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Abstract

An effective adaptive immune response relies on the ability of lymphocytes to rapidly act upon a 

variety of infectious insults. In T lymphocytes, this response includes cell growth, clonal 

expansion, differentiation, and cytokine production, all of which places a significant energy burden 

on the cell. As a result, T cells engage specific metabolic pathways to carry out their effector 

functions. Recent insights have demonstrated that T-cell metabolic reprogramming is an essential 

component of the adaptive immune response and specific metabolic pathways dictate T-cell fate 

decisions, including the development of TH17 versus T regulatory (Treg) cells. TH17 cells have 

garnered significant attention since their discovery nearly a decade ago due to their roles in the 

pathology of several immune-mediated inflammatory diseases. Attempts to fully characterize 

TH17 cells have demonstrated that they are highly dynamic, adjusting their function to 

environmental cues which dictates the metabolic program of the cell. In this short review, we will 

highlight recent data demonstrating the impact of cellular metabolism on the TH17/Treg balance 

and present factors that mediate TH17 cell metabolism. Finally, we discuss the potential 

therapeutic options and the implications of modulating TH17 cell metabolism for the treatment of 

TH17-mediated diseases.
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Introduction

The ability of an organism to respond to environmental changes is essential for survival. An 

effective immune response abides by this same rule, with engagement of cellular metabolic 

pathways an essential component. In mammals, coordination and communication between 

multiple organs mediates homeostasis and dysregulation of this process leads to disease 

states. A similar parallel can be drawn between cells of the immune system and an effective 

immune response. Coordinate changes in cellular metabolism upon pathogenic insult is 
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essential for immune cell proliferation and function, dysregulation of which can result in 

autoimmunity or cancer.

An effective adaptive immune response requires T cells to adapt and function in various 

microenvironments[1-5]. Since quiescent T-cell energy demands are low, they primarily 

oxidize glucose-derived pyruvate in their mitochondria via oxidative phosphorylation 

(OXPHOS), which ensures maximal ATP production (32 ATP) per molecule of glucose[1, 5, 

6]. However, upon antigen stimulation, T cells undergo metabolic reprogramming in order to 

provide energy and building blocks for clonal expansion and effector function[1, 3, 4]. These 

events require significant amounts of ATP in a short period of time and thus rely primarily 

on glycolysis, a process which catabolizes six-carbon sugars to produce two molecules of 

ATP and pyruvate (each), for their energy demands[1, 5]. Glycolysis is an essential 

metabolic pathway for T-cell development as it yields energy and molecules required for 

cellular growth and proliferation[2, 3]. This process occurs in the presence of oxygen 

(aerobic glycolysis) and is reminiscent of the Warburg effect observed in most cancer 

cells[5, 6]. The observation that removal of glucose inhibits T-cell proliferation and cytokine 

production led to the discovery that upregulation of glucose transporter 1 (Glut1) is another 

essential component of T-cell metabolic reprogramming[7-9]. Therefore, the upregulation of 

glucose metabolism is required to generate metabolic intermediates for the synthesis of 

proteins, nucleic acids, and lipids[2]. Several recent review articles have been published 

providing an extensive overview of T-cell metabolism in immune regulation[3, 4, 10-12], 

anti-tumor immunity[13], mTOR and metabolic control of T regulatory (Treg) cells[14-16], 

and targeting T-cell metabolism for therapeutic purposes[17], therefore we will not belabor 

these points. In this review, we focus on TH17 cells, providing an overview of recent insights 

into metabolic pathways that regulate TH17 cell development and function, dictate TH17/

Treg cell fate decisions, and ultimately affect immune homeostasis. We conclude with a brief 

discussion about the therapeutic implications of the research and the potential for targeting 

TH17 cell metabolism to treat autoimmune diseases.

The TH17 and T regulatory cell balance

Naïve CD4+ T cells differentiate into distinct effector lineages as a consequence of antigen 

engagement coupled with specific cytokine signals. TH17 cells differentiate in response to 

the STAT3-activating cytokines IL-6 and IL-21 in combination with transforming growth 

factor β (TGF-β) and IL-1β[18]. This combination leads to the induction of the TH17-

specific nuclear receptor, RORγt, also known as the “master” transcription factor. 

