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Abstract

Lysosomal storage diseases (LSDs) are a group of more than 50 genetic disorders. Clinical 

symptoms are caused by the deficiency of specific enzyme (enzymes) function and resultant 

substrate accumulation in the lysosomes, which leads to impaired cellular function and progressive 

tissue and organ dysfunction. Measurement of lysosomal enzyme activity plays an important role 

in the clinical diagnosis of LSDs. The major enzymatic testing methods include fluorometric 

assays using artificial 4-methylumbelliferyl (4-MU) substrates, spectrophotometric assays and 

radioactive assays with radiolabeled natural substrates. As many effective treatment options have 

become available, presymptomatic diagnosis and early intervention are imperative. Many methods 

were developed in the past decade for newborn screening (NBS) of selective LSDs in dried blood 

spot (DBS) specimens. Modified fluorometric assays with 4-MU substrates, MS/MS or LC-

MS/MS multiplex enzyme assays, digital microfluidic fluorometric assays, and immune-

quantification assays for enzyme contents have been reported in NBS of LSDs, each with its own 

advantages and limitations. Active technical validation studies and pilot screening studies have 

been conducted or are ongoing. These studies have provided insight in the efficacy of various 

methodologies. In this review, technical aspects of the enzyme assays used in clinical diagnosis 

and NBS are summarized. The important findings from pilot NBS studies are also reviewed.
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Introduction

Lysosomes are subcellular organelles responsible for degrading complex macromolecules 

and recycling cellular debris. They contain a variety of acid hydrolases functioning at acidic 

pH 4–5. These hydrolytic enzymes are translated and modified in the endoplasmic 

reticulum, and then transported from the Golgi to the lysosomes via a mannose-6-phosphate 

receptor dependent mechanism. Lysosomal enzymes function in a coordinated manner to 

break down complex sugars, lipids, glycolipids, glycosaminoglycans (GAGs), nucleic acids 

and proteins. Deficiency of a lysosomal enzyme or any component that is required for proper 

lysosomal function results in the accumulation of macromolecules and distortion of the 

lysosomes, leading to progressive cellular dysfunction of the affected tissues and organs, and 

resultant clinical abnormalities.

Lysosomal storage diseases (LSDs) are mainly caused by mutations in the genes encoding a 

specific lysosomal enzyme. Some LSDs result from deficiencies in activator proteins (e.g., 

GM2 activator deficiency), lysosomal membrane proteins (e.g., Danon disease), transporters 

for substrates (e.g., Salla disease), proteins for lysosomal enzyme post-translational 

modification (e.g., multiple sulfatase deficiency) and proteins for targeting enzymes to the 

lysosomes (e.g., I-cell disease) [1–4]. Most LSDs are autosomal recessive conditions, with 

the exception of X-linked Fabry, Hunter (mucopolysaccharidosis type II, MPS-II) and 

Danon disease. The incidence of LSDs as a group is estimated as 1:7,000 to 1: 8,000 [5]. 

With the emergence of LSDs newborn screening (NBS) programs, the population frequency 

of LSDs will be more accurately predicted and could be higher than the current literature.

More than 50 LSDs have been described and are classified into sphingolipidoses, 

mucopolysaccharidoses (MPS), oligosaccharidoses (glycoproteinosis), mucolipidoses, 

neuronal ceroid lipofusinoses, and other categories based on the accumulated substrates. The 

clinical spectrum is very broad and highly variable partly due to the different substrates 

accumulated and levels of residual enzyme function underlying the disease-causing 

mutation. Classic features highly suggestive of LSDs include progressive mental retardation, 

developmental delay or regression, other neurological symptoms including ataxia and 

seizures, coarse features, organomegaly, abnormal eye findings (cherry-red spot, corneal 

clouding), and skeletal abnormalities (dysotosis multiplex). Besides supportive treatments, 

enzyme replacement therapy, hematopoietic stem cell transplantation (HSCT), chemical 

chaperon therapy and substrate reduction therapy have become increasingly available for 

treating specific LSDs [6–8]. Early diagnosis of these conditions, preferably pre-

symptomatic detection, is critical to ensure early treatment and to avoid or reverse adverse 

clinical outcomes.

