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Protein-protein interactions (PPIs) are essential to almost all cellular processes. To better understand the relationships of proteins
in Arabidopsis (Arabidopsis thaliana), we have developed a genome-wide protein interaction network (AraPPINet) that is inferred
from both three-dimensional structures and functional evidence and that encompasses 316,747 high-confidence interactions
among 12,574 proteins. AraPPINet exhibited high predictive power for discovering protein interactions at a 50% true positive
rate and for discriminating positive interactions from similar protein pairs at a 70% true positive rate. Experimental evaluation of
a set of predicted PPIs demonstrated the ability of AraPPINet to identify novel protein interactions involved in a specific process
at an approximately 100-fold greater accuracy than random protein-protein pairs in a test case of abscisic acid (ABA) signaling.
Genetic analysis of an experimentally validated, predicted interaction between ARR1 and PYL1 uncovered cross talk between
ABA and cytokinin signaling in the control of root growth. Therefore, we demonstrate the power of AraPPINet (http://netbio.
sjtu.edu.cn/arappinet/) as a resource for discovering gene function in converging signaling pathways and complex traits in
plants.

Protein-protein interactions (PPIs) are essential to
almost all cellular processes, including DNA replication
and transcription, signal transduction, and metabolic
cycles. Because proteins function through coordinated
interaction, it is important to characterize the nature of
these relationships. Deciphering the nature of PPIs not
only advances our understanding of gene function at
the molecular level but also provides insight into
complex cellular processes.

The importance of understanding PPIs has prompted
the development of various computational approaches,
such as gene fusion and Rosetta stone (Marcotte et al.,
1999), phylogenetic profiling (Pellegrini et al., 1999), cor-
related expression of gene pairs (Grigoriev, 2001), gene
neighbor (Overbeek et al., 1999), interolog (Matthews

et al., 2001), and combining multiple sources of biological
data (Rhodes et al., 2005), for uncovering protein inter-
actions over the past decade. Recently, computational
methods using structural information for PPI prediction
have gained much attention due to the rapid growth of
the Protein Data Bank (PDB; Rose et al., 2013). Protein
docking is a promising method for discovering protein
interactions that is based on three-dimensional struc-
tural information, but it remains a challenging and
computationally demanding task to predict PPIs on a
genome-wide scale (Wass et al., 2011). Alternatively,
knowledge-based methods that utilize the structural
similarity of protein pairs to interface a known protein
complex have been used in PPI prediction (Aytuna et al.,
2005; Zhang et al., 2012; Mosca et al., 2013). The common
strategy of these structure-based methods is to find a
suitable template complex for the two query protein
structures; the prediction is then based on the structural
similarity of the two protein models to the template
complex. An important advantage of structure-based
approaches is their ability to identify the putative inter-
face; that is, they are capable of providing more infor-
mation than any non-structure-based method.

Arabidopsis (Arabidopsis thaliana), a small flowering
plant, is widely used as a model organism in plant bi-
ology. In recent years, several large-scale experimental
PPI studies have begun to unravel the complex cellular
networks present in Arabidopsis (Arabidopsis Inter-
actome Mapping Consortium, 2011; Jones et al., 2014).
According to an empirical estimation of the size of the
protein interactome, experimentally determined inter-
actions represent a small fraction (approximately 6%) of
the entire protein interactome, and the relationships
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among most proteins remain to be discovered (Arabi-
dopsis Interactome Mapping Consortium, 2011). To
complement existing experimental resources, genome-
wide plant PPI networks have been developed by
computational approaches (Cui et al., 2008; Lee et al.,
2010; Lin et al., 2011; Wang et al., 2012, 2014). However,
these methods attempt to predict PPIs using only
nonstructural information.

Here, we developed a computational approach
combining three-dimensional structure with functional
information to construct genome-wide PPI networks in
Arabidopsis. Comparison of the predicted interactions
with experimentally validated data revealed its power
for discovering protein interactions and for discrimi-
nating positive interactions from similar protein pairs.
Experimental evaluation of the predicted PPIs demon-
strated the ability of AraPPINet to discover novel pro-
tein interactions involved in specific processes at
100-fold greater accuracy than screens of random
protein-protein pairs for the test case of abscisic acid
(ABA) signaling. Using AraPPINet guilt-by-association
and genetic analysis, we identified and validated a
regulator, ARR1, involved in cross talk in ABA signal-
ing mediated by PYL1. Our findings suggest that
AraPPINet not only could advance our understanding
of gene function but also could provide insight into the
molecular basis of the complex interplay between sig-
naling pathways in plants.

