with ,  (also all higher odd moments

vanish). Moreover,  is maximal, when the latter

symmetry is maximally broken, . This corresponds to

the ratchet potentials. The origin of the rectification current can

be understood as a memoryless nonlinear response in the over-

damped systems: For , the current emerges already

for standard harmonic driving as a second order response to

driving. For  (e.g., standard cosine potential, V2 = 0),

one needs  for driving to produce the ratchet effect.

For the above harmonic driving, the averaged current

. The same type of response behavior also fea-

tures a quantum-mechanical, dissipative, single-band, tight-

binding model for strong dissipation [46,47]. Very important is

that any genuine fluctuating tilt or rocking ratchet is character-

ized by a non-zero stalling force, which means that the ratchet

transport can sustain against a loading force and do useful work

against it. It ceases at a critical stalling force. This has impor-

tant implications. For example, in application to the photo-

voltaic effect in crystals with broken space-inversion symmetry

[36] this means that two opposite surfaces of crystal (orthogo-

nal to current flow) will be gradually charged until the pro-

duced photo-voltage stops the ratchet current flow. For a zero

stalling force, no steady-state photo-voltage or electromotive

force can in principle emerge!

In the case of weak dissipation, however, memory effects in the

current response become essential. Generally, for classical dy-

namics, , where ψ0 is a phase shift which

depends on the strength of dissipation with two limiting cases:

(i) ψ0 = 0 for for overdamped dynamics, and (ii) ψ0→π/2 for

vanishing dissipation η→0. In the later limit, the system

becomes purely dynamical:

(24)

where we added an opposing transport loading force fL. For ex-

ample, it corresponds to a counter-directed electrical field in the

case of charged particles. Let us consider following [43,44], the

two original papers on dissipationless ratchet current in the case

of fL = 0, and the potential V(x) = −V1sin(2πx)−V2sin(4πx), or

f(x) = f1cos(2πx) + f2cos(4πx), with f1 = 2πV1, f2 = 4πV2, and

driven by g(t) in Equation 23. The spatial period is set to one

and M = 1 in dimensionless units. The emergence of a dissipa-

tionless current within the considered dynamics has been ratio-

nalized within a symmetry analysis in [43], and the subject of

directed currents due to broken time–space symmetries has been

born. In an immediate follow-up work [44], we have, however,

observed that in the above case, the directed current is pro-

duced only by breaking the time-reversal symmetry by time-de-

pendent driving, but not otherwise. The breaking of the spatial

symmetry of the potential alone does not originate dissipation-

less current. The current is maximal at ψ = π/2. No current

emerges, however, at ψ = 0 even in ratchet potential with

broken space-inversion symmetry. Moreover, the presence of a

second potential harmonic does not seem to affect the transport

at ψ = π/2, as shown in Figure 4a. Here, there are two cases that

differ by V2 = 0, in one case, and V2≠ 0, in another one.

Moreover, when dissipation is present within the corresponding

Langevin dynamics, each and every trajectory remains

time-reversal symmetric for ψ = 0. However, for strongly

overdamped dynamics, the rectification current in a symmetric

cosine potential ceases at ψ = π/2, and not at ψ = 0. Moreover,

for an intermediate dissipation, it stops at some ψ0 ,

0 < ψ0 < π/2, as shown in [48]. Which symmetry forbids it then,

given a particular non-zero dissipation strength? Dynamic

symmetry considerations fail to answer such simple questions

and are thus not infallible. The symmetry of individual trajecto-

ries within a Langevin description simply does not depend on

the dissipation strength, which can be easily understood from a

well-known dynamical derivation of this equation as presented

above. Therefore, a symmetry argumentation based on the

symmetry properties of single trajectories is clearly question-

able, in general. The spontaneous breaking of symmetry is a

well-known fundamental phenomenon both in quantum field

theory and the theory of phase transitions. In this respect, any

chaotic Hamiltonian dynamics possess the following symmetry:

for any positive Lyapunov exponent, there is a negative

Lyapunov exponent having the same absolute value of the real

part. The time reversal changes the sign of the Lyapunov expo-

nents. This symmetry is spontaneously broken in Hamiltonian

dynamics by considering the forward evolution in time [49]. It

becomes especially obvious upon coarse-graining, which is not

possible to avoid neither in real life nor in numerical experi-

ments. By the same token, the time irreversibility of the

Langevin description given time-reversible trajectories is

primarily a statistical and not a dynamical effect.

The emergence of such a current without dissipation has been

interpreted as a reincarnation of the Maxwell–Loschmidt demon
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Figure 4: (a) Directed transport in standard cosine potential, V1 = 1, V2 = 0, and in a ratchet potential, V1 = 1, V2 = 0.4, in the case of harmonic mixing
driving that breaks the time-reversal symmetry, ψ = π/2, with amplitudes A1 = 5, A2 = 2, and frequency Ω = 1. Transport ceases at ψ = 0 even for
ratchet potential with broken symmetry, when the time-reversal symmetry is restored (dash-dotted line). (b) Influence of a tiny (as compare with the
periodic force modulation) constant loading force on transport for the case of a ratchet potential in part (a). The transport ceases after some random
time, which depends on fL and initial conditions, and the particle returns accelerating back. A very similar picture also emerges for a cosine potential
with V2 = 0 (not shown). The stalling force is obviously zero. Any genuine ratchet and motor must be characterized by a non-zero stalling force. A
symplectic leapfrog/Verlet integration scheme (where no spurious dissipation is introduced by numerics) was used to obtain these results.

[44], and it has been argued that this demon is killed by a

stochastically fluctuating absolute phase , with the

relative phase ψ being fixed. In this respect, even in highly

coherent light sources such as lasers, the absolute phase fluctua-

tions cannot be avoided in principle. They yield a finite band-

width of laser light. The phase shift ψ can be stabilized, but not

the absolute phase. The typical dephasing time of semiconduc-

tor lasers used in laser pointers is in the range of nanoseconds,

whereas in long tube lasers it is improved to milliseconds [50].