Lysosomal enzyme testing has been the gold standard for providing definitive diagnoses, 

which can be further confirmed by identifying disease-causing mutations. Many enzymes 

can be assayed in blood (leukocytes or serum/plasma) using commercially available 

synthetic 4-methylumbelliferone (4-MU) substrates. Other methods use spectrometric or 

radioactive substrates [1, 2, 4]. The selection of a specific enzyme or a panel of enzymes for 

testing is based on the clinical presentations, MRI findings, ultra-structural findings from 
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biopsied material and available biomarker results (GAGs, oligosaccharides pattern, sialic 

acid, etc.) [1, 4].

This differential diagnostic process requires a significant amount of expertise and experience 

in these diseases. Sometimes patients go through years of diagnostic odyssey before the 

correct diagnosis is made.

The concept of using dried blood spot (DBS) extracts for lysosomal enzyme testing, as 

pioneered by Nester Chamoles and colleagues in the early 2000s, opened up the potential for 

NBS of LSDs [9]. Although these modified fluorometric methods for DBS specimens are 

simple and inexpensive to set up, the multiplex capacity is limited as the enzyme reactions 

all produce the same end product 4-MU for measuring enzyme activity. Michael Gelb and 

colleagues have developed a series of specific substrates and internal standards for tandem 

mass spectrometry enzyme assays with (LC-MS/MS) or without (MS/MS) liquid 

chromatography. The enzyme function assays can be performed separately for one disease 

and can also be efficiently multiplexed for the detection of multiple LSDs [10–16]. Other 

technology developments include the microfluidic fluorometry platform for multiple 

enzymes by Advance Liquid Logic, Inc [17–19] and immune assays of LSD proteins by 

John Hopwood and colleagues [20, 21]. The technical aspects of lysosomal enzyme assays 

for clinical diagnostic and NBS are reviewed in this paper. The current status of NBS and 

ongoing pilot studies of selective LSDs are also summarized.

Lysosomal enzyme testing for clinical diagnosis

Lysosomal enzyme tests are available to diagnose essentially all LSDs identified to date. The 

one disorder not diagnosed by enzyme assay is Niemann-Pick disease type C, for which 

testing is based on Filipin staining for abnormal cholesterol morphology under light 

microscopy, and demonstration of abnormal cholesterol esterification in cultured fibroblasts. 

Most lysosomal enzyme assays are performed in mixed leukocytes extracted from whole 

blood. Cultured fibroblasts are necessary for the diagnosis of Nimann-Pick C and I-cell 

disease. In I-cell disease, multiple enzymes deficiencies are demonstrated in cultured 

fibroblasts in contrast to the elevated enzymes in serum or plasma[4]. Lysosomal enzyme 

activity can also be measured in serum or plasma when the enzymes are abundant.

Historically radiolabeled natural substrates have been used for many lysosomal enzyme 

assays. Such radioactive methods are still preferred in testing β-galactocerebrosidase 

(Krabbe disease), acid sphingomyelinase (Nimann-Pick disease types A and B) and 

lysosomal acid lipase (Wolman disease and cholesteryl ester storage disease), due to the high 

specificity of these substrates.

The 4-MU derived artificial substrates have been widely used for measuring the vast 

majority of lysosomal enzymes. Under optimal conditions (pH, detergent, inhibitors, co-

factors, etc.), a portion of the total substrates is hydrolyzed by the corresponding enzyme to 

release 4-MU, which is highly fluorogenic at pH 10–11. The fluorescence intensity 

measured by the fluorometer is proportional to the enzyme function and is calculated for 

enzyme activity [4, 22]. The 4-MU enzyme assays are simple and highly sensitive; therefore 
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they demonstrate great clinical utility in the screening and diagnosis of LSDs. Many 4-MU 

based substrates have been developed to replace radioactive enzyme assays, such as MPS-II, 

MPS-III, MPS-IVA, Krabbe and Niemann-Pick A and B, etc [22–27].