RESULTS

Construction of PPI Networks in Arabidopsis

We integrated three-dimensional structure and func-
tional information using a machine-learning method for
genome-wide PPI prediction in Arabidopsis. The PPI
model contained four structural and seven nonstructural
features. The structural features included structural simi-
larity, structural distance, preserved interface size, and
fraction of the preserved interface that had been derived
from structural alignments of protein structure homology
models to template complexes. Given a PPI model with
multiple values for a structural feature, the data with the
highest structural similarity were assigned to this inter-
action model. This approach resulted in approximately 40
million protein interaction models containing structural
information extracted from approximately 5.3 billion
structural alignments (Supplemental Table S1). The seven
nonstructural features of the interaction model were three
gene ontologies, gene coexpression, interolog, Rosetta
stone protein, andphylogenetic profile similarity, ofwhich
the proportion ranged from 0.2% to 100% of expectations
from all possible protein pairs (Supplemental Table S1).
Approximately 343 million protein pairs with available
data for these 11 features were then classified using a
random forests algorithm for PPI predictions, resulting in
an Arabidopsis PPI network (AraPPINet) that contained
316,747 high-confidence interacting pairs among 12,574
(48%) of the 26,207 Arabidopsis proteins (Supplemental

Fig. S1). Almost one-third of the interacting protein pairs
predicted by AraPPINet were supported by structural
evidence (Supplemental Fig. S2). AraPPINet exhibited
small-world properties similar to those of other biological
networks (Supplemental Fig. S3A), and high-clustering
coefficient values indicated that the topological structure
of AraPPINet was highly modular (Supplemental Fig.
S3B). Network analysis revealed that AraPPINet was
composed of 1,005 functional modules clustered by a
Markov clustering algorithm with an inflation parameter
of 1.8 (Van Dongen, 2008), in which the largest module
was preferentially associated with transcriptional regula-
tion (Supplemental Fig. S1).

Evaluating the Performance of AraPPINet

To compare the accuracy of this combined approach
with approaches utilizing either structural or non-
structural information, a 10-fold cross-validation was
carried out using the reference data sets. This evalua-
tion showed that the true positive rate (TPR) of this
method reached 49.8% (Supplemental Fig. S4A), while
the false positive rate (FPR) remained at the low level
of 0.09% (Supplemental Fig. S4B). Furthermore, re-
ceiver operating characteristic (ROC) curves showed
that the combined method had a higher area under the
curve (AUC) value than methods relying on only
structural or nonstructural information (Fig. 1A). This
approach was comparable in performance to other
methods over the entire range of the FPR values
(Supplemental Fig. S5), which tended to produce
fewer false positives. This result suggested that the
combined approach was more efficient than others at
separating positives from a large number of negatives
at the genome-wide scale.

Although cross-validation indicated that the per-
formance of the combined method was superior to
those of other PPI predictive models reliant on only
structural or nonstructural information, these results
could not be applied to estimate the combinedmodel’s
ability to discover novel PPIs in practice. Thus, the
performance of AraPPINet was tested on an inde-
pendent data set of protein interactions determined
by high-throughput experiments from public data-
bases. After discarding 190 positive reference inter-
actions, a total of 11,669 protein interactions remained
as the independent data set for the performance
evaluation. Among these interactions, 1,401 PPIs were
successfully predicted by this method (Fig. 1B). The
evaluation indicated that our predictive method was
powerful in novel PPI discovery at the genome-wide
scale.

Next, we used two independent data sets to evaluate
the performance of AraPPINet compared with that of
three other publicly available PPI prediction methods:
AtPID (Cui et al., 2008), AtPIN (Brandão et al., 2009),
and PAIR (Lin et al., 2011). Among the 11,669 protein
interactions from high-throughput experiments, ap-
proximately 12% of protein interactions could be

1512 Plant Physiol. Vol. 171, 2016

Zhang et al.

http://www.plantphysiol.org/cgi/content/full/pp.16.00057/DC1
http://www.plantphysiol.org/cgi/content/full/pp.16.00057/DC1
http://www.plantphysiol.org/cgi/content/full/pp.16.00057/DC1
http://www.plantphysiol.org/cgi/content/full/pp.16.00057/DC1
http://www.plantphysiol.org/cgi/content/full/pp.16.00057/DC1
http://www.plantphysiol.org/cgi/content/full/pp.16.00057/DC1
http://www.plantphysiol.org/cgi/content/full/pp.16.00057/DC1
http://www.plantphysiol.org/cgi/content/full/pp.16.00057/DC1
http://www.plantphysiol.org/cgi/content/full/pp.16.00057/DC1
http://www.plantphysiol.org/cgi/content/full/pp.16.00057/DC1
http://www.plantphysiol.org/cgi/content/full/pp.16.00057/DC1
http://www.plantphysiol.org/cgi/content/full/pp.16.00057/DC1


successfully recognized by AraPPINet, which signifi-
cantly outperformed the AtPID, AtPIN, and PAIR
methods (Fig. 1C). As further validation of AraPPINet,
we tested its performance on a data set comprising
4,533 newly reported protein interactions in Arabi-
dopsis after March 2014. Of these protein interactions,
443 (9.8%) were predicted by AraPPINet (Fig. 1D),
which exhibited better TPR than AtPID, AtPIN, and the
most recently developed PPI prediction method, PAIR.
Furthermore, we also compared the accuracy of differ-
ent prediction methods using F-measure. From Table I,
AraPPINet apparently showed great improvement over
all three published PPI prediction methods based on the
F1 score.
It is reasonable to estimate the performance of