This is the reason why some averaging over such fluctuations

must always be done (see [35], Chapter 12). The validity of this

argumentation has been analytically proven in [44] with an

exactly solvable example of a quantum-mechanical, tight

binding model driven by harmonic mixing with a dichoto-

mously fluctuating . Even more spectacularly, this is seen

in dissipationless, tight-binding dynamics driven by an asym-

metric, stochastic, two-state field. The current is completely

absent even for , as an exact solution shows [27].

Hence, dissipation is required to produce a ratchet current under

stochastic driving g(t). The validity of this result is far beyond

the particular models in [27,44,46] because any coherent quan-

tum current (one carried by Bloch electron with non-zero quasi-

momentum) is killed by quantum decoherence produced by a

stochastic field. Any dissipationless quantum current will

proceed on a time scale smaller than the decoherence time.

Moreover, it is shown here that the directed transport without

dissipation found in [43,44], and the follow-up research cannot

do any useful work against an opposing force, fL. Indeed, the

numerical results shown in Figure 4b reveal this clearly: After

some random time (which depends, in particular, on the initial

conditions and on the fL load strength), the rectification current

ceases. As a matter of fact, the particle then moves back much

faster, with acceleration. The smaller the fL, the longer the

directional normal transport regime and smaller back accelera-

tion, and nevertheless the forward transport is absent asymptoti-

cally. Therefore, this “Maxwell demon” cannot asymptotically

do any useful work, unlike for example, highly efficient ionic

pumps – the “Maxwell demons” of living cells working under

the condition of strong friction. Plainly said, a dissipationless

demon cannot charge a battery, it is futile. Therefore, the

consideration of such a device as a “motor” cannot be scientifi-

cally justified. It is also clear that with vanishing friction, the

thermodynamic efficiency of rocking Brownian motors also

vanishes. Therefore, a naive feeling that smaller friction

provides higher efficiency is completely wrong, in general.

The following is a brief summary of the major findings of this

section. First, friction and noise are intimately related in the

microworld, which is nicely seen from a mechanistic derivation

of (generalized) Langevin dynamics. It results from hyper-

dimensional Hamiltonian dynamics with random initial condi-

tions like in a molecular dynamics approach. For this reason,

the thermodynamic efficiency of isothermal nanomotors can

reach 100% even under conditions of very strong dissipation, in

the overdamped regime where the inertial effects become negli-
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gible. Quite on the contrary, thermodynamical efficiency of

low-dimensional dissipationless Hamiltonian ratchets is zero.

Therefore, they cannot serve as a model for nanomotors in

condensed media. Moreover, the geometrical size of some cur-

rent realizations of Hamiltonian ratchets with optical lattices

exceed that of F1-ATPase by several orders of magnitude. In

this respect, the readers should be reminded that a typical wave-

length of light is about 0.5 μm, which is the reason why motors

such as F1-ATPase cannot be seen in a standard light micro-

scope. Hence, the whole subject of Hamiltonian dissipationless

ratchets is completely irrelevant for nanomachinery. Second,

the thermodynamical efficiency at maximum power in non-

linear regimes can well exceed the upper bound of 50%, which

is valid only for a linear dynamics. Therefore, nonlinear

effects are generally very important to construct a highly effi-

cient nanomachine. Third, important quantum effects can be

already observed within the rate dynamics with quantum rates.

For example, these rates can be obtained using a quantum-me-

chanical perturbation theory in tunnel coupling (within a

Fermi’s Golden Rule description) whose particularly simple

limit results in Marcus–Levich–Dogonadze rates of nonadiabat-

ic tunneling.

Adiabatic pumping and beyond
Having realized that thermodynamic efficiency at maximum

power can exceed 50%, a natural question emerges: How to

arrive at such an efficiency in practice? Intuitively, the highest

thermodynamical efficiency of molecular and other nanomo-

tors can be achieved for an adiabatic modulation of potential

when the potential is gradually deformed so that its deep

minimum gradually moves from one place to another and a par-

ticle trapped near this minimum follows adiabatic modulation of

the potential in a peristaltic-like motion. The idea is that the re-

laxation processes are so fast (once again, a sufficiently strong

dissipation is required!) that they occur almost instantly on the

time scale of potential modulation. In such a way, the particle

can be transferred in a highly dissipative environment from one

place to another practically without heat losses, and can do use-

ful work against a substantial load (see the discussion in [51]).

If at any point in time the motor particle stays near the thermo-

dynamic equilibrium, then in accordance with FDT, the total

heat losses to the environment are close to zero. Therefore,

thermodynamic efficiency of such an adiabatically operating

motor can, in principle, be close to the theoretical maximum.

One can imagine, given the three particular examples presented

above, that it can be achieved, in principle, at the maximum of

power for arbitrarily strong dissipation. The design of the motor

thus becomes crucially important. Such an ideal motor can also

be completely reversible. However, to arrive at the maximum

thermodynamic efficiency at a finite speed is a highly nontrivial

matter indeed.

Digression on the possibility of an (almost) heatless
classical computation
Now, an important digression is considered. In application of

these ideas to the physical principles of computation, the above

physical considerations mean the following. Bitwise operation

(bit “0” corresponds to one location of the potential minimum

and bit “1” to another – let us assume that their energies are

equal) does not require, in principle, any energy to finally dissi-

pate. It can be stored and reused during adiabatically slow

change of potential. Physical computation can, in principle, be

heatless, and it can be also completely reversible at arbitrary

dissipation. This is the reason why the original version of the

Landauer minimum principle allegedly imposed on computa-

tion (i.e., there is a minimum of kBTln2 of energy dissipated per

one bit of computation, 0→1, or 1→0 required) was complete-

ly wrong. This was recognized by the late Landauer himself

[52] after Bennett [53], Fredkin and Toffoli [54] discovered

how reversible computation can be done in principle [55].

Another currently popular version of the Landauer principle in

formulations where one either needs to spend a minimum of

kBTln2 energy to destroy or erase one bit of information, or a

minimum of kBTln2 heat is released by “burning” one bit of

information, is also completely wrong. These two formulations

plainly and generally contradict the second law of thermody-

namics, which in the differential form states that dS ≥ δQ/T

(i.e., that the increase of entropy, or loss of information,

dI ≡ −dS/kBln2 – a very fundamental equality, or rather

tautology of the physical information theory), is equal to or

exceeds the heat exchange with the environment in the units of

T. For an adiabatically isolated system, δQ = 0; hence, dI ≤ 0,

i.e., entropy can increase and information can diminish sponta-

neously, without any heat being produced into the surroundings.