The synthetic substrate p-nitrocatecol sulfate (NCS) can be used clinically for testing 

arylsulfatase A (ARSA) for metachromatic leukodystrophy (MLD) and arylsulfatase B 

(ARSB) for MPS-VI or Maroteaux-Lamy syndrome. Sulfatase activity is calculated by the 

amount of sulfate released per hour per mg of protein, which is correlated with the 

absorbance of free p-nitrocatecol at 515 nm. Metal ions are required to chelate free sulfate 

and phosphate, which would inhibit the sulfatase activities. Because NCS substrate can be 

hydrolyzed by both ARSA and ARSB, extra steps are needed to differentiate the two 

enzymes. When ARSA is measured, ARSB needs to be inactivated with 0.25 mM sodium 

pyrophosphate. ARSB activity is determined in a differential condition based on the 

different kinetics of the two enzymes and inhibition of ARSA with barium ion [28]. 

Generally more protein is required in the spectrophotometric enzyme method and the 

residual enzyme activity in MPS VI patients might not be measured accurately. In contrast, 

radioactive oligosaccharide substrate derived from chondrointin 4-sulfate containing N-

acetylgalactosamine-4-sulfate is more specific and highly sensitive for ARSB assay. Ion 

exchange chromatography for the separation of radioactive product is required, and handling 

of radioactive hazard can be a limiting factor [29]. Recently, a synthetic substrate consisting 

of an N-acetylgalactosamine-4-sulfate residue glycosidically linked to a derivative of 

umbelliferone has been developed for tandem mass spectrometric measurement of specific 

ARSB activity in DBS [12, 13]. Not only has this approach improved substrate specificity in 

comparison to the fluorometric method, the high sensitivity and the potential of multiplexing 

the enzyme assays into high throughput are also obvious advantages.

Several considerations need to be taken into account when interpreting in vitro enzyme 

results. It should always be kept in mind that enzyme activities measured by artificial 

substrates might not necessarily represent their activities in vivo; both false positive and 

false negative results may occur. More than 30% of non-Jewish patients identified as a 

carrier for Tay-Sachs disease by heat inactivation hexosaminidase assay were actually 

carriers of two pseudodeficiency alleles p.Arg247Trp and p.Arg249Trp, which were not 

associated with neurological disease but were associated with reduced hexasominidase A 

activity in vitro when synthetic substrate was used [30]. Similarly, the high prevalence of a 

pseudodeficiency allele p.G576S (14.5% allele frequency in the Chinese) was correlated 

with partial deficiency in acid α-glucosidase (GAA) when measured by synthetic 4-MU-

glucoside substrate from the Pompe newborn screening program in Taiwan [31]. In the case 

of pseudodeficiency, molecular testing is important for accurate diagnosis, and genetic 

counseling is highly recommended. False positive results due to the presence of 

pseudodeficiency alleles can also be clarified by testing with a different substrate or by the 

demonstration of elevated metabolites. For example, patient tested positive for MLD by 

enzyme assay must be confirmed with ARSA gene mutation and/or elevated urinary 

sulfatide excretion [4]. In vitro enzyme assays usually do not take into account other 

essential components inside the lysosome, such as cofactors, chaperones and activators that 

are needed for enzyme processing, stability or structure. A negative enzyme result does not 

necessarily exclude a diagnosis. In patients with high clinical suspicion, when an enzyme 
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was tested negative, diseases due to co-factors, activators, or other enzymes should be 

considered. Examples of this are GM2 activator deficiency, Saposin B deficiency or multiple 

sulfatase deficiency for MLD-like features [4]. In suspicion of multiple sulfatase deficiency, 

several sulfatases should be tested before molecular analysis of the SUMF1 gene.

Newborn screening technologies for LSDs

NBS for LSDs fell several decades behind other metabolic disorders due to the lack of 

screening methods. With more treatment options available for LSDs, and recent analytical 

developments for enzyme testing in DBS specimens, LSDs has become an active area in the 

NBS field. New York State was the first and so far is still the only state performing 

population screening for the lysosomal disorder Krabbe disease since 2006. In several other 

states, including Illinois, Missouri, New Mexico and New Jersey, legislations mandating 

NBS for selective LSDs have been passed. Many technical developments, validations and 

pilot population studies are currently ongoing in several states such as Illinois, Missouri, 

Washington, New York and Minnesota [32]. Most recently, Pompe disease was approved to 

be added to the Recommended Universal Screening Panel (RUSP) for all newborns by the 

Discretionary Advisory Committee on Heritable Disorders in Newborns and Children 

(DACHDNC) in May, 2013 [33]. Voluntarily and regional pilot studies and screening of 

LSDs are also ongoing in more than ten countries [32]. Several major technology platforms 

are reviewed here.

