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Abstract

Probabilistic topic models provide an unsupervised method for analyzing unstructured text, which 

have the potential to be integrated into clinical automatic summarization systems. Clinical 

documents are accompanied by metadata in a patient’s medical history and frequently contains 

multiword concepts that can be valuable for accurately interpreting the included text. While 

existing methods have attempted to address these problems individually, we present a unified 

model for free-text clinical documents that integrates contextual patient- and document-level data, 

and discovers multi-word concepts. In the proposed model, phrases are represented by chained n-

grams and a Dirichlet hyper-parameter is weighted by both document-level and patient-level 

context. This method and three other Latent Dirichlet allocation models were fit to a large 

collection of clinical reports. Examples of resulting topics demonstrate the results of the new 

model and the quality of the representations are evaluated using empirical log likelihood. The 

proposed model was able to create informative prior probabilities based on patient and document 

information, and captured phrases that represented various clinical concepts. The representation 

using the proposed model had a significantly higher empirical log likelihood than the compared 

methods. Integrating document metadata and capturing phrases in clinical text greatly improves 

the topic representation of clinical documents. The resulting clinically informative topics may 

effectively serve as the basis for an automatic summarization system for clinical reports.
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1. Introduction

Much of the information contained in a patient’s medical report is stored as free text in 

physician’s clinical reports. Clinical narrative contained in these reports can be challenging 

to make sense of computationally due to the variability in author reporting styles, differences 

in clinical practice, and the inherent complexity of language. Nonetheless, these documents 

can provide valuable information for clinical applications such as case-based reasoning [1] 

and automatic summarization.[2] Topic models provide a means for indexing large, 

unstructured corpora with inferred semantics,[3] but incorporating these methods in clinical 

text has begun only recently. While these techniques have yielded promising results, they 

have generally been limited to basic methods that have not incorporated more recent 

advances in the topic modelling field. Development of new topic modeling methods that 

incorporate diverse clinical information and structure have the potential to unlock the 

information contained in clinical reports for use in developing clinical tools.

Probabilistic topic models for language have been widely explored in the literature as 

unsupervised, generative methods for quantitatively characterizing unstructured free-text 

with semantic topics. There are many possible configurations for topic models, but in 

general they define a semantic topic as a multinomial distribution over the dictionary of 

tokens (e.g., words, n-grams, concepts, etc.) that make up a collection. These multinomial 

distributions are learned through the contextual co-occurrence of tokens in documents. 

Documents are modeled as multinomial mixtures of topics, which allows for efficient search 

by topics of interest, as well as document-document comparison. These models have been 

largely discussed for general corpora (e.g., newspaper articles), and have been developed for 

many uses, including word-sense disambiguation,[4] topic correlation,[5] learning 

information hierarchies,[6] and tracking themes over time.[7,8] In the clinical domain, work 

has investigated the use of topic models in cased-based retrieval,[1] characterizing clinical 

concepts over time,[9] and the impact of copy and pasted text on topic learning.[10] Topics 

have also been used as features in classifiers in order to predict patient satisfaction,[11] 

depression,[12] infection,[13] and mortality.[14]

The goal of this project is to develop a topic model designed specifically for capturing 

information from the electronic health record (EHR). In particular, whereas previous work 

has captured document-level information, the proposed model will additionally incorporate 
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patient-level metadata. Both document and patient-level data will influence how topics are 

distributed in a document. To capture focused clinical language, the model is capable of 

learning multiword concepts (e.g., “abnormal enhancement”). The topics generated by the 

proposed model are compared with those created using existing topic models. Finally, we 

show that disease classification is possible using the distribution of topics in a patient’s 

record, illustrating that topics capture distinguishing clinical information, which can be 

important for clinical applications such as clinical document summarization.