Interestingly, TH17 cells are only reduced, not absent in RORγt-deficient mice. This 

observation led to the discovery that the close family member of RORγt, RORα, is also 

induced in TH17 cells and while endogenous expression of RORα can not completely fulfill 

the role of RORγt, both receptors are required for full TH17 cell development[19]. In 

combination with several other general transcription factors, STAT3 and RORγt synergize to 

regulate transcription of the TH17-signature cytokines, IL-17A, IL-17F, IL-21, and 

IL-22[20].

Significant interest in TH17 cells was garnered when they were implicated as pathogenic 

mediators of several autoimmune diseases in mice and humans, including experimental 

Wang and Solt Page 2

Eur J Immunol. Author manuscript; available in PMC 2017 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



autoimmune encephalomyelitis (EAE, a mouse model of multiple sclerosis), collagen 

induced arthritis (a mouse model of rheumatoid arthritis), psoriasis, and some forms of 

colitis[21]. TH17 cells exist in both mice and humans and while there are a significant 

number of similarities between the two species, a few differences have been observed, some 

of which pertain to T-cell metabolism and are discussed in this review article [22].

Despite their opposing functions, TH17 cells and inducible T regulatory (iTreg) cells share a 

common requirement for the pleiotropic cytokine TGF-β for development; TH17 cells are 

pro-inflammatory and iTregs are anti-inflammatory[21]. Unlike thymus-derived natural 

Tregs (nTregs), iTregs can be induced from naïve CD4+ T cells in the periphery upon 

antigen stimulation and exposure to TGF-β[23-25]. In addition to RORγt, TGF-β also 

induces the expression of the transcription factor forkhead box protein 3 (Foxp3), the core 

subset-specific transcription factor for both nTregs and iTregs [24, 26, 27]. Therefore, when 

activated in the presence of TGF-β or TGF-β + IL-6, naïve CD4+ T cells simultaneously 

upregulate both Foxp3 and RORγt to generate an intermediate Foxp3+RORγt+ cell type that 

can either differentiate into Foxp3+ iTregs or RORγt+ TH17 cells in vitro and in vivo[26-28]. 

During the intermediate stage, RORγt and Foxp3 can interact with each other, but Foxp3 is 

dominant and antagonizes RORγt function unless IL-6 or IL-21 is present in the milieu[26, 

27]. Full TH17 cell differentiation is then associated with downregulation of Foxp3 and 

sustained RORγt transcription. Finally, TH17 cells and iTregs have been shown to have 

unstable phenotypes in vivo. For instance, under certain pro-inflammatory conditions, TH17 

cells have been demonstrated to acquire a TH1-like phenotype, whereas iTregs can convert 

into TH1 and TH17 cells[27, 29].

An imbalance between TH17 and Treg cell number and function has been suggested to be a 

key mediator of TH17-mediated autoimmune diseases[30]. Therefore, it is not surprising that 

a considerable amount of research is focused on understanding the factors that mediate the 

TH17/iTreg balance. What is surprising is that a number of recent studies have implicated 

various metabolic pathways in the regulation of TH17/iTreg cell fate[31-36]. While most 

work on T-cell metabolism has primarily occurred using murine systems, due to the growing 

interest in immunometabolism more studies characterizing the link between human cellular 

metabolism and function are being performed. Therefore, where applicable, we will describe 

work that has been performed using human T cells and compare the data to mouse studies.