Fluorometric methods

The feasibility of detecting lysosomal enzyme deficiencies in DBS was first demonstrated 

by Chamoles and colleagues using modified 4-MU enzyme methods [9]. MPS-I, Hurler-like 

LSDs, Gaucher, Niemann-Pick disease A and B, Tay-Sachs and Sandhoff diseases were 

tested. The LSD enzymes on the DBS cards stored in the fridge or freezer were found to be 

stable for 21 days [34–36]. Even at room temperature, α-L-iduronidase activity was stable 

for up to 20 days [9]. Retrospective studies of the DBS retrieved from affected patients 

stored at room temperature for months to years correctly identified patients with Gaucher, 

Niemann-Pick A and B, GM1 and GM2 [35–37]. By adding maltose [38], and later on more 

efficiently with acarbose [10], other glucosidases were inhibited and lysosomal acid α-

glucosidase activity could be accurately measured in DBS with 4-MU-α-D-glucopyranoside 

substrate for screening of Pompe disease or glycogen storage disease type II (GSD II). These 

DBS fluorometric assays are inexpensive and can be easily automated for NBS laboratories; 

however, the ability for multiplexing is limited.

The fluorometric method has been used in population screening in Taiwan for Pompe and 

Fabry diseases over the last several years. Due to the presence of a prevalent 

pseudodeficiency allele p.G576S (14.5% allele frequency in the Chinese), the false positive 

rate (FPR) was initially high for Pompe disease with a recall rate of 0.82%. In a 

retrospective study of the data from 473,738 newborn screens during a 4 year period, the 

ratio of neutral α-glucosidase (NAG)/acid α-glucosidase (GAA) was proven to be more 

efficient than GAA activity alone. A cutoff of NAG/GAA ratio >60 resulted in a satisfactory 

positive predictive value (PPV) of 63.4% [39]. Five out of six infants diagnosed from NBS, 
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even though clinically asymptomatic, had the infantile form of Pompe disease as evidenced 

by cardiac dysfunction and increased muscle glycogen storage. ERT was initiated within 30 

days of life and resulted in normal cardiac function, normal growth, and significantly 

improved clinical outcomes compared to the cohort of clinically diagnosed patients treated 

with ERT [39, 40]. α-galactosidase A (GLA) and a reference enzyme β-galactosidase were 

measured fluorometrically with 4-MU substrates. GLA activity and the ratio of β-

galactosidase/GLA were both used in screening for Fabry disease. Of the 92,288 male 

newborns, 638 or 0.7% screened positive with GLA <30% of normal mean and/or enzyme 

ratios >10. 73 were confirmed by mutation analysis to have Fabry disease, 86% of which 

carried a single late onset mutation c.936+919G>A (IVS4+919G>A) reported in cardiac 

variants. The incidence of Fabry disease in Taiwan was predicted to be about 1:1250 males 

[41]. A high incidence for Fabry disease was also reported by Spada et al to be 1:3100 males 

after screening 37,104 males in the Piemont region of northern Italy. Similarly to Taiwan’s 

data, the majority of Fabry patients identified from NBS in Italy had mutations consistent 

with late onset disease [42]. Both studies suggest that Fabry disease is clinically 

underdiagnosed, particularly the late onset variant form.

Digital Microfluidics technology was applied for DBS lysososmal enzyme testing by 

Advanced Liquid Logic, Inc. (Morrisville, North Carolina). This is a small tabletop 

instrument using the same testing principle as 4-MU enzyme assays. The 1.6 µl extracts 

from DBS specimen and QC are loaded on a disposable microfluidic cartridge configured 

with an electronic circuit board for automated droplet handling and a built-in fluorometer. 