AraPPINet by its ability to discriminate between

interacting and noninteracting pairs of proteins with
similar sequences. A total of 1,663 interactions be-
tween similar proteins in 56 families were used for a
performance evaluation. As shown in Figure 2A, only
0.3% of the mean TPR was expected by chance alone,
and the three PPI prediction methods, AtPIN, AtPID,
and PAIR, had mean TPRs ranging from 11.8% to
32.1% for the tested data set. Compared with the
performance of the other three methods, AraPPINet
showed high predictive power for discovering inter-
actions between protein family members with a mean
TPR of 69.5%. In addition, interactions between
members of three specific transcription factor families
identified by high-throughput experiments were
used to evaluate the performance of AraPPINet for
individual cases, including 255 interactions among 72

Figure 1. Evaluation of AraPPINet performance. A, ROC curves for PPIs inferred from different data sources. AUC values are
reported in parentheses. B, Venn diagram of predicted overlapping PPIs with experimentally determined interactions. C, Com-
parison of AraPPINet with other methods based on the high-throughput PPI data set. D, Comparison of AraPPINet with other
methods based on newly reported interactions. The random PPI networks are generated by randomly rewiring edges while
preserving the original degree distribution of AraPPINet. The average TPR is calculated from 10 randomized networks.
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MADS, 25 interactions among 17 bZIP, and 418 in-
teractions among 49 ARF/IAA transcription factors
(de Folter et al., 2005; Ehlert et al., 2006; Vernoux
et al., 2011). As shown in Figure 2B, AraPPINet had
AUC values ranging from 0.65 for the MADS family
to 0.77 for the bZIP family. The precision of PPI pre-
diction reached 22.1% for MADS and 50.6% for ARF/
IAA. A number of the interactions between similar
members predicted in AraPPINet overlapped highly
with those determined through experimental assays
(Fig. 2C), suggesting that AraPPINet is a powerful

tool for discriminating positive interactions from similar
protein pairs within gene families in Arabidopsis.

ABA Signaling Network in AraPPINet

The ABA signaling pathway is a gene network that
plays important roles in numerous biological processes
in plants. Although a linear core ABA signal trans-
duction pathway has been established, the complexity
of gene regulation suggests that ABA functions through
an intricate network that is interwoven with additional

Table I. Comparison of different prediction approaches with F1 score

The average true positive of the random network is calculated from 10 randomized networks. Precision represents predicted PPIs with experimental
evidence/all predicted PPIs, and recall represents predicted PPIs with experimental evidence/all experimentally determined PPIs.

Method Predicted PPIs with Experimental Evidence All Predicted PPIs All Experimentally Determined PPIs Precision Recall F1 Score

Random network 348 316,747 21,282 0.001 0.016 0.002
AtPID 386 24,418 21,282 0.016 0.018 0.017
AtPIN 449 90,043 21,282 0.005 0.021 0.008
PAIR 1,995 145,355 21,282 0.014 0.094 0.024
AraPPINet 6,040 316,747 21,282 0.019 0.284 0.036

Figure 2. Evaluation of AraPPINet
for predicting interactions between
similar protein pairs. A, Comparison
of performance for predicting inter-
actions between similar protein
pairs. The box plots indicate inter-
quartile ranges of these data. The bar
in each box plot indicates the me-
dian. B, ROC curves for AraPPINet-
based predictions for the MADS,
bZIP, and ARF/IAA families. AUC
values are reported in parentheses.
C, Venn diagrams of the predicted
protein interactions overlapping
with the experimentally determined
interactions of the MADS, bZIP, and
ARF/IAA families.
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cellular processes. Using the core ABA components as
query proteins, including 14 ABA receptors, nine type
2C protein phosphatases, 10 SNF1-related protein ki-
nases 2, and 10 bZIP transcription factors, we identified
1,912 proteins in AraPPINet predicted to interact with
the 43 core components in the ABA signaling pathway.
The inferred ABA signaling network contains 7,272
interactions, of which 197 connections have been ex-
perimentally proven (Fig. 3A). Among these node
proteins, ABI5, ABI1, and ABI2 have the top three
connections in the ABA signaling network, consis-
tent with data indicating that these three genes play
the most important roles in the signal transduction
pathway.
The accuracy of the inferred ABA signaling network

was validated using two sets of experimentally verified
interactions. Among the 31 proteins interactingwith the
core ABA components determined by high-throughput
experiments, seven (22.6%) proteins were successfully
predicted by AraPPINet (Fig. 3B). In addition, among
131 newly reported protein interactions involved in
ABA signaling, only two interactionswere predicted by
the published methods AtPIN, AtPID, and PAIR. In
contrast, AraPPINet recognized 39 (29.8%) novel

protein interactions in the data set, approximately 100-
fold more than screens of random protein-protein pairs
involved in ABA signaling (Fig. 3C). These results
suggest that AraPPINet is very useful for identifying
novel genes using known genes in this pathway as bait.