mTOR signaling and CD4+T-cell fate

An activated T cell depends on cell intrinsic and external cues from the environment to fully 

develop. These cues are assimilated by the evolutionarily conserved serine/threonine kinase 

mTOR (mammalian target of rapamycin), which regulates cell growth, proliferation, and 

survival[37]. mTOR signaling occurs via two complexes, mTORC1 and mTORC2, each 

with their own unique function, and is activated by amino acids, cellular stress, and nutrient 

availability in the environment[37]. Activation of mTOR leads to the upregulation of 

glycolysis to support effector T-cell development and function[7, 38]. The activity of the 

different mTORC complexes is critical for T-cell fate decisions[14, 15]. In the absence of 

mTORC1 signaling, murine TH1 and TH17 cells failed to differentiate in vitro and in vivo 
whereas the ability of CD4+ T cells to differentiation into a TH2 lineage was intact[34]. 
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Conversely, in the absence of mTORC2 signaling, naïve mouse CD4+ T cells failed to 

develop into TH2 cells in vitro and in vivo, whereas they retained their ability to differentiate 

into TH1 and TH7 cells[34]. Mouse naïve CD4+ T cells lacking both mTORC1 and 

mTORC2 failed to develop into any T helper (Th) lineage, instead differentiating into 

iTregs[39]. Treatment of naïve mouse CD4+ T cells with the mTOR inhibitor rapamycin 

yielded a similar phenotype[40]. Interestingly, dysregulation of mTOR signaling has been 

documented in various human autoimmune diseases. Increased mTORC1 has been observed 

in T cells from patients with multiple sclerosis (MS), possibly underlying the decreased 

Tregs observed in these patients[41]. In patients with systemic lupus erythematosus (SLE), 

mTORC1 is activated whereas mTORC2 is reduced leading to increased production of IL-4 

and decreased numbers of Tregs[42]. In vitro, rapamycin inhibited IL-17 expression from 

human CD4+ T cells and expanded Tregs from SLE patients [43]. When administered in 
vivo, rapamycin corrected the T cell abnormalities and increased the expression of Tregs in 

SLE patients [44]. Treatment of peripheral blood mononuclear cells (PBMCs) from kidney 

transplant recipients with sirolimus, the pharmaceutical designation for rapamycin, also 

inhibited TH17 cells and expanded Tregs in vitro and in vivo[45].

At the molecular level, the ability of mTORC1 to regulate the development of TH17 cells 

appears to be dependent on suppression of Gfi1, a zinc finger protein that functions as a 

transcriptional repressor[35]. mTORC1 mediated repression of Gfi1 enhanced nuclear 

translocation of RORγt and the subsequent development of murine TH17 cells[35]. In 

addition to glucose, the non-essential amino acid is also critical for T-cell activation as it is 

thought to provide fuel for rapidly dividing cells, but the exact mechanisms for glutamine 

uptake and T-cell activation are not completely understood[1, 46]. Importantly, amino acids 

have been shown to activate mTORC1 by targeting it to lyososmal-membranes for 

activation[47]. To better understand how glutamine regulates immune responses, one group 

recently used a gene targeting approach and demonstrated that the glutamine transporter 

ASCT2 is required for TCR-stimulated activation of mTORC1[33]. Murine TH1 and TH17 

cell development was impaired in ASCT2-deficient T cells and the symptoms of MOG 

induced EAE were delayed and reduced[33]. This study also demonstrated that ASCT2 is 

required for the uptake of glutamine and leucine in murine T cells, the later of which appears 

to mediate TH17 cell development over TH1[34]. Interestingly, the absence of ASCT2 also 

attenuated the expression of Glut1, significantly inhibiting glucose uptake and reducing the 

rate of glycolysis in murine T cells[33]. Since mTORC1 is known to mediate induction of 

Glut1 expression[48, 49] and elevated levels of glutamine and glutamate have been reported 

in clinical cases MS[50], this study correlates TCR/CD28 signaling, glutamine uptake, and 

mTORC1-mediated regulation of TH17 cell differentiation with immune pathogenesis[33]. 

Collectively, these studies highlight the important role for mTOR in CD4+ T cell 

differentiation, the TH17/iTreg balance, and its promise for the treatment of autoimmune 

diseases.

HIF1α and the regulation of glycolysis

Much like mTOR, hypoxia inducible factor 1 alpha (HIF1α) is another well-known 

integrator of metabolic cues important for T-cell activation and development[4, 38]. In fact, 

mTORC1 enhances HIF1α expression at both the transcriptional and translational level to 
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drive glucose uptake and glycolysis[38]. Glut1 is upregulated in both mouse and human T 

cells upon activation and is critical for metabolic reprogramming, growth, and effector 

function[51]. HIF1α promotes increased glucose uptake via upregulation of Glut1 and 

reinforces glycolysis through upregulation of pyruvate dehydrogenase kinase 1 (PDK1). 