This is just the second law of thermodynamics rephrased. As a

matter of fact, δQ = |dI|kBTln2 is the maximal (not minimal!)

amount of heat which can be produced by “burning” informa-

tion in the amount of dI bits. To create and store one bit of

information, one indeed needs to spend at least kBTln2 of free

energy at T = constant, but not to destroy or erase it, in prin-

ciple. Information can be destroyed spontaneously; however,

this can take an infinite amount of time. The Landauer prin-

ciple belongs to common scientific fallacies. However, at the

same time, it has established a current hype in the literature. An

“economical” reason for this is that the current clock rate of

computer processors has not been increased beyond 10 GHz for

over one decade because of immense heat production. Plainly

said, it is not possible to further cool the processors down to

increase their rate, and the energy consumption becomes unrea-

sonable. We eagerly search for a solution to this severe prob-

lem. This problem is, however, a problem of the current design

of these processors and our present technology, which indeed

provides severe thermodynamical limitations [56]. However, it
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Figure 5: (a) Minimalist model of a pump with one time dependent energy level, E(t), which can be used to pump particles against a gradient of chem-
ical potential Δμ. (b) Corresponding kinetic scheme with time-dependent rates and two pump states: empty and filled with one transferred particle.
Filling and emptying can occur from either particle reservoirs, μ1 or μ2. (c) Equivalent kinetic scheme corresponding to E(t), having just two realiza-
tions with the transition rates ν1 and ν2.

has a little in common with the Landauer principle as heat is

currently produced many orders of magnitude above the

minimum of the Landauer principle, which should not be taken

seriously as a rigorous, theoretical, universally valid bound

anyway. Nevertheless, operation at a finite speed is inevitably

related to heat loss. The question is, how to minimize this at a

maximal speed? This question is clearly beyond a solution in

equilibrium thermodynamics, but belongs rather to kinetic

theory. The minimum energy requirements are inevitably

related to the question of how fast to compute. This presents an

open, unsolved problem.

Minimalist model of adiabatic pump
Coming back to the adiabatic operation of molecular motors or

pumps, a minimalist model based on the time modulation of the

energy levels is now analyzed. The physical background of the

idea of adiabatic operation is sound. However, can it be real-

ized in popular models characterized by discrete energy levels?

The minimalist model contains just one time-dependent energy

level, E(t), and two constant energy levels corresponding to

chemical potentials μ1 and μ2 of two baths of particles between

which the transport occurs. They must be considered as electro-

chemical potentials for charged particles (e.g., Fermi levels of

electrons in two leads) or electrochemical potentials of trans-

ferred ions in two bath solutions separated by a membrane.

Pumping takes place when a time modulation of E(t) can be

used to pump against Δμ = μ2 − μ1 > 0, as shown in Figure 5a.

Here, both the energy level E(t) and the corresponding rates

k1(t) and k−1(t), k2(t) and k−2(t) are time dependent. Their

proper description would be rate constants, if they were time in-

dependent. Given a sufficiently slow modulation and fast equili-

bration at any instant t, one can assume the local equilibrium

conditions

(25)

Notice, that this condition is not universally valid. It can be

violated by fast fluctuating fields (as shown in [22] and refer-

ences cited therein) for a plenty of examples and using an ap-

proach beyond this restriction within a quantum-mechanical

setting. The rates are generally retarded functionals of energy

level fluctuations and not functions of instantaneous energy

levels. However, a local equilibrium can be a very good approx-

imation. Figure 5b rephrases the transport process in Figure 5a

in terms of the states of the pump: empty (state ) and filled

with one transferred particle (state 1). The former state is popu-

lated with probability p0(t), and the latter one with probability

p1(t), p0(t) + p1(t) = 1. The empty level can be filled with rate

k1(t) from the left bath level μ1, and with rate k−2(t) from the

right bath level μ2. The filling flux is thus jf = (k1 + k−2)p0.

Moreover, it can be emptied with rate k2(t) to μ2, and with rate

k−1(t) to μ1. The corresponding master equations reduce to a

single relaxation equation because of probability conservation:

(26)

where

(27)

and

(28)

The instantaneous flux between the levels μ1 and E(t) is

(29)
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(34)

and

(30)

between the levels E(t) and μ2. Clearly, the time averages

and

must coincide ( ) because particles cannot accumu-

late on the level E(t).

First, we show that pumping is impossible within the approxi-

mation of a quasi-static rate, that is, when the rates are consid-

ered to be constant at a frozen instant in time and one solves the

problem within this approximation. Indeed, in this case for a

steady-state flux that is an instantaneous function of time we

obtain:

(31)

where in the second line, Equation 25 was used. Clearly, for

Δμ > 0, I(t) < 0 at any t. Averaging over time yields,

(32)

with

The current always flows from higher μ2 to lower μ1. The same

will happen for any number of intermediate levels Ei(t) within

such an approximation.

Origin of pumping
One can, however, easily solve Equation 26 for arbitrary Γ(t)

and R(t):

(33)

The first term vanishes in the limit t→∞ and a formal expres-

sion for the steady-state averaged flux, , can be readily written

as shown in Equation 34 where  is time-averaged k−1(t).

However, to evaluate it for some particular conditions of energy

and rate modulation is generally a rather cumbersome task. The

fact that pumping is possible is easy to understand, with the

following protocol of energy level and rate modulation: (step 1)

energy level E(t) decreases, E(t) < μ1, with an increasing prefac-

tor in k±1(t) (left gate opens), and a sharply decreasing prefac-

tor in k±2(t) (right gate is closed), a particle enters the pump

from the left; (step 2) energy level E(t) increases, E(t) > μ2, and

the prefactor in k±1(t) sharply drops, the left gate closes and the

right one remains closed; (step 3) the right gate opens and the

particle leaves to the right; (step 4) the right gate closes, the

energy level E(t) decreases and the left gate opens, so that the

initial position in 3D parameter space (two prefactors and one

energy level) is repeated, and one cycle is completed. The

general idea of an ionic pump with two intermittently opening/

closing gates has in fact been suggested a long time ago [57].