The functional representation of proteins in the ABA
signaling network was performed using plant GO Slim
categories (Ashburner et al., 2000). Candidate genes
were significantly enriched in specific biological pro-
cesses such as cellular response to stimulus, regulation
of cellular process, and signal transduction (Fig. 3D).
The full functional enrichment data can be found in
Supplemental Table S2. It is worth noting that genes
involved in ABA signaling were highly enriched in the
protein-binding GO molecular function category, im-
plying that these proteins preferentially interact with
core ABA components to perform their functions.
Similarly, functional analysis carried out using the
KEGG database showed that these proteins are sig-
nificantly enriched in several specific pathways
(Supplemental Table S3). In addition to the expected
plant hormone signal transduction pathway, pathways
involved in plant-pathogen interaction and plant cir-
cadian rhythm were identified (Fig. 3E). In addition,

Figure 3. The ABA signaling network in AraPPINet. A, ABA signaling network inferred from AraPPINet. Node size represents a
node degree. Core ABA signaling proteins are represented in red nodes, and their interacting partners are represented in green
nodes. The predicted protein interactions are shown in gray lines, and experimentally demonstrated interactions are shown in red
lines. B, Comparison of AraPPINet with other methods for discovering PPIs in ABA signaling based on the high-throughput PPI
data set. C, Comparison of AraPPINet with other methods for discovering PPIs in ABA signaling based on newly reported in-
teractions. D and E, Enriched Gene Ontology (GO) functional categories (D) and enriched Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways (E) of proteins interacting with core ABA signaling proteins. F, Enriched ABA-responsive genes within
the ABA signaling network.
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genes interacting with core ABA signaling components
were altered significantly in response to ABA treat-
ments (Fig. 3F), and some of them were induced by
other plant hormones (Supplemental Fig. S6), suggest-
ing that these proteins may act as interacting nodes
between ABA and other hormone signaling pathways.

Validating Novel Interactions in the ABA
Signaling Network

Given that AraPPINet successfully discovered novel
PPIs involved in ABA signaling, we evaluated the hy-
pothesized interaction-mediated cross talk between
ABA and other signaling pathways. Among the 1,912
proteins interacting with ABA signaling, 29 proteins
predicted to interact with the ABA receptors PYL1
(AT5G46790) or ABI5 (AT2G36270) were selected for
the validation of their physical interactions by yeast
two-hybrid assay (yeast strain AH109) (Supplemental
Table S4). As shown in Figure 4A, AT3G16857, which
encodes a regulator of the cytokinin response, was
found to interact with PYL1 by screening eight candi-
date partners. In addition, ABI5, another core compo-
nent in ABA signaling, was selected as bait to identify
new binding partners. We found that four novel pro-
teins (AT5G06960, AT3G22840, AT1G12610, and
AT1G13260) were determined to interact with ABI5 by
screening 21 candidates (Fig. 4A). AT5G06960, better
known as TGA5, is a core component in salicylic acid
signaling (Zhang et al., 2003), while AT3G22840 is in-
volved in early light response and seed germination
(Harari-Steinberg et al., 2001; Rizza et al., 2011). The
proteins AT1G12610 and AT1G13260 (RAV1) belong to
the B3-AP2 transcription factor family; the former is
involved in GA signaling and response to abiotic
stresses (Magome et al., 2008; Kang et al., 2011). These
results indicated that the accuracy of AraPPINet ismore
than 17% in the test case of ABA signaling.

A recent study showed that RAV1 coexpression with
ABI5 enhanced plant resistance to imposed drought
stress (Mittal et al., 2014). Thus, BiFC assays were per-
formed to validate the interaction between the proteins
RAV1 and ABI5 in plant cells. Constructs encoding
ABI5-YFPN and RAV1-YFPC were coinfiltrated into
Nicotiana benthamiana leaves, resulting in a visible yel-
low fluorescent protein (YFP) fluorescence signal in
nuclei (Fig. 4B). As a control, empty pEG201YN vector
was coinfiltrated with RAV1-YFPC, and no fluores-
cence signal was observed (Fig. 4B). These results,
coupled with the phenotype of transgenic cotton
(Gossypium hirsutum), suggested that RAV1 interacted
physically with ABI5 to increase resistance to drought
stress in plants (Mittal et al., 2014).

The structural interaction model of ARR1 and PYL1
was produced by superimposing homology models on
the template of the contact-dependent growth inhibi-
tion toxin/immunity complex from Burkholderia
pseudomallei (Fig. 5A). The homology model of ARR1
was structurally similar to chain A of the template

complex, while the PYL1 model was structurally aligned
to chain B. The interaction model has a high interacting
probability score of 0.788, arising from both structural
similarity and a conserved interface. Similarly, homol-
ogy models of ABI5 and its four interacting partners
were superimposed with their respective homologous

Figure 4. Yeast two-hybrid and bimolecular fluorescence comple-
mentation (BiFC) assays for detecting interacting partners of PYL1 or
ABI5. A, Two-hybrid validation in yeast of the interactions between
PYL1 and ARR1 (AT3G16857) as well as between ABI5 and TGA5
(AT5G06960), ELIP (AT3G22840), RAV1 (AT1G13260), and DDF1
(AT1G12610). BD-protein indicates the fusion protein with the Gal4
binding domain, and AD-protein indicates the fusion protein with the
Gal4 activation domain. AD or BDwas used as a negative control. +His
indicates synthetic dropout medium deficient in Leu and Trp, and2His
indicates synthetic dropout medium deficient in Leu, Trp, and His. B,
BiFC assay for ABI5 and RAV1. 35S:ABI5-YFPN and 35S:RAV1-YFPC
constructs were coinfiltrated into N. benthamiana leaves. YFP signal
intensity was detected from 48 to 60 h after infiltration.
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template complexes. These structural interaction
models showed a significant level of conservation in the
interfaces between ABI5 and the four interacting part-
ners (Fig. 5, B–E), which resulted in the interaction of
protein pairs with different global structures via similar
interface architectures. The structural details of these
interactions revealed that conserved interfaces could
effectively improve the accuracy of discovering PPIs by
computational approaches.