1.1. Background

Latent semantic indexing (LSI) provides a seminal method for exploring latent semantics in 

free-text.[15] It involves creating a weighted term-document matrix and applying singular 

value decomposition (SVD) to generate a lower-rank factorization, used for comparing terms 

or documents. LSI is able to address common problems such as synonymy and polysemy by 

exploiting the contextual co-occurrence patterns of words in the matrix. Probabilistic LSI 

(PLSI) extends the traditional LSI model by using a set of latent classes to models the joint 

distribution of documents and words.[16] PLSI represents each document as a mixture 

model of latent multinomial distributions over words (“topics”). Generating a word requires 

the selection of a topic based on its proportion in the document and then drawing a word 

from that latent class’s word distribution. Model parameters may be optimized using the 

Expectation Maximization (EM) algorithm.[17]

The latent Dirichlet allocation (LDA) topic model is a generative model that can be applied 

to a corpus of documents composed of categorical data.[3] In LDA, each document is 

represented as a random mixture of latent topics, which are multinomial distributions over 

the unique words in a corpus. The generative process for a document involves selecting a 

topic distribution from the corpus-level Dirichlet distribution. Then, for each word in the 

document, a topic is chosen and a word is drawn from the corresponding multinomial 

distribution. Documents’ topic distributions may be used for search, prediction, and 

comparison. Work has illustrated the potential of extending LDA for specialized text 

collections, with examples including modeling time,[7,8,18] finding correlations between 

topics,[5] learning annotations,[19–21] performing automatic translation,[22,23] and 

learning topic hierarchies.[6,24,25] LDA is often fit to data using Gibbs sampling, a Markov 

Chain Monte Carlo (MCMC) method. The number of topics in the LDA model must be 

specified prior to model fitting, with more semantically granular topics discovered as the 

number of topics increases.

Two extension to the LDA framework are relevant to this work: Topical N-grams (TNG) and 

Dirichlet multinomial regression (DMR). TNG removes the bag-of-words assumption and 

describes a model for learning both topics and topical phrases.[26] It is shown to be a more 

powerful generalization of previous n-gram-based models such as the Bigram Topic Model 

and the LDA Collocation Model.[27,28] Rather than treating each word independently, the 

model includes Bernoulli distributed variables indicating if sequential words constitute a 

bigram. A word selected from a given topic has a prior probability of becoming a bigram 

based on how often it is used as part of a phrase when discussing that topic. Subsequent 
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words are then chosen based on the common completions of that phrase. Phrases can then be 

built by chaining bigrams together.

DMR offers a technique that can capture relationships between topics and features specific 

to each document.[29] Identification of these relationships is accomplished by weighting 

each document’s Dirichlet hyper-parameter, α, based on document-specific metadata. The 

document’s topic distribution is then drawn from a distribution that is tailored based on prior 

document-specific knowledge, rather than from a single corpus-level distribution. This 

method better models the topics in a given document by incorporating the known context of 

that document, and is therefore particularly apt in the medical domain as clinical documents 

are generally accompanied by encounter (e.g., physician name) and patient (e.g., 

demographics) information.

While the TNG and DMR models have separately been shown to improve on the traditional 

LDA model, the use of document metadata and phrase information in a topic model have not 

been implemented together. Here, we present a model that combines the benefits of these 

two methods, called the metadata and phrase driven topic model (MPT). We hypothesize 

that the gains achieved by each of these methods are from incorporating separate sources of 

information into the model and that combining the methods will result in a superior model 

than either of the methods implemented alone. We further believe that medical reports are 

particularly appropriate for both of these methods due to the associated metadata and the use 

of common phrases in clinical jargon, and thus implementation of the combined model will 

provide useful topics for the clinical domain.

2. Materials and Methods

2.1. Data Collection

Medical reports for patients with glioblastoma multiforme (GBM), lung cancer, or acute 

ischemic stroke were collected from an institutional review board (IRB)-approved disease-

coded research database. The data set contained 936 patients, with a total of 84,201 medical 

reports. As we were primarily interested in uncontrolled free-text that summarizes a 

patient’s episode of care, the collection was then filtered by report type. Progress Notes, 

Consultation Notes, History and Physicals (H&Ps), Discharge Summaries, and Operative 

Reports/Procedures/Post-op Notes were selected, resulting in 20,120 reports that were used 

to fit topic models. Preprocessing of these reports removed all punctuation, stop words, 

words that occurred in fewer than five documents, and words that occur in every document. 

Protected health information (including names, dates, locations, and identifying numbers) 

and numbers were also removed, resulting in a final dataset consisting of 5,820,160 total 

tokens (17,993 unique).