Some general results can be obtained within this model for adia-

batic slow modulation and related to an adiabatic, geometric,

Berry phase, b(t). The origin of this can be understood per

analogy with a similar approach used to solve the Schroedinger

equation in quantum mechanics for adiabatically modulated,

quasi-stationary energy levels [58], by making the following

ansatz to solve Equation 26: p0(t) = eib(t)R(t)/Γ(t) + c.c. Making

a loop in a 2D space of parameters adds or subtracts 2π to b(t).

Furthermore, an additional related contribution, the pumping

current, appears in addition to one in Equation 32, with aver-

aging done over one cycle period. This additional contribution

is proportional to the cycling rate, ω (see [59] for details). How-

ever, it is small and cannot override one in Equation 32 consis-

tently with the adiabatic modulation assumptions. Hence,

adiabatic pumping against any substantial bias Δμ > 0 is

not possible within this model. This indeed can easily

be understood by making a sort of adiabatic approximation in
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(36)

E q u a t i o n   3 3 ,  ,  a n d  d o i n g  a n

integration by parts therein, so that in the long time limit

p0(t) ≈ R(t)/Γ(t) + δp0(t), where . The first

term leads to Equation 32, and the second term corresponds to a

small perturbative pump current, which vanishes as ω→0. This

pump current can be observed only for Δμ = 0, where .

Hence, the thermodynamic efficiency of this pump is close to

zero in the adiabatic pumping regime.

Moreover, for realistic molecular pumps, e.g., driven by the

energy of ATP hydrolysis, the adiabatic modulation is difficult

(if even possible) to realize. A sudden modulation of the energy

levels, (e.g., by a power stroke), when the energy levels jump to

new discrete positions, is more relevant, especially on a single-

molecule level.

Efficient nonadiabatic pumping
The cases where E(t) takes on discrete values and is a time-con-

tinuous semi-Markovian process can be handled differently.

Especially simple is a particular case with E(t) taking just two

values E1 and E2 > E1 with transition rates ν1, and ν2 between

those. Then, the transport scheme in Figure 5b can be rephrased

as one in Figure 5c with rate constants  for the transitions to

and from the energy levels Ei, i = 1,2, j = 1,2,−1,−2, and

(35)

Now we have three populations, p0 of the empty state, p1 of

level E1, and p2 of level E2. The steady state flux can be calcu-

lated as , where  are steady state popu-

lations. Straightforward (but somewhat lengthy) calculations

yield Equation 36.

From the structure of this equation it is immediately clear

that the flux can be positive for positive Δμ (real pumping)

by considering, e.g., the limit: , ,

, , and ν1 >> ν2. Physically, it is obvious

when E1 < μ1, and E2 > μ2, together with  (i.e., the

level E1 is easily filled from μ1, but not from μ2 because of a

large barrier on the right side – the entrance of pump is practi-

cally closed from the right), and  (i.e., the particle

easily goes from E2 to μ2 and cannot go back to μ1 because the

left entrance is now almost closed). Under these conditions, also

 and  are well justified. Hence, we

obtain for the pumping rate

(37)

This expression looks like a standard Michaelis–Menthen rate

of enzyme operation, which is customly used in biophysics [3]

for modeling molecular motors and pumps. The elevation of the

E(t) level from E1 to E2 can be effected, e.g., by ATP binding in

the case of ionic pumps, with , where cATP is the

ATP concentration. This is a simple, basic model for pumps.

From Equation 37 it follows that I ≈ ν1at ν1τ << 1, where

 is the sum of filling and emptying times, and

it reaches the maximal pumping rate Imax ≈ 1/τ, for ν1τ >> 1.

The thermodynamic efficiency of such a pump is R = Δμ/ΔE,

where ΔE = E2−E1 is the energy invested in pumping. The

derivation of the approximation in Equation 37 requires

that exp(ε1,2/kBT) >> 1, where ε1 = μ1−E1, and ε1 = E2−μ2,

which is already well-satisfied for ε1,2 > 2kBT. Hence,

R = Δμ/(Δμ + ε1 + ε2) can be close to one for a large

Δμ >> ε1 + ε2. Take for example ΔE = 20kBTr ≈ 0.5 eV, which

corresponds to the typical energy released by ATP hydrolysis.

Then, for Δμ = 0.4 eV and ε1 = ε2 = 2kBTr ≈ 0.05 eV, R = 0.8.

Notice that a typical thermodynamic efficiency of a Na-K pump

is about R ≈ 0.75. Such a nonadiabatic pumping can be indeed

highly thermodynamically efficient with small heat losses. One

should note, however, that the question of whether or not the

efficiency at the maximum of power, PW = IΔμ, can be larger

than one-half or even approach one within this generic model is

not that simple. To answer this question, one cannot neglect the

backward transport, especially when Δμ becomes close to

ΔE (PW(Δμ = ΔE) = 0), and a concrete model for the rates must

be specified in the exact result (Equation 36). In the case of an

electronic pump, like the one used in nature in nitrogenase en-

zymes, this can be quantum tunneling rates [60], similar to the

Marcus–Levich–Dogonadze rate above. Moreover, imposing a

very high barrier (intermittent in time) either on the left or right

can physically correspond to the interruption of the electron

tunneling pathway due to ATP-induced conformational

changes, that is, to the modulation of tunnel coupling Vtun(t)
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synchronized with the modulation of E(t), as occurs in nitroge-

nase. This question of efficiency at maximum power will be

analyzed elsewhere in detail, both for the classical and quan-

tum rate models.

To summarize this section, the concept of the adiabatic opera-

tion of molecular machines is sound and should be pursued

further. However, the simplest known adiabatic pump operates

in fact at nearly zero thermodynamical efficiency, while a

power stroke mechanism can be highly efficient within the

same model. It seems obvious that in order to realize a thermo-

dynamically efficient adiabatic pumping, the gentle operation of

a molecular machine without erratic jumps, a continuum of

states is required (or possibly many states depending continu-

ously on an external modulation parameter). Further research is

thus highly desirable and necessary.