Identifying Cross Talk in ABA Signaling

The PYL1-interacting partner ARR1, a type B re-
sponse regulator, is an important regulator involved in
the cytokinin signaling pathway (Sakai et al., 2001;
Wang et al., 2011). Based on the physical interaction
between ARR1 and PYL1, we hypothesized that ARR1
might be involved in regulating the ABA signaling
pathway mediated by PYL1. To validate this hypothe-
sis, the response of the type B arr1,11,12 triple mutant
(CS6986) to ABA was tested by the primary root elon-
gation assay to determine whether the cytokinin sig-
naling core regulator ARR1 also was involved in the
regulation of ABA signaling (Leung et al., 1994; Cary
et al., 1995). The arr1,11,12 triple mutant and wild-type

seedlings were grown on Murashige and Skoog (MS)
medium, and they showed similar primary root elon-
gation phenotypes (Fig. 6, A and B). Compared with
wild-type seedlings, the arr1,11,12 mutant seedlings
displayed insensitivity to the cytokinin-mediated inhi-
bition of primary root growth on MS medium con-
taining 10 mM 6-BA cytokinin (Fig. 6, A and B). On MS
medium supplemented with 10 mM ABA, primary root
elongation was inhibited in wild-type seedlings (Fig. 6,
A and B). In contrast, primary root elongation in
arr1,11,12 mutant seedlings was not inhibited by ABA.
These data indicated that arr1,11,12 mutant seedlings
were insensitive to cytokinin and ABA, suggesting that
type B ARRs, including ARR1, might be involved in
ABA signaling regulated by the ABA receptor PYL1 in
addition to cytokinin signaling (Fig. 6C).

DISCUSSION

In this study, we developed a computational
approach through combining three-dimensional struc-
tures with functional evidence to infer the genome-
wide PPI network in Arabidopsis. The power of this
method for discovering protein interactions as well
as predicting interactions between protein family

Figure 5. Structural models of PPIs.
A, Structural interaction model for
ARR1 and PYL1. Considering the
structural template (PDB structure
4G6V) of the contact-dependent
growth inhibition toxin/immunity
complex (chain A and B), the ho-
mology models of ARR1 and PYL1
were structurally superimposed. B,
Structural interaction model for
DDF1 and ABI5 based on the tem-
plate complex (PDB structure 1RB6).
C, Structural interaction model for
RAV1 and ABI5 based on the tem-
plate complex (PDB structure 1IJ2).
D, Structural interaction model for
ELIPand ABI5 based on the template
complex (PDB structure 2WUK). E,
Structural interaction model for
TGA5 and ABI5 based on the tem-
plate complex (PDB structure 2Z5I).
The homology models of PYL1 and
ABI5 are shown in blue, the models
for the interacting protein partners
are shown in red, and the template
complexes are shown in gray. The
conserved interfaces in the van der
Waals representation are shown in
matching colors.
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members was demonstrated by a comparison with
other publicly available PPI prediction methods as well
as by experimentally determined PPI data sets. The
predicted AraPPINet network contains 316,747 inter-
actions covering nearly half of the proteome (Arabi-
dopsis Genome Initiative, 2000), which is in agreement
with the estimated size of the protein interactome in
Arabidopsis (Arabidopsis Interactome Mapping Con-
sortium, 2011). Furthermore, AraPPINet includesmany
interactions (85.6% of our predicted PPIs) beyond those
found by simple interolog prediction from reference
model organisms, which suggested that our predictive
method was powerful in novel PPI discovery.

Structural information has been used successfully to
validate or improve large-scale PPI networks (Prieto
andDe Las Rivas, 2010; Zhang et al., 2012). Our analysis
demonstrated that structural evidence could increase
the reliability of predicted PPI networks by reducing
false positives from the large amount of data regarding
noninteracting protein pairs at the genome-wide scale
(Supplemental Fig. S4B). It is critical that only very low
FPR can produce a small enough number of false pos-
itives to be used effectively in practice. In addition to
structural evidence, functional clues preferentially
contributed to the increased coverage of positive in-
teraction prediction (Supplemental Fig. S4A). These
two factors combined to create a balance between
accuracy and coverage in PPI prediction using
AraPPINet.

AraPPINet represents a reliable PPI network andwas
useful for identifying new proteins involved in specific
processes using a set of known genes as bait. For ex-
ample, using network guilt-by-association, we defined
an ABA signaling network encompassing more than
7,000 interactions involving approximately 1,950 pro-
teins in Arabidopsis. This protein interaction map
greatly expanded the known ABA signaling network in
plants. An evaluation based on two independent data
sets showed that nearly 30% of the known protein in-
teractions involved in ABA signaling were recognized
successfully by AraPPINet, indicating that our com-
putational approach for discovering novel PPIs in ABA
signaling is comparable in accuracy to high-throughput
experiments (von Mering et al., 2002). Using yeast two-
hybrid tests on a set of predicted PPIs linked to the ABA
and other signaling pathways, five proteins were vali-
dated as newly interacting partners of core components
in the ABA signaling pathway. Interestingly, ARR1was
predicted to interact with the ABA receptor PYL1 by
AraPPINet and also was detected by experimental
screening. By genetic analysis, we validated ARR1 in-
volvement in the regulation of cytokinin and ABA
signaling through its interaction with PYL1. Our find-
ings suggested that AraPPINet not only could advance
our understanding of new gene functions but also
provided new insight into the cross talk between
pathways such as ABA signaling with respect to di-
verse biological processes.