The research database also contained metadata for each document regarding details about 

the associated visit, including the date, signing physician, and report type. Similarly, 

demographic information was associated with each document including the patient’s age, 

gender, race, and ethnicity. All of this information was made available to the model to use as 

a prior for generating topics specific to the current document.
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2.2. Model

Building upon our previous work and the aforementioned TNG and DMR models, Figure 1 

shows the proposed model (corresponding notation can be found in supplementary table 1).

[1,9] As clinical text frequently contains multiword concepts, following previous work, the 

model is capable of discovering n-gram phrases.[26] To account for patient and document 

context, the document-topic Dirichlet hyper-parameter is weighted by both document-level 

and patient-level context.[29] The latter weighting is unique to the clinical domain and may 

be observed in Figure 1 by plate P (plates are boxes in the graphical model diagram and 

represent replication of a function across a given set), indicated by the outermost box, which 

contains observable information (v) associated with each patient. Importantly, as denoted by 

the topic plate T, which falls outside of the patient plate, topics are learned from the entire 

collection of patient documents.

Given a set of model hyperparameters, 〈μ, σ2; β, γ, δ〉, the generative process for creating a 

set of topics, T, for a population of patients, P, each with a set of documents, Dp, is defined 

as follows:

1. For each topic t ∈ T,

1.1 Draw a distribution over words φt ~ D(β)

1.2 For each metadata feature f ∈ F,

1.2.1 Draw the feature prior distribution 

parameter λtf ~ N(μ, σ2)

1.3 For each word w in the vocabulary W

1.3.1 Draw the status distribution parameter 

ψtw ~ Beta(γ)

1.3.2 Draw the bigram distribution 

parameter ωtw ~ D(δ)

2. For each patient p ∈ P and document d ∈ Dp,

2.1 For each topic t ∈ T

2.1.1 Let the hyperparameter for topics be 

2.2 Draw the distribution of topics θ(pd) ~ D(α(pd))

2.3 For each token i,

2.3.1 Draw topic 

2.3.2 Draw the bigram status 

2.3.3 If 
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2.3.1.1 Draw a word 

from the bigram 

distribution 

2.3.4 If 

2.3.4.1 Draw a word 

from the word-

topic distribution 

While it is possible to derive a model that includes explicit parameters for patient-specific 

topic-time relationships, in the domain of clinical reporting estimating such parameters is 

impeded by limited observations over time [9]. Generally, topic models are fit to data using 

variational or Markov chain Monte Carlo (MCMC) methods,[30–32] in particular Gibbs 

sampling.[33,34] In this work we used a stochastic expectation-maximization (EM) scheme 

combining Gibbs sampling [35–37] and L-BFGS optimization.[8,38–40] A fixed parameter 

in the proposed model is the number of topics, which is set to 100 based on prior studies 

involving topic models in clinical literature.[41]

Information specific to the document and the patient was used to generate each document’s 

Dirichlet hyperparameter. The meta-information set used consists of: report type, signing 

physician name, age, ethnicity, race, and gender. Because of inconsistency in physician 

name format (e.g., including first name versus including only the first initial or no first 

name), only last names were used. Possible values for report type and signing physician 

name were limited to those that occurred in at least 100 documents. After the cutoff, five 

report types and 23 signing physician names were used in the analysis. Age was discretized 

by decade and, while the DMR model allows for the use of integer valued variables, each 

decade was treated as a separate binary variable in order to represent nonlinear trends in 

topic association.

2.3. Empirical Log Likelihood

To evaluate the generalization capability of the model we use the empirical likelihood (EL) 

method advocated for topic model evaluation by Li and McCallum.[42] Evaluating the 

probability of held-out documents in topic models is difficult because there are an 

exponential number of possible topic assignments for the words. EL solves this problem by 

sampling topic distributions from the trained model. EL measures a combination of how 

good the topic-word distributions are and how well the model can guess which combinations 

of topics will appear in a given document.

For the traditional LDA model, |S| unconditional word distributions are sampled for a given 

held-out document d by sampling a topic distribution θpds from a Dirichlet distribution with 

parameter α defined by the training set. The probability of each of the observed word tokens 

wi is then calculated from the marginal probability over each topic t.
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where p(wi|t) is calculated from the topic-word counts.