How can biological molecular motors operate
highly efficiently in highly dissipative,
viscoelastic environments?
As it has been clarified above, Brownian motors can work

highly efficiently in dissipative environments, causing arbi-

trarily strong viscous friction acting on a motor. This corre-

sponds to the case of normal diffusion,

in a force-free case. In a crowded environment of biological

cells, diffusion can be, however, anomalously slow,

where 0 < α < 1 is the power law exponent of subdiffusion and

Dα is the subdiffusion coefficient [61,62]. There is a huge body

of growing experimental evidence for subdiffusion of particles

of various sizes, from 2–3 nm (typical for globular proteins)

[63,64] to 100–500 nm [65-69] (typical for various endosomes),

both in living cells and in crowded polymer and colloidal solu-

tions (complex fluids) physically resembling cytoplasm. There

are many theories developed to explain such a behavior [61,62].

One is based on the natural viscoelasticity of such complex

liquids (see [70,71] for a review and details), which has a deep

dynamical foundation (see above). Viscoelasticity that leads to

the above subdiffusion corresponds to a power law memory

kernel η(t) = ηαt
−α/Γ(1 −α) in Equation 3 and Equation 6. In this

relation, ηα is a fractional friction coefficient related to Dα by

the generalized Einstein relation, Dα = kBT/ηα. Using the notion

of the fractional Caputo derivative, the dissipative term in Equa-

tion 3 can be abbreviated as ηαdαx/dtα, where the fractional de-

rivative operator dαf(t)/dtα acting on an arbitrary function f(t) is

just defined by this abbreviation. The corresponding GLE is

named the fractional Langevin equation (FLE). Its solution

yields the above subdiffusion scaling exactly in the inertialess

limit, M→0, corresponding precisely to the fractional Brownian

motion [70,72], or asymptotically otherwise. The transport in

the case of a constant force applied, f0, is also subdiffusive,

These results correspond exactly to a sub-ohmic model of the

spectral density of a thermal bath [16], J(ω) = ηαω
α, within the

dynamical approach to the generalized Brownian motion. They

can be easily understood with an ad hoc Markovian approxima-

tion to the memory kernel, which yields a time-dependent

viscous friction,  with . It diverges,

ηM(t)→∞, when t→∞, which leads to subdiffusion and

subtransport within this Markovian approximation. Such an

approximation can, however, be very misleading in other

aspects [73]. Nevertheless, it provokes the question: How can

molecular motors, such as kinesin, work very efficiently in such

media characterized by virtually infinite friction, interpolating

in fact between simple liquids and solids? It is important to

mention that in any fluid-like environment the effective macro-

scopic friction, , must be finite. Hence, a

memory cutoff time, τmax, must exist so that . In

real life, τmax can be as large as minutes, or even longer than

hours. Hence, on a shorter time scale and on a corresponding

spatial mesoscale, it is subdiffusion (characterized by ηα) that

can be physically relevant indeed and not the macroscopic limit

of normal diffusion characterized by ηeff. This observation

opens the way for multidimensional Markovian embedding of

subdiffusive processes with long range memory upon introduc-

tion of a finite number, N, of auxiliary stochastic variables. It is

based on a Prony series expansion of the power-law memory

kernel into a sum of exponentials, ,

with νi = ν0/bi−1 and . This can be made numerically

accurate (which is controlled by the scaling parameter, b). Apart

from τmax = τminbN−1, it possesses also a short cutoff

τmin = 1/ν0. The latter naturally emerges in any condensed me-

dium beyond a continuous medium approximation because of

its real, atomistic nature. In numerics, it can be made of the

order of a time integration step. Hence, it does not even matter

within the continuous medium approximation. Even with a

moderate N ≈ 10–100 (number of auxiliary degrees of freedom),

Markovian embedding can be done for any realistic time scale

of anomalous diffusion with sufficient accuracy [70,74]. A very

efficient numerical approach based on the corresponding

Markovian embedding has been developed for subdiffusion in

[70,74], and for superdiffusion (α > 1) in [75-77]. The idea of
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Figure 6: Motor pulling cargo on an elastic linker. The motor can be trapped in a flashing periodic potential (here, two realizations shifted by a half of
a spatial period are shown). These fluctuations are caused and driven by conformational fluctuations of the motor protein. The pertinent, minimalist,
two-state cyclic model of the corresponding biochemical enzymatic cycle is shown on the right. Mechanical motion, induced by cycling, exerts a back
influence on cycling via spatially dependent transition rates. This can cause anomalously slow enzyme kinetics that cannot be characterized by a
turnover rate in viscoelastic environments [85].

Markovian embedding is also very natural from the perspective

that any non-Markovian GLE dynamics presents a low-dimen-

sional projection of a hyper-dimensional, singular Markovian

process described by dynamical equations of motion with

random initial conditions. This fact is immediately clear from a

well-known dynamical derivation of GLE, reproduced above.

Somewhat surprising is, however, that so few N ≈ 10–20 are

normally sufficient in practical applications.

The action of a motor on subdiffusing cargo can be simplisti-

cally modeled (with the simplest possible theory) by a

random force f(t) alternating its direction when the motor

steps on a random network of cytoskeleton [78]. The driven

cargo follows a diffusional process , with some

exponent β, which is defined by a trajectory averaging of

squared displacements δx(t|t’) = x(t + t’) −x(t’) over sliding t’.

Within such a model, β clearly cannot exceed 2α [79], which

corresponds to subtransport with alternating direction in time.

Hence, for α < 0.5, cargo superdiffusion (β > 1) could not be

caused by motors within such a simple approach. However, ex-

periments show [80,81] that freely subdiffusing cargos (e.g.,

α = 0.4 [80,82]) can superdiffuse when they are driven by

motors also for α < 0.5 (e.g., β = 1.3 for α = 0.4 [80])). There-

fore, a more appropriate modeling of the transport by molecu-

lar motors in viscoelastic environments is required. This was

quite recently developed in [83-85], by generalizing the

pioneering works on subdiffusive rocking [70,86-89] and

flashing [90] ratchets.