Figure 6. arr1,11,12 mutant seed-
lings are insensitive to the inhibition
of cytokinin and ABA on primary
root growth. A, Representative exam-
ples of wild-type and arr1,11,12 seed-
lings on MS medium plates or plates
with either 10 mM 6-benzyladenine
(6-BA) or 10 mM ABA. Five-day-old
seedlings grown on MS medium
were transferred to MS plates or
plates supplemented with either
6-BA or ABA. The photographs were
taken 5 d after the transfer. Bars =
10 mm. B, Primary root lengths of
wild-type and arr1,11,12 seedlings
at 5 d after transfer to MS medium
plates or plates with either 6-BA or
ABA. The data represent mean
values 6 SE (n . 15). Asterisks indi-
cate that the primary root length of
arr1,11,12 is significantly longer
than that of the wild type on MS
medium plates with either 6-BA or
ABA (Student’s t test, P , 0.05). C,
Schematic representation of the in-
teractions between ABA and cytoki-
nin signaling mediated by ARR1 and
PYL1.
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AraPPINet represents a step toward the goal of
computationally reconstructing reliable PPI networks
at a genome-wide scale, and this global protein inter-
action map could facilitate the understanding of the
biological organization of genes for specific functions in
plants.

MATERIALS AND METHODS

Gold Standard Data Set

The experimentally determined PPIs for Arabidopsis (Arabidopsis thaliana)
were extracted from five databases, BioGRID (Chatr-Aryamontri et al., 2015),
IntAct (Orchard et al., 2014), DIP (Salwinski et al., 2004), MINT (Licata et al.,
2012), and BIND (Isserlin et al., 2011). Proteins without a valid The Arabidopsis
Information Resource (TAIR) locus or that were undefined in the Arabidopsis
genome were removed, resulting in a total of 17,569 PPIs among 6,725 proteins.
The PPIs available in different databases are listed in Supplemental Table S5.

A data set derived from those small-scale or high-throughput experiments
with at least two supporting publications was used as a primary positive ref-
erence. After removing protein self-interactions or interacting proteins encoded
bymitochondriaorchloroplastgenes, 5,080 interactingproteinpairs remainedas
the gold standard data set (Supplemental Table S6). Simultaneously, a number
of protein pairs were randomly chosen to form the negative reference data set.
The negative data set created by this method may contain several potentially
interacting protein pairs; however, given the empirically estimated ratio of
interacting protein pairs of five to ten interactions per 10,000 protein pairs in the
Arabidopsis genome (Arabidopsis Interactome Mapping Consortium, 2011),
this level of contamination is likely acceptable. In this way, 508,000 protein pairs
not overlapping with 17,569 experimentally determined interactions were
randomly generated as the negative reference data set for training the protein
interaction classifier.

Collection of Structural Information

The structure homologymodels of Arabidopsis proteinswere taken from the
ModBase database (Pieper et al., 2014). A protein structure was considered to be
reliable if it met at least one of followingmodel evaluation criteria: (1) an E value
less than 1025; (2) a ModPipe quality score of 0.5 or greater; (3) a GA341 score of
0.5 or greater; or (4) a z-DOPE score less than 0. When multiple structures were
available for a target protein, we chose the representative model with the
highest ModPipe quality score. Based on the above criteria, a total of 17,391
structure homology models were collected for Arabidopsis.

A total of 90,424 and 88,999 structures involving multiple organisms were
available in the PDB (Rose et al., 2013) and Proteins, Interfaces, Structures, and
Assemblies (Xu et al., 2008) databases, respectively. The chain-chain binary
interface and the binding sites of protein complexes were generated in the
PIBASE software package with an interatomic distance cutoff of 6.05 Å (Davis
and Sali, 2005). A total of 91,652 protein complexes with 368,306 interacting
chain pairs among 317,112 chains were identified for use as templates for
protein interaction predictions.

Protein structure homology models were aligned to template complexes
using TM-align (Zhang and Skolnick, 2005). Approximately 5.3 billion struc-
tural alignments were created between the protein structure homology models
and the chains of template complexes. With a normalized TM score cutoff of 0.4
for structural similarity, a total of 50,001,762 structural alignments were gen-
erated that involved 16,679 protein structure models.