For the DMR topic model, word distributions are sampled by first calculating the αpd 

parameters of the Dirichlet prior over topics specific to a patient and document given the 

observed metadata features (a(p), b(pd))T in the previously described manner. A topic 

distribution θpds is then sampled from that Dirichlet distribution. Finally, we calculate the 

probability of each of the observed word tokens, wi, by calculating the marginal probability 

over each topic t of that type using the current point estimates of p(wi|t) given the topic-word 

counts.

When using topical n-grams, the probability of a word occurring is the sum of its probability 

of being drawn from its topic distribution and being selected as the completion of a bigram.

where xt,wi−1 is the total probability that the previous word is the beginning of a bigram.

The data set was split into a training set (60%, 12,072 total documents) and a testing set 

(40%, 8,048 documents). The training set was used to train the model hyperparameters and 

EL values were computed for each document in the testing set. The EL values obtained for 

each document were then compared across the four models using a two-way ANOVA test 

with three degrees of freedom and paired t-tests were used to determine whether the 

proposed model consistently yielded higher values than the other three models.

2.4. Disease and Document Author Classification

To investigate the information captured by topics, we set out to classify patients by their 

disease based on the topic distributions in their documents and to determine the author of 

individual documents based on their topic distributions. In all models, topics were trained on 

60% of the total documents. The remaining 40% were then used as a testing set for 

evaluation. Only those documents from the 10 most frequent physicians in the data set were 

used for author classification. For each word in the testing documents, 100 topic 
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assignments were independently sampled using the generative process defined by the model. 

The number of times each topic occurs over all the samples was then summed for each 

document to get a vector of topic counts, n1…n|T|, which was used as a feature vector for 

each document.

For classification in the MPT and DMR models, we followed the method outlined by Mimno 

and McCallum.[29] For each potential author i, a prior over topics, αi, was created for each 

document d given only that author name as a metadata feature. The likelihood for the author 

is the Dirichlet-multinomial probability of the nt counts using that prior.

They author with the highest likelihood is then chosen. Similarly, documents are classified 

among the three disease types were assigned priors over topics based on the disease 

metadata feature and the highest resulting likelihood was chosen.

In the TNG and LDA models, this method is not appropriate because document metadata is 

not taken into account in the topic distribution. In these models, classification was performed 

using an all versus all (AVA) multiclass support vector machine (SVM) classifier using the nt 

counts normalized by the total number of labelled words as features. The AVA approach 

extends the traditional binary SVM classifier to make a decision between N classes by 

independently training N(N−1) classifiers, fij, for each pair of classes i and j. The 

classification is then found by computing

Ties were broken by randomly assigning to one of the tied classes. Classifications were 

performed using ten-fold cross validation, and overall accuracy as well as recall and 

precision values were calculated for each of the classes.

3. Results

In the proposed model, the Dirichlet parameter is tailored to the types of words that are 

likely to occur given the document and patient metadata. Table 1 shows three examples 

using different document types, signing physicians, patient ages, and patient genders. 

Changing these parameters drastically changes the Dirichlet hyperparameter. A similar 

effect is seen when using DMR, but including phrase information allows for a more targeted 

prior than using metadata alone (table 2).

Incorporating TNG into the model allows for the detection of several salient phrases. These 

phrases include anatomical phrases (e.g., “lower extremity,” “cranial nerve”), tests (e.g., 

“mri scan,” “blood pressure”), symptoms (e.g., “acute distress”), and diseases (e.g., 
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“glioblastoma multiforme,” “coronary artery disease”). TNG also allows for disambiguation 

of several words. For instance, the word “scan” appears in the top 10 words of five different 

topics in the LDA model, but none of the topics in the MPT model. Instead, it is split into 

more specific tests “mri scan” and “ct scan,” which appear in four topics and two topics, 

respectively. The word “lobe” appears in four topics in the LDA model: two involving the 

brain, and two involving the lung. In the MPT model, it is split into several different phrases: 

the “parietal lobe,” “frontal lobe,” and “temporal lobe” of the brain and the “lower lobe” of 

the lung. These phrases are treated as separate elements, with the brain phrases appearing 

together in one topic, but never co-occurring with the lung phrase.