The calibration, incubation and fluorescence measurement are programmed in the software 

and performed on the cartridge. In the original prototype cartridge design, 12 samples could 

be tested on one cartridge for Pompe and Fabry diseases [17]. The feasibility was validated 

in a pilot study in 8012 screens in Illinois for Pompe, Fabry and Gaucher diseases; seven 

cases of Fabry and two cases of Gaucher disease were confirmed [43]. The most recent 

cartridge design has been scaled up for testing 44 DBS samples per cartridge for five LSDs 

Pompe, Fabry, Hunter, Gaucher and Hurler in less than 3 hours [19].

MS/MS and LC-MS/MS methods

Gelb and colleagues in the University of Washington pioneered tandem mass spectrometry 

assay development for LSD newborn screening. Novel substrates, internal standards and 

assays have been developed over the years for testing enzyme activity of Krabbe, Pompe, 

Niemann-Pick A and B, Gaucher, Fabry, MPS-I, MPS-II, MPS-III, MPS-IVA and MPS-VI 

[10, 13, 14, 16, 44–46]. In 2004, the development of multiplexed enzyme activity assays for 

Gaucher, Pompe, Krabbe, Fabry and Niemann-Pick A/B diseases in DBS specimens laid the 

foundation for many pilot NBS studies later on [10]. In the initial method, the extracts from 

a 5-mm DBS punch are used in 5 concurrent individual enzyme reactions, then combined 

and purified by liquid-liquid extraction (LLE) followed by solid phase extraction (SPE) to 

remove the salts, detergents and excess substrates prior to flow injection mass spectrometry 

analysis (MS/MS) [10]. The substrates chosen or synthesized for these assays are 

structurally closer to the natural substrates (Table 1) than artificial 4-MU substrates. In 

addition the enzyme products are specific to each enzyme reaction and quantified against 

internal standards with known concentrations for the measurements of enzyme activities. 
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The method was further optimized and refined into a standardized protocol by Genzyme 

Corporation (Cambridge, Massachusetts) in 2008 [47]. Manufactured with good 

manufacture practice (GMP) standards and registered with the Food and Drug 

Administration (FDA) by Genzyme Corporation, these Analyte Specific Regents (ASR) 

(substrates, internal standards and products) were produced in large quantity and distributed 

to the testing laboratory with no charge through the Newborn Screening Translation 

Research Initiative (NSTRI) at the Centers for Disease Control and Prevention (CDC). 

Quality control materials, standardized operational protocols for reagents and sample 

preparation, and mass spectrometric conditions, as well as technical training and supports 

were also provided by NSTRI at CDC [32].

Even with these training and standardization efforts, there have been general concerns for 

the implementation of those methods in the NBS laboratories, due to the complexity of the 

procedures. Several technical modifications were carried out focusing on simplifying the 

sample preparation processes. A specially configured online trapping and clean-up coupled 

with high performance liquid chromatography tandem mass spectrometry (LC-MS/MS) was 

reported by Marca et al [48]. After incubation, 5 reaction mixtures from separate reactions 

are stopped and combined together. After the centrifugation the supernatant is injected 

directly onto the mass spectrometer without manual purification. The sample mixture is first 

trapped on a preparation column and then switched to the C18 separation column, followed 

by mass spectrometry analysis in a total of 4 minutes run time. A similar approach was 

reported using a multi-dimensional ultra-performance liquid chromatography tandem mass 

spectrometry (UPLC-MS/MS) with turbulent flow chromatography (TFC) for online sample 

clean-up by Kasper et al [49]. The throughput of the analysis was improved approximately 

four times with this multiplexed LC system for alternate sample introduction and separation 

with cycling-in MS/MS function. In a collaborative study between Washington State NBS 

laboratory and Gelb’s group at the University of Washington in 2010, Pompe, Fabry and 

MPS-I enzymes were analyzed with a single incubation from DBS followed by one step 

LLE and LC-MS/MS analysis. The substrates, internal standards, detergents, and inhibitors 

were multiplexed into one assay cocktail in ammonium formate buffer at pH 4.4. With 

chromatographic separation of substrates, internal standards and products, specific enzyme 

products were reliably measured for enzyme activity [50]. Since then, more multiplex 

approaches were developed and piloted in NBS studies. Orsini et al reported a 4+1 multiplex 

MS/MS assay trying to add more disorders to the existing NYS Krabbe screening. Samples 

from quadriplex reactions of Krabbe, Gaucher, Pompe and Fabry, and single reaction of 