Viscoelastic effects should be considered on the top of viscous

Stokes friction caused by the water component of cytosol. Then,

a basic 1D model for a large cargo (20–500 nm) pulled by a

much smaller motor (2–10 nm) on an elastic linker (cf.,

Figure 6) can be formulated as follows [85]

(38)

(39)

This presents a generalization of a well-known model of molec-

ular motors [91-93] by coupling the motor to a subdiffusing

cargo on an elastic linker. Here, both the motor (coordinate x)

and the cargo (coordinate y) are subjected to independent, ther-

mal white noise of the environment, ξm(t), and ξc(t), respective-

ly, which obey the corresponding FDRs. Both of the particles

are overdamped and characterized by Stokes frictional forces

with frictional constants ηm, and ηc. In addition, viscoelastic

frictional force acts on the cargo and is characterized by the

memory kernel discussed above (fractional friction model) and

the corresponding stochastic thermal force, ξ(t), with alge-

braically decaying correlations. It obeys a corresponding FDR.

The motor can pull cargo on an elastic linker with spring con-

stant kL (small extensions) and maximal extension length rmax

(the so-called finite extension nonlinear elastic (FENE) model

[94] is used here). The motor (kinesin) is bound to a micro-

tubule and can move along it in a periodic potential,

U(x + L,ζ(t)) = U(x,ζ(t)), reflecting the microtubule spatial

period L, and it can do useful work against a loading force, fL,

directed against its motion caused by cyclic conformational

fluctuations ζ(t). The microtubule is a polar periodic structure

with a periodic but asymmetric distribution of positive and

negative charges (overall charge is negative) [95]. The kinesin

is also charged and its charge fluctuates upon binding nega-
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(45)

tively charged ATP molecules and dissociation of the products

of ATP hydrolysis. This leads to dependence of the binding

potential on the conformational variable ζ(t). Given two iden-

tical heads of kinesin, the minimalist model is to assume that

there are only two conformational states of the motor (this is a

gross oversimplification, of course) with U1,2(x) := U(x,ζ1,2),

and U1(x + L/2) = U2(x) as an additional symmetry condition,

so that a half-step, L/2, is associated with conformational fluctu-

ations 1 →2, or 2→1. During one cycle 1→2→1 in the forward

direction with the rates α1(x) and β2(x), one ATP molecule is

hydrolyzed. However, if this cycle is reversed in the backward

direction with the rates β1(x) and α2(x) (Figure 6), one ATP

molecule is synthesized. The dependence of chemical transition

rates on the position x through the potential U1,2(x) reflects a

two-way mechano-chemical coupling. It is able to incorporate

allosteric effects, which indeed can be very important for

optimal operation of molecular machines [6]. Such effects can

possibly emerge, for example, because the probability of

binding an ATP molecule (substrate) to a kinesin motor or the

release of products can be influenced by the electrostatic poten-

tial of the microtubule. In the language of [6], this corresponds

to an information ratchet mechanism to distinguish it from the

energy ratchet, where the rates of potential switches do not

depend on the motor states (no feedback) and are fixed. Such an

allostery can be used to create highly efficient molecular

machines [6]. In accordance with the general principles of

nonequilibrium thermodynamics applied to cyclic kinetics [2],

(40)

for any x, where |ΔμATP| is the free energy released in ATP

hydrolysis and used to drive one complete cycle in the forward

direction. It can be satisfied, e.g., by choosing

(41)

The total rates

(42)

(43)

of the transitions between two energy profiles must satisfy

(44)

at thermal equilibrium. This is a condition of the thermal

detailed balance, where the dissipative fluxes simultaneously

vanish both in the transport direction and within the

conformational space of a motor [91,92]. It is obviously satis-

fied for |ΔμATP|→0. Furthermore, on symmetry grounds, not

only α1,2(x + L) = α1,2(x), β1,2(x + L) = β1,2(x), but also,

α1(x + L/2) = β2(x) and α2(x + L/2) = β1(x). It should be empha-

sized that linear motors such as kinesin I or II work only one

way: they utilize the chemical energy of ATP hydrolysis for

doing mechanical work. They cannot operate in reverse on aver-

age, i.e., they cannot use mechanical work in order to produce

ATP in a long run, even if a two-way mechano-chemical cou-

pling can provide such an opportunity in principle. This is very

different from rotary motors such as F0F1-ATPase, which is

completely reversible and can operate in two opposite direc-

tions. Allosteric effects can also play a role to provide such a

directional asymmetry in the case of kinesin motors. Allostery

should be considered as generally important for the proper

design of various motors best suited for different tasks.

For kinesins, neither cargo nor external force fL should explic-

itly influence the chemical rate dependencies on the mechanical

coordinate x. This leaves still some freedom in the use of differ-

ent rate models. One possible choice is shown in Equation 45

[85].

In Equation 45, α1(x) = α1 within the ±δ/2 neighborhood of the

minimum of potential U1(x) and is zero otherwise. Correspond-

ingly, the rate β2(x) = α1 relates to the ±δ/2 neighborhood of the

minimum of potential U2(x). The rationale behind this choice is

that these rates correspond to lump reactions of ATP binding

and hydrolysis, and if the amplitude of the binding potential is

chosen to be about |ΔμATP|, with a sufficiently large δ, the rates

ν1,2(x) can be made almost independent of the position of the

motor along the microtubule [85], when allosteric effects are

considered to be almost negligible. This allows for the compari-

son of this model, featured by bidirectional mechano-chemical

coupling, with a corresponding flashing energy ratchet model,
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where the switching rates between two potential realizations are