3.1. Disease and Document Author Classification

Projecting patients onto their first two spectral components yielded clearly separable clusters 

for each disease (Figure 2). In general, the first component represented part of the body, with 

higher values representing brain and lower values representing lung. The second component 

generally represented disease type, with higher values representing cancer and lower values 

representing stroke.

The overall accuracy for disease classification was 99.8%. The recall values for all three 

disease classifications were at least 0.99 (0.999, 0.998, and 0.996 for GBM, lung cancer, and 

stroke, respectively). The precision values for all three disease classifications were at least 

0.99 as well (1.000, 0.998, and 0.995 for GBM, lung cancer, and stroke, respectively).

The overall classification accuracy for document authors was 83.2%. The recall values were 

between 0.13 (physician I) and 1.00 (physician G) (Table 3). The precision values ranged 

from 0.30 (physician I) to 1.00 (physician C). The majority of errors occurred within groups 

of physicians with similar specialties. For instance, physicians A, B, and F are all neuro-

oncologists, and physicians G, H, and I are stroke specialists. Author D was actually a 

combination of two physicians with similar names. The majority (61%) of the documents 

belonged to a lung cancer specialist and were correctly assigned. The remainder belonged to 

a stroke specialist and were incorrectly assigned to other authors with stroke specialty.

In disease classification, the TNG and LDA models achieved significantly lower accuracies 

(p<0.001) than the MPT and DMR models (table 4). There was no significant difference 

between the accuracies of the MPT and DMR methods in this classification (p=0.22). In 

author classification, the MPT method achieved significantly higher classification accuracy 

than DMR, TNG, and LDA (p<0.001, p=0.002, and p<0.001, respectively). The low 

performance of some of the methods was due in part to the data imbalance as author A 

signed substantially more documents than the other authors. To account for this imbalance, 

classification was performed again excluding documents signed by author A. In this 

analysis, MPT’s accuracy fell and the other three saw improved accuracy. However, MPT 

still achieved significantly better accuracy than the other models (p=0.002, p=0.002, and 

p<0.001, respectively).

3.2. Empirical Log Likelihood

The two-way ANOVA test showed that there were significant differences between the EL 

values produced by the four models (p<0.001). Both the TNG (-21724232.7) and DMR 

Speier et al. Page 9

J Biomed Inform. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(-22373494.3) models had higher empirical log likelihoods than the standard LDA model 

(-23019060.3; p<0.001). The MPT (-21036105.8) model had a significantly higher empirical 

log likelihood than the TNG, DMR, and LDA models (p<0.001). Of the 8,048 documents in 

the data set, MPT had a higher EL than the TNG, DMR, and LDA models for 92.9%, 92.5%, 

and 96.1% of the documents, respectively.

4. Discussion

Knowing information about the patient or the physician writing the document can provide 

insight into the type of information contained in the document, and using this information is 

valuable for creating a model. DMR assigns prior probabilities to topics based on the data 

associated with the document, thereby biasing towards topics that are in line with the 

document’s metadata. When DMR is not used, every document has the same Dirichlet 

hyperparameter and the weights for the topics are based on the overall prevalence of the 

topics throughout the entire data set. Thus, in this clinical document dataset, the high 

probability topics represent different diseases (Table 2). However, for a given document, 

these topics are unlikely to co-occur because one patient is unlikely to have each of these 

diseases. This can result in ambiguous words incorrectly being labelled as a different disease 

from much of the remaining document.

The disease classification results indicate that the proposed topic model is able to learn 

salient dimensions that distinguish different diseases. Disease classification based on topic 

distributions achieved almost perfect classification accuracy (99.8%). The high classification 

accuracy using a relatively simple classifier demonstrates the amount of clinical information 

captured by the topics. While this classification was fairly rudimentary, it can possibly be 

extended in future work for tasks such as case-based retrieval or outcome prediction. 

Additionally, the proposed model provides a method for utilizing free-text in an 

unsupervised manner to extract electronic health record phenotypes, which may prove useful 

in discovering disease subtypes, or in supporting phenome-wide association studies that 

generally rely on coded data or pre-specified concepts.