Niemann-Pick A and B were combined and purified by automated LLE and SPE prior to 

flow injection MS/MS analysis [51]. The most comprehensive multiplex approach was 

reported by Gelb and colleagues with up to 9 lysosomal enzymes, using a similar approach 

from their 3-plex studies. In addition to Gaucher, Pompe, Krabbe, Fabry and Niemann-Pick 

A/B enzymes, MPS-I, MPS-II, MPS-IVA and MPS-VI enzymes were added. The assay was 

proven to be robust as 9-plex, or 6+3 plex separating into two groups with three sulfatases 

MPS-II, MPS-IVA and MPS-VI as a separate group [52].

Several large-scale newborn screening and pilot studies using MS/MS or LC-MS/MS 

methods are worth mentioning. New York State started screening Krabbe disease in 2006 by 

tandem mass spectrometry. An algorithm was used in which samples with enzyme activity 
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below the daily mean activity cut-off were further analyzed by second tier DNA analysis of a 

30 kb deletion associated with infantile Krabbe disease. Patients with initial positives in 

DBS were followed up by the metabolic centers for confirmation studies of enzyme activity 

in leukocytes and molecular studies. Affected patients were clinically evaluated and 

followed up closely for neurological function [53]. Reportedly, of 550,000 newborns 

screened up to June 2008, four infants were confirmed as having high risk for the disease, 6 

infants as having moderate risk and 15 infants as having low risk for the disease. Two of the 

four infants with high risk were found to be homozygous for the 30 kb deletion and went 

through bone marrow transplants before one month of age, one of whom died following the 

transplant [54]. In Washington State, over 100,000 newborns were screened for Fabry, 

Pompe and MPS-I using the triplex LC-MS/MS method in a pilot study. The prevalence of 

Fabry was 1:7,800 males, and the prevalence of Pompe and MPS-I were 1:27,800 and 

1:35,500 newborns, respectively. These prevalence data were 2 to 4 times greater than the 

frequency estimated by clinical diagnosis [55]. In 2013, NYS initiated the pilot NBS 

program for Gaucher, Pompe, Niemann-Pick A and B and MPS-I in addition to Krabbe 

disease, so more population data will be revealed soon (personal communication).

Multiplexed immune quantification method

Immune-quantitation of lysosomal enzymes and proteins for screening 11 LSDs was 

developed by Hopwood and colleagues. The enzyme and protein contents are measured 

instead of functional enzyme activity, on the basis that in many LSDs the pathogenic 

mutations result in reduced amounts of protein in addition to low enzyme activity [20]. 14 

lysosomal enzymes and proteins extracted from one blood spot are captured by antibodies 

using microbead suspension array and then quantified by fluorescence detection. The pilot 

study successfully identified Fabry, Pompe, MPS-I, MPS-IIIA, MPS-IIIB, MPS-VI and 

MLD patient specimens [20, 21]. However, one false negative case was reported for MPS-II. 

This technology has not been utilized in other NBS laboratories except for a pilot study to 

compare different screening methodologies [56]. In addition to the cost and availability of 

the antibodies, there are general concerns that patients carrying mutations that result in 

enzyme deficiency without a reduction of protein content might be missed.

Quality management of lysosomal enzyme testing

The catalytic function of lysosomal enzymes is determined by the rate of production of the 

end products in a specific assay system. Any component of the reaction system (e.g., 

substrate nature and concentration, buffer and pH, temperature, presence of activators or 

inhibitors, etc.) may impact measured enzyme activity [57]. In addition, inter-laboratory 

variance of numerical enzyme activity could be large. To ensure the quality of LSD enzyme 

testing performance, each testing laboratory should establish its own Quality Management 

(QM) system in compliance with the regulations set forth in Clinical Laboratory 

Improvement Amendments (CLIA-88). The framework of the QM plan could be based on 

guidelines from the Clinical and Laboratory Standards Institute (CLSI) and the College of 

American Pathologists (CAP). Duplicate testing is generally desirable for enzyme assays. 