spatially independent constants, ν1 = ν2 = α1. The latter model

has been developed in [84]. Notice that even for reversible

F1-ATPase motors, such an energy ratchet model can provide

very reasonable and experimentally relevant results [96]. More-

over, if the linker is very rigid, kL→∞, one can exclude the dy-

namics of the cargo and consider a one compound particle with

a renormalized Stokes friction and the same algebraically

decaying memory kernel that moves subdiffusively in a flashing

potential. Such an anomalous diffusion molecular motor model

has been proposed and investigated in [83]. The main results of

[83], which were confirmed and further generalized in [84,85],

create the following emerging coherent picture of molecular

motors pulling subdiffusing (when free) cargos in viscoelastic

environments of living cells. First, if a normally diffusing

(when free) motor is coupled to subdiffusing cargo, it will be

eventually enslaved by the cargo and also subdiffuse [84]. How-

ever, when the motor is bound to a microtubule, it can be

guided by the binding potential fluctuations, which are eventu-

ally induced by its own cyclic conformation dynamics driven by

the free energy released in ATP hydrolysis. It either tends

towards a new potential minimum after each potential change,

as demonstrated in Figure 6, or can escape by fluctuation to

another minimum. A large binding potential amplitude

U0 >> kBT exceeding 10–12kBT (see Figure 6 and the corre-

sponding discussion in [84] to understand why) makes the

motor strong. For a large U0, the probability to escape is small,

and the motor will typically slide down to a new minimum and

its mechanical motion along the microtubule will be complete-

ly synchronized with the potential flashes and conformational

cycles. It then steps (stochastically, but unidirectionally) to the

right in Figure 6 with mean velocity v = Lα1/2. In such a way,

using a power-stroke-like mechanism, a strong motor such as

kinesin II (with stalling force  ≈ 6–8 pN) can completely

overcome subdiffusion and transport even subdiffusing (when

free) cargos very efficiently. This requires, however, that the

flashing occurs slower than the relaxation. The larger the cargo,

the larger also the fractional friction coefficient ηα, and the

slower the relaxation. The relaxation is algebraically slow.

However, it can be sufficiently fast in absolute terms on the

time scale 1/α1, thus this mechanism is realized for sufficiently

small cargos. The results of [83-85] indicate that smaller cargos,

20–100 nm, will typically be transported by strong kinesin

motors quite normally, , with αeff = 1, at

typical motor turnover frequencies ν = α1/2 ≈ 1–200 Hz, provi-

ded that fL = 0. This already explains why the diffusional expo-

nent β ≈ 2αeff can be larger than 2α. However, for larger cargos

of 100–300 nm, larger turnover frequencies, and when the

motor works against a constant loading force fL, an anomalous

transport regime emerges with α ≤ αeff ≤ 1. Clearly, when fL ap-

proaches the stalling force , the transport becomes anom-

alous. The effective transport exponent αeff is thus essentially

determined by the binding potential strength, motor operating

frequency, cargo size, and loading force, apart from α.

It is very surprising that the thermodynamic efficiency of

such a transport can be very high even within the

anomalous transport regime. This result is not trivial at all.

Indeed, the useful work done by a motor in the anomalous

regime against loading force fL scales sublinearly in time,

 [83,88,89]. However, the free energy

transformed into directional motion scales generally as

, where 0 < γ ≤ 1. γ = 1 for rocking, or flashing

ratchets driven by either by periodic or random two-state force,

or by random fluctuations of potential characterized by a well-

defined mean turnover rate ν = ν1ν2/(ν1 + ν2). Then,

. In the energy balance, the rest, Ein(t) − W(t), is

dissipated as a net heat Q(t) transferred to the environment. The

thermodynamic efficiency is thus [85]

(46)

where λ = γ − αeff. Hence,  for γ = 1. It declines

a l g e b r a i c a l l y  i n  t i m e ,  l i k e  t h e  m e a n  p o w e r

. However, temporally, for the

typical time required to relocate a cargo within a cell, it can be

very high, especially when αeff is close to one. An even more

interesting result occurs in the case of bidirectional, mechano-

chemical coupling, because the biochemical cycling rates ν1,2(x)

in this case can strongly depend on the mechanical motion for a

sufficiently large U0, when allosteric effects start to play a very

profound role. Indeed, if the available |ΔμATP| becomes smaller

than the sum of energies required to enhance the potential

energy of the motor by two potential flashes (see vertical arrow

in Figure 6) during two halves of one cycle, then the enzyme

cycling in its conformational space will not generally stop. It

can, however, start to occur anomalously slow with a power

exponent γ < 1. The average number of forward enzyme

turnovers occurring with consumption of ATP molecules scales

then as  in time, and .

This indeed happens within the model we consider here, see

[85] for a particular example with U0 = 30kBTr ≈ 0.75 eV,

|ΔμATP| = 20kBTr ≈ 0.5 eV, where γ ≈ 0.62 and αeff ≈ 0.556 at

the optimal load fL ≈ 8.5 pN, when the motor pulls a large cargo

at the same time. The thermodynamic efficiency declines in this

case very slowly, with λ ≈ 0.067, so that R(t) is still about

70%(!) at the end point of simulations corresponding to a physi-

cal time of 3 s. Such a high efficiency is very surprising and

provides one more lesson that challenges our intuition and

allows us to learn and recognize the power of FDT on the nano-
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scale. For microscopic and nanoscopic motion occurring at ther-

mal equilibrium, the energy lost in frictional processes is

regained from random thermal forces. Therefore, heat losses

can, in principle, be small even for an anomalously strong dissi-

pation. This is the reason why the attempts to reduce friction on

the nanoscale are misguided. This can, quite counter-intuitively,

even hamper efficiency, down to zero as the so-called dissipa-

tionless Hamiltonian (pseudo)-motors reveal. One should think

differently.

The efficiency at maximum power can also be high in the

normal transport operating regime within the discussed model.

Indeed, for U0 = 30kBTr and smaller cargo in [85], the transport

remains almost normal until the maximum of efficiency is

reached at about 80% for an optimal  ≈ 9 pN (see

Figure 8 in [85], where f0 corresponds to fL here). The nearly

linear dependence of the efficiency on load until it reaches

about 70% indicates that the motor steps with almost the same

maximal velocity as at zero loading force fL. The following

simple heuristic considerations can be used to rationalize the

numerical results. The motor develops a maximal driving force

F, which depends on U0, the motor turnover rate, and tempera-

ture (via an entropic contribution), see Figure 6 in [84], where

. This is the stalling force. The larger U0, the stronger

the motor and larger F. Let us assume that the motor stepping

velocity declines from v0 to zero with increasing loading force,

fL, as v(fL) = v0[1 − (fL/F)a], where a ≥ 1 is a power-law expo-

nent. Within the linear minimalist model of the motor consid-

ered above (and also in an inefficient transport regime within

the considered model), a = 1, i.e., the motor velocity declines

linearly with load. However, in a highly efficient nonlinear

regime, this dependence is strongly nonlinear, a >> 1. The

maximum of the motor power PW(fL) = fLv(fL) is reached at

 = F/(1 + a)1/a, with  = av0/(1 + a). For a = 1,

 = F/2 and the dependence PW(fL) is parabolic. With the

increase of U0, a is also strongly increased and the dependence

PW(fL) becomes strongly skewed, in agreement with numerics.