Increased PDK1 activity, in turn, prevents entry of pyruvate into the TCA cycle and redirects 

it to be metabolized into lactate[10]. HIF1α has been demonstrated to be a critical factor in 

the development of TH17 cells versus Tregs. HIF1α is highly expressed at the mRNA and 

protein level in mouse TH17 cells relative to other T helper lineages[36, 52]. Human TH17 

cells also express HIF1α and require it along with mTOR activity to produce IL-17[53]. 

Deletion of HIF1α in murine T cells reduces the expression of several genes involved in 

glycolysis, including Glut1, Hexokinase 2 (Hk2), Pyruvate kinase muscle (Pkm), and 

Lactate dehydrogenase (Ldha), most of which represent rate limiting steps in glycolysis[36]. 

Mouse T cells lacking HIF1α also have diminished TH17 cell development and enhanced 

iTreg development, a consequence of decreased glycolysis[36, 52]. One group found that 

pharmacological inhibition of glycolysis with rapamycin or 2-deoxyglucose (2-DG), an 

inhibitor of HK2 activity, also suppressed glycolysis in murine cells, shifting the TH17/iTreg 

balance in favor of iTregs.[36]. While 2-DG inhibited glycolysis and affected the TH17/iTreg 

balance, it is likely not specific to TH17 cells since glycolysis, and HK2, is upregulated in all 

T effector lineages which is consistent with data demonstrating that 2-DG treatment of 

human T cells inhibited their growth, activation, and proliferation[51]. Interestingly, a 

separate study demonstrated that HIF1α drives murine TH17 cell development through dual 

mechanisms involving RORγt; HIF1α not only transactivates RORγt but also forms a 

transcriptional complex with p300 and RORγt to drive TH17 cytokine gene expression[52]. 

This group also demonstrated that HIF1α attenuates Foxp3 expression by binding to Foxp3 

and targeting it for proteasomal degradation[52]. Precisely how HIF1α interacts with RORγt 

to drive IL-17 transcription while also interacting with Foxp3 and targeting it for 

degradation have yet to be determined. However, in both studies, mice with HIF1α-deficient 

T cells had delayed and reduced symptoms of EAE[36, 52]. While these studies describe 

very different and unique mechanisms for HIF1α-mediated regulation of TH17 cells, it is 

likely a combination of all mechanisms that affects the TH17/iTreg balance.

AMPK and the TH17/iTreg balance

In contrast to mTOR and HIF1α, AMP-activated protein kinase (AMPK), a heterotrimeric 

kinase complex, is activated in response to low energy levels (low AMP:ATP ratio) and 

induces catabolic pathways such as fatty acid oxidation or autophagy under times of cellular 

stress or a decline in cellular energy stores[10]. In T cells, AMPK is directly activated 

through TCR-dependent Ca2+ signaling or by phosphorylation of liver kinase B1 (LKB1)

[54, 55]. Activation of AMPK leads to energy-yielding processes while inhibiting glucose 

and fatty acid synthesis through AMPK-dependent phosphorylation of acetyl-coA 

carboxylases 1 and 2 (ACC1, ACC2)[10, 56]. ACC1 is present in the cytosol and is crucial 

for de novo fatty acid synthesis whereas ACC2 is associated with the outer mitochondrial 

membrane[56]. Inhibition of ACC2 leads to increased expression of carnitine palmitoyl 

transferase (CPT-1) which mediates the influx of fatty acids into the mitochondria[3, 56]. 
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Further discussion of the roles for the ACCs and lipid metabolism are described in the next 

section.

Unlike T effector cells, murine iTregs have been demonstrated to primarily rely on fatty acid 

oxidation (FAO) for their energy needs in lieu of glycolysis[57]. iTregs display increased 

AMPK activity and activation of AMPK in vitro promotes lipid oxidation in T cells[57]. 