Structural features were derived from the structural alignments of protein
structure homology models to template complexes. Because two structural
alignments are obtained for each protein pair (i.e. protein structure homology
model i is aligned to template chain i9, while proteinmodel j is aligned to chain j9;
TM-Scorei is the score between protein structure model i and template chain i9,
and TM-Scorej is the score between protein structuremodel j and template chain
j9), structural similarity is calculated as the square root of the product of TM-
Scorei and TM-Scorej. Similarly, structural distance is calculated as the square
root of the product of root-mean-square deviations RMSDi and RMSDj. The
preserved interface size is defined as the number of interacting residue pairs in
the potential protein-protein model preserved in the template complex. The
fraction of the preserved interface is the proportion of the conserved interface of
the protein-protein model relative to the corresponding interface in the

template complex. When multiple values were available for a protein pair or a
structural feature, the data with the highest structural similarity to the protein
pair were chosen to create an interaction model.

Similarity Analysis of Gene Function

The GO data used were gene_ontology.1_2.obo (Ashburner et al., 2000). The
functional similarity of a gene pair was defined as log(n/N)/log(2/N), where n
is the number of genes in the lowest GO category that contained both genes and
N is the total number of genes annotated for the organism. This formula nor-
malizes the functional similarity range from 0 to 1.

Interolog Analysis

Interolog analysiswasperformed similarly to a strategyproposedby Jonsson
and Bates (2006). A confidence score S for each PPI prediction was assigned.
Given a protein pair A and B, S could be defined as follows:

S ¼ ∑
N

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ISai 3 ISbi

p

where A9i and B9i are the corresponding orthologs of A and B, which show an
interaction in one model organism (i.e. the protein pair A9i and B9i is called an
interolog of protein pair A and B). ISai is the InParanoid score between A9i and
A, while ISbi is the InParanoid score between B9i and B. The orthologs of Ara-
bidopsis proteins in Escherichia coli, Saccharomyces cerevisae, Caenorhabditis ele-
gans, Drosophila melanogaster, Mus musculus, and Homo sapiens were identified
by InParanoid with default settings. N is the total number of interologs of
protein pair A and B identified in the six model organisms. The experimentally
determined PPI data sets used for interolog analysis was obtained from the
BioGRID, IntAct, DIP, MINT, and BIND databases (Supplemental Table S7).

Coexpression Analysis

Arabidopsis GeneChip probe-gene mapping was performed as described
previously (Harb et al., 2010). The oligonucleotide sequences of probes were
mapped to genes from the TAIR 10 database using BLASTN with E , 1025

(Altschul et al., 1997). If two or more probe sets mapped to a single gene, the
expression value for that gene was determined by averaging the signals across
the probe sets. In this way, a total of 21,122 genes remained after disregarding
probe sets that mapped to more than one gene. A total of 1,388 Affymetrix
Arabidopsis arrays were obtained from the TAIR Gene Expression Omnibus
(http://www.arabidopsis.org). These slides were normalized using RMAExpress
software (Bolstad et al., 2003). The correlations between genes were determined
by the Pearson correlation coefficient.

Phylogenetic Profile Analysis

As described previously by Pellegrini et al. (1999), phylogenetic profiles for
all Arabidopsis protein sequences were constructed using BLASTP searches
(E , 10210) against a collection of 30 eukaryotic and 660 prokaryotic genomes
after applying an evolutionary filter for similar genomes. This calculation across
collected genomes yielded a 690-dimensional vector representing the presence
or absence of homologs of a query protein in these genomes. The probability of
two coevolved proteins is given by P as follows:

PðxjK;M;NÞ ¼ 1 ‐ ∑
x2 1

0

�
M
x

��
N2M
K2 x

�
�
N
K

�

where x is the number of the cooccurrence homologs of proteins A and B in the
genomes; K and M are the numbers of homologs of proteins A and B, respec-
tively; andN is the total number of collected genomes. The negative log P value
of phylogenetic profile similarity is used for prediction.

Rosetta Stone Analysis

Rosetta stone proteinswere detected as described previously (Marcotte et al.,
1999; Bowers et al., 2004). All protein sequences in the Arabidopsis genome
were BLASTPed against the nonredundant database with E , 10210. Two
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nonhomologous proteins were aligned over at least 70% of their sequences to
different portions of a third protein, and the third protein was referred to as a
candidate Rosetta stone protein.

Although proteins containing highly conserved domains may not be fused,
they are often linked to each other by the Rosetta stone method. To eliminate
these confounding Rosetta stone proteins, the probability that two proteins are
linked was computed by chance alone. The probability is given by P as follows:

PðxjK;M;NÞ ¼ 1 ‐ ∑
x2 1

0

�
M
x

��
N2M
K2 x

�
�
N
K

�

where x is the number of candidate Rosetta stone proteins; K and M are the
numbers of homologs of proteins A and B, respectively; and N is the total
number of sequences in the nonredundant database. The negative log P value of
the Rosetta stone protein is used for prediction.

Random Forest Classifier

The positive and negative reference sets with 11 features were used to train
the random forest classifier in R with the setting 500 trees (Liaw and Wiener,
2002). All protein pairs were then classified by the trained random forest model
for PPI prediction. The predicted PPI network was drawn using Cytoscape
(Cline et al., 2007).

Measurement of Classification Performance

The positive and negative reference sets were randomly divided into 10
subsets of equal size. Each time, nine subsets were used for classifier
training, and the remaining subset was used to test the trained classifier.
This procedure was repeated 10 times using different subsets for training
and testing, and a prediction for each interactionwas finally generated. The
number of TP (true positive), FP (false positive), TN (true negative), and FN
(false negative) predictions were counted. TPR (recall) = TP/(TP +FN),
FPR = FP/(FP +TN), precision = TP/(TP +FP), F1 score = 2 3 precision 3
recall/(precision + recall), and the AUC values were calculated against the
ROC curves.