For each run, appropriate blanks, a series of calibration, and at least one affected control and 

one normal control sample must be included for quality control purposes. If controls from 
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affected patients are not available, inactivated samples by heating or other method could be 

an alternative. However, biologically affected controls must be tested during the test 

validation and periodically tested to assure the quality of testing. For DBS LSD enzyme 

assays, artificial low enzyme controls for multiple LSD enzymes were created by mixing the 

leukocytes depleted blood with heat-inactivated, charco-stripped serum at the physiological 

hematocrit level of 55%, and then spotted on filter papers. Unprocessed cord blood was used 

to generate DBS specimens as normal enzyme controls. Mixing of the normal and low 

enzyme blood at different ratios served as medium activity controls [58]. These enzyme 

activity control specimens were generated, and validated by the NSTRI at CDC before 

distributing to the testing laboratories. The normal range, disease range, and, if appropriate, 

a carrier range should be established by the laboratory based on its own analysis. Laboratory 

reports include an interpretation of the result that reflects the presence or absence of the 

disease, possible limitations of the test, and recommendations for additional testing if 

applicable.

For ongoing evaluation of test performance, the testing laboratory should participate in both 

internal and external quality assessments. The internal audit program monitors operations 

throughout the testing process and the quality system. External assessments include 

regulatory inspections and proficiency testing programs. Several external proficiency test 

programs are available for lysosomal enzyme assays. The European Research Network for 

Evaluation and Improvement of Screening, Diagnosis, and Treatment of Inherited Disorders 

of Metabolism (ERNDIM) serves as an external proficiency testing program for clinical 

diagnostic laboratories, providing lyophilized fibroblasts for eight LSD enzymes (http://

cms.erndimqa.nl/Home/Lysosomal-Enzymes.aspx). Both numerical enzyme activity values 

and percentage of the normal mean were collected and curated. The National Tay-Sachs & 

Allied Diseases Association (NTSAD) offers an international Tay-Sachs carrier testing 

quality control program to evaluate laboratory performance of Tay-Sachs biochemical carrier 

screening in serum and leukocytes (http://www.ntsad.org/index.php/ensuring-quality-

results). For laboratories testing lysosomal enzymes on DBS, the Newborn Screening 

Quality Assurance Program (NSQAP) at CDC provides QC materials, proficiency testing 

(PT) services, and technical support in collaboration with the NSTRI at CDC. A pilot 

proficiency testing program for Pompe and Krabbe diseases is available through NSQAP.

Discussion and conclusions

Although the NBS of LSDs was initially driven by available treatments and available 

screening methods and reagents, a great deal of useful information has been gained from the 

existing pilot studies. As indicated in the screening from several populations in Taiwan 

(1:1,250) [59], Italy (1:3,100) [42]and Washington State in the United States (1:7,800) [55], 

Fabry disease was proven to be much more common than the previously estimated 1:40,000 

from clinical diagnosis [5]. Fabry patients carrying late onset variant mutations were picked 

up by reduced enzyme activity in DBS in the newborn period. Some of these mutations are 

highly frequent in specific ethnic groups. For instance, the cardiac variant IVS+919G>A was 

common in Taiwanese (probably true for Chinese or Asian populations as well) [59]; and p. 

A143T was frequently present in positive patients in Italy [42]and Austria [60], suggesting a 

founder effect for this milder mutation in the Northern Italy/Austria region of Europe. 
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Demonstration of normalization of cardiac function and normal growth in the infantile 

Pompe patients from Taiwan identified from NBS with early initiation of ERT provided the 

most compelling evidence for the first time that NBS of certain LSDs is warranted for early 

intervention to ensure good clinical outcome [61, 62]. As more pilot studies and research are 

being conducted on other LSDs, more will be learned about the efficacy of screening 

methodologies (sensitivity, PPV and FPR), efficacy and risk of treatment, and best time for 

initiation of treatment. Besides Pompe disease which was recently approved to be added to 

the RUSP for NBS, several LSDs have also been proposed and reviewed by the DACHDNC, 

but have not yet been endorsed. This situation might change when more evidence become 

available. In coping with current screening activities and future NBS, a professional work 

group representing the American College of Medical Genetics (ACMG) was formed to 

address the diagnostic confirmation of lysosomal storage diseases, and a preliminary 

guideline on diagnostic confirmation algorithm and management strategies of 

presymptomatic LSD patients was published [8].
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