Importantly, activation of AMPK with metformin, a commonly used anti-diabetic drug, 

increased the frequency of Tregs in vivo when assessed in a murine model of allergic 

asthma[57, 58]. When administered to newly diagnosed type 2 diabetes patients, metformin 

treatment lead to a significant reduction in the serum concentration of IL-17 but not IFNγ 

indicating a conserved effect on TH17 cells[59]. Given that AMPK is a negative regulator of 

mTOR activity, these data suggest that activation of AMPK should suppress TH17 cell 

development and promote iTregs in vitro and in vivo[32, 60]. Alternatively, loss of AMPK 

should increase mTOR activity and lead to the generation of TH17 cells over iTregs. To 

address this question, one group generated mice in which the AMPKa1 subunit was deleted 

in CD4+ and CD8+ T cells[61]. While AMPKa1−-− CD8+ T cells had increased glycolytic 

activity and produced more inflammatory cytokines than wild type cells in vitro, there was 

no observable difference in CD4+ T cells deficient in AMPKa1 despite having increased 

glycolytic rates[61]. However, in a separate study, this same group demonstrated that 

AMPKa1−-− T cells display reduced TH1 and TH17 responses to bacterial and viral 

infections in vivo[62]. Furthermore, loss of AMPKα1 led to reduced mitochondrial 

bioenergetics and cellular ATP in response to glucose limitation in vitro[62]. While these 

data are perplexing, it is clear that AMPK plays an important role in T-cell metabolism, but 

may not be specific to TH17 cells. These studies also demonstrate the disconnect that 

sometimes occurs between genetic and pharmacological approaches. While gene disruption 

in mice has been the gold-standard for elucidating mechanism, several caveats may ensue, 

including compensation among factors that may not be present with pharmacological 

approaches. Thus, use of genetic and pharmacological approaches will likely yield the 

greatest insight into complex biological systems, including T-cell metabolism.

Fatty Acid synthesis and Lipid Metabolism

Much like glucose metabolism, lipid metabolism is also an essential component of T-cell 

activation[4, 10, 11]. Lipids are vital components of cell membranes, can serve as energy 

sources, and supply substrates for cell signaling[11]. Induction of de novo fatty acid (FA) 

synthesis is necessary for effector T-cell proliferation and differentiation with ACC1, ACC2, 

and fatty acid synthase (FASN) recognized as key rate limiting steps in this process[39]. 

Conversely, T cells can utilize FAs as an energy source, in a process called β-oxidation (fatty 

acid oxidation; FAO)[4, 13]. However, recent insights suggest that lipids are more than just 

structural components and may represent key metabolic checkpoints in T-cell activation[1, 

11, 31]. Using a mass-spectrometry based approach, one group found that following initial 

T-cell activation, murine T cells accumulate metabolites involved in anabolic processes and 

FA synthesis[1]. Increased FA synthesis correlated with decreased FAO, suggesting a 

reciprocal relationship between these two processes[1]. Further characterization of T-cell 

lipid metabolism has found that the preferential usage of FAO or FA synthesis can dictate 

cellular fate and functions, including the TH17/iTreg balance[31].
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Given that AMPK is an important regulator of FAO and promotes iTregs, one group set out 

to try and better understand how lipid metabolism may affect the TH17/iTreg balance. Berod 

et al. demonstrated that murine TH17 cells were highly dependent on de novo FA synthesis 

and did not utilize externally derived FAs for proliferation or differentiation[31]. By 

blocking FASN activity through use of an ACC-specific inhibitor, Soraphen A, or ACC1-

deficient T cells, this group showed that murine TH17 cell differentiation, as well as TH1 and 

TH2, was significantly decreased, suggesting that CD4+ T effector cells share a common 

requirement for FA synthesis[31]. These effects were ACC1-dependent because deletion of 

ACC2 did not yield a similar phenotype. iTregs were not affected in either experimental 

scenario. In an autoimmune setting, mice with T cells lacking ACC1 or treatment of mice 

with a derivative of Soraphen A demonstrated delayed onset and severity of symptoms of 

EAE[31]. Finally, the addition of exogenous FAs rescued the TH17 phenotype in ACC1-

deficient T cells. While these data are interesting, one must wonder why TH17 cells need to 

make their own FAs rather than just acquire them from the milieu? Finally, it is clear that 

targeting a factor shared among effector cells is not ideal if the goal is to specifically target 

the TH17/Treg balance. Identification and targeting a factor specific to both TH17 cells and a 

metabolic pathway may be the better therapeutic option.