In the disease classification, many of the misclassified patients had other diseases in their 

medical histories that could explain the prevalence of topics more commonly associated with 

other classes. For example, a GBM patient that was misclassified as a lung cancer patient 

had several lung issues in their history, including a pulmonary embolism. Similarly, a lung 

cancer patient that was classified as a stroke patient was primarily being treated for an 

aneurysm and only later had lung nodules discovered. Finally, a stroke patient who was 

classified as a lung cancer patient was being treated for chronic depression and later had a 

stroke. The majority (74%) of the documents in this patient’s record predated the stroke and 

many subsequent documents were about depression and obesity. These examples represent 

one of the challenges of analyzing EHR data: patients have a large and diverse set of co-

morbidities that can make them difficult to classify. Furthermore, we looked at the entirety 

of each patient’s medical record, rather than a fixed number of previous encounters. Thus, 

our primary care patients generally have a much longer history than those receiving only 

specialty care, which leads to noise in the outlined classification task.
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Author prediction was a more difficult task given the higher number of possibilities. The 

classifier was able to correctly classify 83.2% of the documents with the majority of the 

errors occurring between physicians with similar specialties. Among those with a similar 

specialty, the classifier was still able to correctly classify the majority of the time, indicating 

that it was able to capture more subtle physician-specific information beyond the primary 

specialty.

4.1. Future Directions

A fixed parameter in all LDA-based topic models is the number of topics, which is important 

because it affects the granularity of the topics generated. If the number it too low, it is not 

able to distinguish between distinct concepts, while a value too high will result in overly 

specific topics that are hard to interpret. The optimal number of topics is largely dependent 

on the type of text being modeled and the intended application of the results. In this study, 

the value is set to 100 based on prior studies involving LDA topic models in clinical 

literature.[41] Because the optimal value for LDA is not necessarily optimal for the 

proposed model, future work could further improve the presented results by optimizing the 

number of topics.

The current model represents text using bigrams, which could potentially be improved with 

more complicated language models. While going beyond bigrams may yield a better-fitting 

model, it would add significant complexity to the model. Currently, the model finds a 

Dirichlet distribution across all words in the vocabulary for each bigram completion, which 

results in a number of variables equal to the square of the size of the vocabulary. Increasing 

beyond bigrams increases this number of variables exponentially, which quickly becomes 

hard to train. Given a large enough training corpus, however, the larger model could 

potentially be trained effectively and therefore yield better results. Smoothing methods could 

also account for this added complexity by using the larger model when training data is 

available and relying on a simpler model in cases where the larger one is undertrained.[43]

The goal of the current study was to demonstrate the ability of the proposed model to 

capture important clinical information. The next step will be to implement this method in a 

health informatics application and measure its potential clinical impact. In particular, we 

plan to investigate how topics created using the proposed model can be used to drive an 

application for automatically summarizing patient records. Such an application may include 

a visualization that displays a list of the top topics for each patient, enabling a concept-

oriented information view.

5. Conclusions

Integrating patient and document metadata, as well as capturing phrases in clinical text, 

greatly improves the topic representation of clinical reports. Incorporating topical n-grams 

into the model captures common anatomical concepts, tests, and diseases while also 

differentiating words that are ambiguous in a bag-of-words model. Including patient- and 

document-level information creates a more informative prior on the topics in a document, 

resulting in topics that better represent the contained text. Our future work includes using the 
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topics discovered in this study to drive a web application that automatically summarizes a 

patient’s medical records, including concept, source, and time oriented views.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

A topic model is proposed that incorporates document metadata and phrase 

information

The model is applied to a clinical report dataset to capture medical information

Comparison with existing models shows improved clinical document representation

Document classification shows the model’s ability to capture clinical information
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Figure 1. 
Proposed topic model introducing a patient plate P. Boxes denote replication of a function 

across a set. For instance, everything contained in plate P is performed for every patient. All 

elements within a plate are computed for each replication and additional subscripts/

superscripts are omitted for simplicity. Shaded nodes represent observed data.
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Figure 2. 
Scatter plot of the first two principal components of the topic distribution of each patient’s 

medical documents.
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Table 1

Hyperparameter values for the top five topics in three example documents. Report author names have been 

replaced with the physician’s area of specialty.