Since the input motor power, Pin, does not depend on load

within our model in the energy ratchet regimes, the motor effi-

ciency R = PW/Pin just reflects that of PW. Hence, the maximum

of R versus fL does correspond to the maximum efficiency at

maximum power and can exceed 1/2. The same heuristic

considerations can be applied to the results presented in [93] for

very efficient normal motors. Of course, these results are not

necessarily experimentally relevant for, e.g., known kinesin I

motors whose maximal efficiency is about 50% [3]. However,

our theory can be very relevant for devising artificial motors

having other tasks because it provides a biophysically very rea-

sonable model where efficiency at maximum power can be

larger than the Jacobi bound of linear stochastic dynamics. It

must be stressed, however, that in the anomalous transport

regime, one cannot define power and one should introduce the

notion of sub-power [88,89].

One should also note the following. Even at fL = 0, when the

thermodynamic efficiency is formally zero, R(t) = 0, something

useful is done: the cargo is transferred over a certain distance by

overcoming the dissipative resistance of the environment. How-

ever, neither the potential energy of the motor, nor that of the

cargo is increased. This is actually normal modus operandi of

linear molecular motors like kinesins I or II, very different from

ionic pumps whose the primary goal is to increase the

(electro)chemical potential of transferred ions (i.e., to charge a

battery). Such a R = 0 regime, should, however, be contrasted

with the zero efficiency of frictionless rocking pseudo-ratchets.

In our case, the useful work is done against the environment.

Pseudo-ratchets are not capable of doing any useful work in

principle.

Conclusion
In this contribution, some of the main operating principles of

minuscule Brownian machines operating on the nano- and

microscale are reviewed. Unlike in macroscopic machines, ther-

mal fluctuations and noise play a profound and moreover very

constructive role in the microworld. In fact, thermal noise plays

the role of a stochastic lubricant, which supplies energy to the

Brownian machines to compensate for their frictional losses.

This is the very essence of the fluctuation–dissipation theorem:

both processes (i.e., frictional losses and energy gain from the

thermal noise) are completely compensated on average at ther-

mal equilibrium. Classically, thermal noise vanishes at a tem-

perature of absolute zero (which physically cannot be achieved

anyway, in accordance with the third law of thermodynamics),

and only then would friction win (classically). However, quan-

tum noise (vacuum zero-point fluctuations) is present even at

absolute zero. Therefore, friction cannot win even at absolute

zero and quantum Brownian motion never stops. These funda-

mental facts allow, in principle, for a complete transfer of the

driver energy into useful work by isothermal Brownian engines.

Their thermodynamic efficiency approaches unity when the net

heat losses vanish. This happens when the motor operates close

to thermal equilibrium and can be done at any, arbitrarily strong

dissipation at ambient temperature. It is not necessary to

perform work in the deep quantum cold or to strive for high-

quality quantum coherence. A striking example of this is provi-

ded by the high transport and thermodynamic efficiency of mo-

lecular motors in the subdiffusive transport regime. Operating

anomalously slow (in mathematical terms, i.e., exhibiting

sublinear dependence of both the transport distance and the

number of motor turnovers on time), such motors can be quite

fast in absolute terms and can work under a heavy load [85]. In

this, and also in other aspects, the intuitive understanding of
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subdiffusion and subtransport as being extremally slow can be

very misleading [97-99]. On the other hand, the frictionless

rocking pseudo-ratchets cannot do any useful work, as we clari-

fied in this review.

A scientifically sound possibility to approach the theoretical

maximum of thermodynamic efficiency of isothermal motors at

arbitrarily strong dissipation and ambient temperatures is intrin-

sically related to the possibility of reversible dissipative clas-

sical computing without heat production. However, such an

adiabatic operation would be infinitesimally slow. Clearly, such

a motor or computer is not of practical use. Moreover, the adia-

batic operation of dissipative pumps involving discrete energy

levels is possible only for a vanishing load. Here, a natural

question emerges: What is the thermodynamic efficiency at

maximum power? The linear dynamics result that Rmax = 1/2 is

the theoretical upper bound is, however, completely wrong

within nonlinear stochastic dynamics, as shown in this review

with three examples. This opens the door for the design of

highly efficient Brownian and molecular motors. Moreover, the

recent model results in [85] for a normal transport of suffi-

ciently small subdiffusing (when free) cargos by a kinesin

motor with a very high thermodynamical efficiency at optimal

external load do imply that thermodynamic efficiency at

maximum power within that model can also be well above 50%.

The earlier results for normal diffusion molecular motors within

a very similar model [91,92] obtained in [93] also corroborate

such conclusions. Such models are able to mimic allosteric

interactions within minimalist model setups. Chemical allosteric

interactions, which are intrinsically highly nonlinear, can opti-

mize the performance of various molecular motors. This line of

reasoning is especially important for the design of artificial mo-

lecular motors [6] and should be pursued further.

Quantum effects are also important to consider to design highly

efficient molecular machines, even when quantum coherence

does not play any role (that is, on the level of rate dynamics

with quantum rates, like in the Pauli master equation). In partic-

ular, it has been shown in this review within the simplest model

possible that quantum effects (related to the inverted regime of

quantum particle transfer) can lead to thermodynamic efficien-

cies at maximal power larger than one-half for the machine

operating both in forward and reverse directions. Quantum

coherence could also play a role here, which should be clarified

in further research. Undoubtedly, quantum coherence is central

for quantum computing, which is obviously reversible [55].

However, this is a different story.

I hope that the readers of this review will find it especially use-

ful in liberating themselves (and possibly others) from some

common fallacies, both spoken and unspoken, which unfortu-

nately have pervaded the literature and hinder progress. With

this work, a valid, coherent picture emerges.
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