Nuclear Receptors in T-cell metabolism and TH17 development

Nuclear receptors (NRs) are highly conserved ligand-regulated transcription factors that 

have been demonstrated to play significant roles in many diverse physiological processes, 

including development, cell growth, regulation of the circadian rhythm, metabolism, and 

immune functions[63]. NRs are attractive therapeutic targets since their activity can be 

modulated by small lipophilic molecules and approximately 10-15% of FDA approved drugs 

target NRs, highlighting their tractability for therapeutic intervention[64]. Several NRs have 

been demonstrated to regulate T-cell metabolic processes and TH17 cell development, 

including estrogen related receptor alpha (ERRα), liver x receptors alpha and beta (LXRα 

and LXRβ), peroxisome proliferator-activated receptors (PPARα, PPARβ/δ, PPARγ), and 

probably the best known, the retinoic acid-related receptors alpha and gamma (RORα and 

RORγt)[3, 4, 21, 65]. Interestingly, many of these NRs have been described as key metabolic 

regulators controlling a number of metabolic processes, including FAO, OXPHOS, FA 

uptake, and glucose metabolism[66-68].

While expressed at very low levels in naïve CD4+ T cells, ERRα is upregulated upon T-cell 

activation[69]. Deficiency in ERRα or pharmacological modulation of ERRα activity with 

XCT790 reduced murine T-cell activation, glucose and mitochondrial metabolism, affecting 

the development of all T helper subsets[69]. While addition of exogenous FAs rescued 

proliferation in all subsets, it could not rescue T effector function, only iTregs[69]. In MOG 

induced EAE, defective ERRα signaling led to a significant decrease in TH17 cells whereas 

iTreg numbers remained unchanged suggesting ERRα plays a role in T effector cell 

generation in vivo, but not iTregs[69].

The LXRs have also been demonstrated to influence T-cell differentiation and fate decisions 

through regulation of cholesterol metabolism[65, 70]. The LXRs control intracellular 

cholesterol homeostasis through regulation of the cholesterol efflux transporters, Abca1 and 
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Abcg1, and fatty acid synthesis, through control of the transcription factor sterol regulatory 

element binding protein-1c (SREBP-1c), and FASN[65, 70]. Pharmacological activation of 

LXR inhibited murine TH17 cell development in vitro and decreased severity of symptoms 

of EAE[71, 72]. Activation of LXR also impairs murine T-cell proliferation, which can be 

overcome by the addition of mevalonate, a cholesterol precursor[70]. Interestingly, SLE is 

associated with abnormal lipid metabolism and T cells from SLE patients present with 

elevated expression of LXR[73]. While the exact molecular mechanisms driving dyregulated 

lipid metabolic function in SLE are unknown, these data identify LXR as a potential 

therapeutic target for the treatment of SLE and link metabolic dysregulation and 

autoimmunity. Other NRs, the PPARs, particularly PPARγ has been shown to inhibit murine 

TH17 cells through suppression of STAT3 transcriptional activity, which led to decreased 

RORγt induction[74]. Ligand regulation of PPARγ activity has yielded conflicting results, 

with some agonists affecting all T helper subsets while other ligands did not[75, 76]. These 

data suggest that ligand mediated regulation may have differential effects on PPARγ activity 

and development of ligands to modify specific immune pathologies may yield novel 

therapies. While the TH17/iTreg balance was not addressed in these studies[76], given 

PPARγ's role in the regulation of lipid metabolism, it is conceivable that certain ligands may 

have effects on the TH17/iTreg balance[75].

RORs, particularly RORγt, have garnered significant attention given their essential roles in 

TH17 cell development[21]. Outside of the immune system, the RORs have been extensively 

studied due to their key roles in the regulation of the circadian rhythm, lipid, and glucose 

metabolism[66, 68, 77, 78]. A significant number of RORγ-selective ligands have been 

identified and while these ligands led to the suppression of TH17 cell development and 

function, many have been demonstrated to affect the TH17/iTreg balance as well[79-82]. 