Report type Author Patient age Patient gender

Consultation Neuro oncologist 30 Male

7.481 temodar, cycle, days, cycles, brain

5.977556 intact, year-old, normal, seen, mri_scan

5.396355 mri_scan, change, comes, nerves, outpatient

4.248921 surgery, ct_scan, revealed, performed, mri_scan

4.193324 glioblastoma_multiforme, tumor, brain, resection, mri

Report type Author Patient age Patient gender

Progress report Cardiologist 70 Male

2.61905 blood_pressure, normal, illness, months, pulse

2.460163 stroke, given, prior, acute, evidence

2.374758 blood_pressure, stenosis, significant, coronary_artery_disease, status_post

1.522354 course, continued, home, hospitalization, follow-up

1.435546 course, follow, discharged, instructed, pain

Report type Author Patient age Patient gender

Progress report Thoracic surgeon 50 Female

0.969474 underwent, lung, negative, revealed, performed

0.906682 plan, year-old, clear, edema, currently

0.599339 chemotherapy, lesion, lesions, size, parietal_lobe

0.553506 plan, agree, seen, discussed, lower_lobe

0.532509 continue, plan, bid, inpatient, hr
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Table 2

Ranked topics for different document types using the four models (MPT, DMR, TNG, and LDA) based on the 

topic hyperparameters. TNG and LDA do not use document metadata, so the prior for the topic distribution is 

the same for every document type. Incorporating phrases into the model results in more targeted topics and 

higher weighting for these topics based on document metadata. Incorporating document metadata allows for 

patient- and document-specific topics, while models without metadata use only one document distribution for 

all document types.

MPT DMR

Operative report Operative report

3.93281 catheter, prepped, using, draped, inserted 1.814893 catheter, needle, using, vein, placement

1.692049 placed, operation, cranial_nerve, taken, used 1.66272 operation, placed, surgeon, incision, anesthesia

1.05243 placed, removed, using, performed, operation 0.843987 normal, csf, stomach, endoscope, consent

0.777849 tumor, using, dura, resection, resection_cavity 0.753292 tumor, using, resection, flap, intraoperative

0.666869 approximately, appeared, obtained, performed, felt 0.338279 eye, lens, anterior, tube, chamber

Discharge summary Discharge summary

3.182792 course, continued, home, hospitalization, follow-up 3.451551 course, started, continued, therapy, home

2.972885 course, follow, discharged, instructed, pain 1.947799 surgery, pain, stable, home, postoperative

1.716823 stroke, given, prior, acute, evidence 0.805114 stroke, cerebral, artery, ct, middle

1.55142 transfer, course, started, tube, continued 0.653268 tumor, glioblastoma, resection, radiation, multiforme

1.273632 able, daily, therapy, activities, improved 0.572004 stroke, mri, mca, tpa, arm

Progress note Progress note

1.327833 continue, plan, bid, inpatient, hr 0.671341 continue, plan, bid, bp, hr

1.09157 plan, year-old, clear, edema, currently 0.357264 plan, inpatient, stroke, seen, discussed

0.766955 bid, given, continue, qd, old 0.347626 outpatient, able, therapy, good, having

0.685851 intact, year-old, normal, seen, mri_scan 0.340108 medicine, stable, continue, htn, pain

0.674692 likely, given, iv, blood_pressure, inpatient 0.286204 clear, abdomen, extremities, rate, regular

TNG LDA

All report types All report types

0.52712 given, lower_extremity, stroke, upper_extremity, 
approximately

0.10219 given, evidence, therapy, significant, possible

0.42026 able, normal_limits, daily, acute_distress, therapy 0.09007 able, having, problems, normal, days

0.40148 glioblastoma_multiforme, brain, decadron, mri, dilantin 0.08062 clear, rate, abdomen, extremities, regular

0.37318 denies, pain, clear, shortness, systems 0.05552 continue, plan, stable, inpatient, bp

0.32127 currently, negative, plan, continue, year-old 0.05437 allergies, family, social, systems, denies
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Table 4

Comparison of disease and author classification accuracies for the four methods. Author classification is 

performed with and without inclusion of author A. Values marked with an asterisk are significantly lower than 

the corresponding accuracy for MPT (p<0.01).

Disease Author

With Author A Without Author A

MPT 0.9981 0.8319 0.7471

DMR 0.9976 0.3742* 0.6910*

TNG 0.8252* 0.6759* 0.6931*

LDA 0.7974* 0.5288* 0.5858*
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