Comparison of AraPPINet with Other
Predicted Interactomes

The performance of AraPPINet was compared with those of three
published PPI prediction methods. The AtPID data set was retrieved from the
AtPID database (version 4; Cui et al., 2008). The AtPIN data set was down-
loaded from the AtPIN database (Brandão et al., 2009). The latest PAIR data set
(version 3) was provided by Dr. X. Chen (Lin et al., 2011). The random PPI
networkswere generated based onAraPPINet using an edge-shufflingmethod,
which randomly rewired edges while preserving the original degree distribu-
tion of AraPPINet.

Functional Enrichment Analysis

We used plant GO Slim categories to characterize the functions of inter-
acting proteins. The statistical enrichment of proteins in a GO category was
obtained by comparing the proteins with those in AraPPINet as well as the
Arabidopsis genome using Fisher’s exact test in Blast2GO (Conesa and Götz,
2008).

Similarly, KEGG pathway enrichment analysis of proteins was performed
using Fisher’s exact test implemented in a Perl script against a reference data set
of AraPPINet and the Arabidopsis genome.

Identification of Hormone-Responsive Genes

The identification of hormone-responsive genes was based on the normal-
ized expression profiling data (submission nos. ME00333, ME00334, ME00344,
ME00337,ME00336,ME00343, andME00335) of Arabidopsis seedlings from the
TAIR Gene Expression Omnibus. The average signal intensities of biological
replicates for each sample were used to calculate the fold change of gene ex-
pression, and differentially expressed genes were identified as having a mini-
mum fold change of 2.

Yeast Two-Hybrid Assay

Plasmids were constructed using Gateway Cloning Technology (Invitrogen).
Insertions of PYL1, ABI5, and the coding sequences of candidate genes were
prepared using pENTR/D-TOPO. The bait vector pDEST32 and the prey vector
pDEST22 were used for the yeast two-hybrid assay. Sets of bait and prey
constructs were cotransformed into the AH109 yeast strain. The transformed
yeast cellswere selected on syntheticminimal double dropoutmediumdeficient
inTrp andLeu. Protein interaction testswere assessedon tripledropoutmedium
deficient in Trp, Leu, and His. At least six clones were analyzed with three
repeats and generated similar results.

BiFC Analysis

The BiFC vectors pEarleyagte201-YN and pEarleygate202-YC were kindly
provided by Steven J. Rothstein for analysis. RAV1 was fused to the C-terminal
end (amino acids 175–239) of the YFP protein (YFPC) in the vector pEG202YC,
which generated the RAV1-YFPC protein. ABI5 was fused to the N-terminal
end (amino acids 1–174) of the YFP protein (YFPN) in the vector pEG201YN,
which generated the ABI5-YFPN protein. The ABI5-YFPN, RAV1-YFPC, and
empty pEG201-YFPN constructs were introduced into Agrobacterium tumefa-
ciens strain GV3101. Pairs were coinfiltrated into Nicotiana benthamiana. YFP
signal was observed after infiltration from 48 to 60 h by confocal laser scanning
microscopy (Leica TCS SP5-II). Each observation was repeated at least three
times.

Plant Materials and Root Growth Assay

Arabidopsis Columbiawas used as thewild-type plant. The transfer DNA
insertion mutant line arr1,11,12 (CS6986) was kindly provided by Dr. Jiawei
Wang. For the root growth assay, seeds of different genotypes were surface
sterilized and thenmaintained in the dark for 3 d at 4°C to disrupt dormancy.
The seeds were sown onto MS medium containing 1.5% agar. To investigate
the inhibition of root growth by cytokinin and ABA, 5-d-old seedlings were
transferred onto plates supplemented with 6-BA and ABA (Sigma). The
primary root growth of seedlings was measured 5 d after transfer to the
plates.

Supplemental Data

The following supplemental materials are available.

Supplemental Figure S1. Global view of AraPPINet with the top six
assigned modules containing at least 200 node proteins.

Supplemental Figure S2. Coverage of features for interactions in AraPPINet.

Supplemental Figure S3. Topological properties of AraPPINet.

Supplemental Figure S4. Comparisons of performance for methods using
different sources of information.

Supplemental Figure S5. Partial ROC curves for PPIs predicted based on
different sources of information.

Supplemental Figure S6. Heat map of genes within the ABA signaling
network in response to plant hormones at different times.

Supplemental Table S1. Features of protein-protein pairs in Arabidopsis.

Supplemental Table S2. Enriched GO functional categories of interacting
proteins within the ABA signaling network.

Supplemental Table S3. Enriched KEGG pathways of interacting proteins
within the ABA signaling network.

Supplemental Table S4. Predicted PPIs were screened with the yeast two-
hybrid assay.

Supplemental Table S5. Presence of PPIs in Arabidopsis from various
databases.

Supplemental Table S6. The gold standard PPI data from various data-
bases.

Supplemental Table S7. Availability of PPIs in six model organisms from
various databases.
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