These effects have been attributed to decreased RORγt activity and stabilization of Foxp3 

expression. Furthermore, RORα is also expressed in TH17 cells, yet it is thought to be 

redundant to RORγt[19, 21, 27]. Given the ROR's roles in the regulation of metabolism in 

other cell types, and that changes in metabolic state can influence T-cell fate decisions, it is 

possible that in addition to cytokine regulation, the RORs may help drive TH17-cell 

metabolism. Given the transcriptional targets for murine RORγt has been extensively 

evaluated and RORγt appears to regulate a small number of core target genes, very few of 

which are metabolism-related, perhaps RORα's role is to aid in driving the increased glucose 

and lipid metabolism observed in TH17 cells relative to iTregs[20]? While this is an 

intriguing notion, more work needs to be performed exploring RORα's role in TH17 cell 

development to address this question.

Targeting TH17 cell metabolism for therapeutic purposes

Typical treatment options for many autoimmune diseases include corticosteroid use, though 

long-term treatment is not practical due to negative side effects, including global 

immunosuppression[83]. Therefore, an overarching goal is to develop novel therapeutics that 

specifically target pathological immune cells. Given that an imbalance between TH17 and 

iTreg cell number and function has been suggested to be a key regulator of TH17-mediated 

autoimmune diseases[30], and T-cell metabolism has been demonstrated to be a key factor 
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dictating this balance, exploiting these pathways represent novel therapeutic options[4, 

10-12, 15-17].

While TH17 cells primarily utilize glycolysis relative to iTregs, exploiting factors that dictate 

this pathway, including mTOR and HIF1α, may initially appear to be an obvious choice for 

therapeutic treatment[36]. However, in contrast to murine iTregs, a recent report has 

demonstrated that glycolysis is actually required for the generation of human iTregs from 

CD4+CD25- conventional T cells (Tconv)[84]. The suppressive function of iTregs was 

dependent on glycolysis and 2-DG treatment inhibited the development of iTregs from Tconv 

[84]. Increased iTreg glycolysis and metabolism was dependent on the expression of the 

Foxp3 splice variant containing exon 2 (Foxp3-E2)[84]. Human Tregs, unlike mouse Tregs, 

express multiple Foxp3 splice variants, but their individual functions are poorly defined[85]. 

This study highlights one of the differences between mouse and human studies and needs to 

be considered when determining the therapeutic potential of targeting specific pathways or 

cell types for immune-mediated diseases. Moreover, glycolysis is upregulated in all effector 

T cell populations, including CD8+ T cells, therefore targeting glycolysis in general may 

lead to non-specific immunosuppression[17]. Indeed, while rapamycin and other inhibitors 

of mTOR have demonstrated effects on the TH17/iTreg balance in human patients, 

rapamycin is a potent immunosuppressant with anti-proliferative properties. Thus, mTOR 

inhibition may be ideal under certain conditions, including transplant rejection and treatment 

of patients with SLE, but inhibition of mTOR or glycolysis may not be ideal for all 

autoimmune therapies [41][43, 45]. For instance, naïve CD4+ T cells from patients with 

Rheumatoid arthritis (RA) fail to significantly upregulate glycolysis, yet vigorously 

proliferate upon activation due to insufficient induction of a key regulatory enzyme in the 

glycolytic pathway[86]. However, sera from RA patients present with autoantibodies against 

several glycolytic enzymes[86]. Based on this information, targeting glycolysis or factors 

that regulate glycolysis may have little impact on T-cell mediated effects in RA, but may 

have other beneficial consequences outside of T cell activity. Therefore, a better 

understanding of immune and T-cell dysfunctions associated with metabolic alterations in 

human autoimmune diseases is imperative. Importantly, these data suggest that personalized 

medicine may be a therapeutic avenue to pursue in the future for autoimmune diseases.

Targeting AMPK to modulate immune responses is another option for targeting the TH17/

iTreg balance in autoimmunity. Metformin treatment could enhance the iTreg population at 

the expense of TH17 cells and one preliminary study in human patients suggests this may 

occur[59]. However, more work evaluating AMPK activation in humans for immune-

modulating therapies needs to be performed since targeting AMPK will likely affect other 

immune cell populations and may not specifically affect the TH17/iTreg balance.. In fact, 

many of the targets described in this review, while having a profound role on the TH17/iTreg 

balance, also affect other immune cell subsets[17]. So the question remains, how do we 

specifically target the TH17/iTreg balance and leave other immune populations functional? 

The key may lie in exploiting factors that are specific to TH17 cells, like the RORs[21]. 

While little is known about the roles for these NRs in regulating TH17 cell metabolism, 

given their roles outside of the immune system it is plausible that they might also regulate 

metabolic processes[66, 68]. Furthermore, the RORs are ligand-regulated transcription 

factors, so targeting the RORs may be an ideal way to specifically target TH17 cells without 
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compromising the immune system as a whole[77]. There has been a significant effort by 

many pharmaceutical companies to identify RORγ ligands and synthetic ligands targeting 

RORα have been described[79, 87]. Therefore, specifically targeting “select” immune cell 

populations regulated by the RORs versus targeting a pathway or factor that is present in 

most immune cell populations (i.e. mTOR, AMPK, etc.) may provide more specific 

treatment options with fewer side effects.

Concluding remarks and Future Perspectives

While immunometabolism is still in its infancy, it is clear that metabolic reprogramming is 

an essential component of an effective immune response. Recent advances have led to an 

increased understanding of how metabolism dictates T-cell fate decisions and this review has 

highlighted several of which appear to specifically affect the TH17/iTreg balance. However, 

there is still much work and many challenges ahead to definitively determine whether 

targeting TH17-cell metabolism is a viable therapeutic option. More work exploring human 

versus mouse TH17 cell metabolism needs to be performed to determine whether the 

metabolic reprogramming that occurs is conserved and if not, where the differences may lie. 

This understanding is critical for successful therapeutic targeting of the TH17/iTreg balance 

in human autoimmune disease. A more comprehensive assessment of the dysregulated 

metabolic programs occurring in various autoimmune diseases is also warranted. Evidence 

from SLE and RA patients indicate that a “one-size-fits-all” therapeutic approach may not 

work and more personalized therapeutic strategies may be warranted. Other aspects, 

including whether the T-cell metabolic imbalances observed in various autoimmune diseases 

is a cause or consequence of T-cell alterations needs to be explored and may also lend 

significant insight into therapeutic design. In line with this, identifying factors that are 

specific to TH17 cells is also critical to specifically target this cell type therapeutically. 

Finally, no cell stands alone during an immune response, meaning that signals from the 

microenvironment also help dictate the immune response. Understanding the cross-talk 

between the intracellular and extracellular signals driving immune responses will reveal 

fundamental insights in TH17-cell biology and autoimmunity. Thus, the challenge for 

successfully targeting TH17-cell metabolism and the TH17/iTreg balance lies in a detailed 

understanding of T cell intrinsic and extrinsic mechanisms which will likely lead to novel 

therapeutic strategies for the treatment of TH17-mediated autoimmune disorders.
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Figure 1. Metabolic regulation of the TH17/Treg balance
(A) Glycolysis and fatty acid (FA) synthesis provide energy and promote TH17 cell 

differentiation whereas Tregs rely on fatty acid oxidation (FAO) for their energy needs. (B) 
Schematic of key components and regulators of metabolic processes that drive TH17 cell 

metabolism. mTOR is a central activator of cellular metabolism and can also promote 

HIF1α, which drives several genes important for glycolysis. Glycolysis generates 2 pyruvate 

molecules, which can be converted to lactate or shuttled into the TCA cycle where it gets 

converted to Acetyl-CoA. Acetyl-CoA is a precursor to fatty acid synthesis, which is driven 

by the enzymes ACC1, ACC2, and FASN. Activation of AMPK inhibits ACC1 and ACC2 

leading to decreased fatty acid synthesis and increased FAO.
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