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Abstract

Aim—The American Heart Association (AHA) recommends monitoring invasive arterial diastolic 

blood pressure (DBP) and end-tidal carbon dioxide (ETCO2) during cardiopulmonary 

resuscitation (CPR) when available. In intensive care unit patients, both may be available to the 

rescuer. The objective of this study was to compare DBP versus ETCO2 during CPR as predictors 

of cardiac arrest survival.

Methods—In two models of cardiac arrest (primary ventricular fibrillation [VF] and asphyxia-

associated VF), 3-month old swine received either standard AHA guideline-based CPR or patient-

centric, BP-guided CPR. Mean values of DBP and ETCO2 in the final two minutes before the first 

defibrillation attempt were compared using receiver operating characteristic curves (area under 

curve [AUC] analysis). The optimal DBP cut point to predict survival was derived and 

subsequently validated in two independent, randomly generated cohorts.

Results—Of 60 animals, 37 (61.7%) survived to 45 minutes. DBP was higher in survivors than 

in non-survivors (40.6±1.8mmHg vs. 25.9±2.4mmHg; p<0.001), while ETCO2 was not different 

(30.0±1.5mmHg vs. 32.5±1.8mmHg; p=0.30). By AUC analysis, DBP was superior to ETCO2 

(0.82 vs. 0.60; p=0.025) in discriminating survivors from non-survivors. The optimal DBP cut 
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point in the derivation cohort was 34.1mmHg. In the validation cohort, this cut point demonstrated 

a sensitivity of 0.78, specificity of 0.81, positive predictive value of 0.64, and negative predictive 

value of 0.89 for survival.

Conclusions—In both primary and asphyxia-associated VF porcine models of cardiac arrest, 

DBP discriminates survivors from non-survivors better than ETCO2. Failure to attain a DBP 

>34mmHg during CPR is highly predictive of non-survival.

INTRODUCTION

In the United States, cardiac arrest occurs greater than 300,000 times annually in the pre-

hospital setting and greater than 200,000 times annually in the hospital.1,2 Although an 

increasingly substantial proportion of these in-hospital cardiac arrests (IHCAs) occur in 

intensive care units (ICUs),3–5 current cardiopulmonary resuscitation (CPR) guidelines and 

training do not differ significantly between that provided by laypersons in the pre-hospital 

setting or by experienced practitioners in a highly monitored environment.6,7 ICU providers 

have the knowledge and tools necessary to titrate resuscitation efforts to the actual 

physiologic response of the patient.3,4 Utilization of these tools can be expected to save 

lives.8

To that end, a 2013 American Heart Association (AHA) consensus statement recommended 

physiologic monitoring during CPR. Specifically, it endorsed targeting coronary perfusion 

pressure (CoPP), the difference between the aortic pressure and the right atrial pressure 

during the relaxation phase of chest compressions, invasively measured arterial diastolic 

blood pressure (DBP), or end-tidal carbon dioxide (ETCO2).8 These clinical measures are 

established indicators of CPR quality and correlate with survival.9–20 Moreover, pre-clinical 

CPR models that target intra-arrest hemodynamics or ETCO2 improve survival 

outcomes21–23 and CPR quality,24 respectively. Newly published 2015 AHA Advanced 

Cardiac Life Support (ACLS) guidelines endorse physiologic monitoring during cardiac 

arrest but do not distinguish between different modalities or offer specific physiologic 

goals.25 Indeed, while tailoring resuscitation efforts in a patient-centric fashion seems 

logical, the ideal manner in which to do this remains unclear. In-hospital rescuers are 

frequently confronted with multiple intra-arrest indicators of CPR quality, but no previous 

study has directly compared DBP to ETCO2 in their respective abilities to gauge CPR 

quality or predict outcome.

Therefore, the primary objective of this study was to determine whether DBP or ETCO2 was 

more likely to discriminate survivors from non-survivors during CPR in a realistic large 

animal model of cardiac arrest and, if possible, to determine the values of each that could 

predict the return of spontaneous circulation (ROSC) and short-term survival. DBP was 

selected as a primary comparator rather than CoPP because it is a more commonly clinically 

available measurement. We hypothesized that mean aortic DBP would perform better than 

ETCO2 as a discriminator between survivors and non-survivors. We addressed this 

hypothesis through a retrospective analysis of data collected during experiments in porcine 

models of ventricular fibrillation (VF) cardiac arrest.
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MATERIALS AND METHODS

Overview

This study entailed an analysis of data from all laboratory experiments performed in three-

month old female domestic swine over a three-year period. These experiments consisted of 

two different injury groups (primary VF cardiac arrest and asphyxia-associated VF cardiac 

arrest) and two different resuscitation methods (AHA guideline-based CPR and patient-

centric blood pressure-targeted CPR), which are described below. Comprehensive laboratory 

records were reviewed and hemodynamic recordings from all animals were examined for 

completeness. Any experiments without complete hemodynamic recordings available from 

the resuscitation period were excluded.

Animal Preparation and Data Acquisition and Measurement

The Children’s Hospital of Philadelphia Institutional Animal Care and Use Committee 

approved all experimental protocols. A full description of animal preparation and 

instrumentation methodology is available in our previous publications.21–23,26,27 Briefly, 

swine were anesthetized, mechanically ventilated, and high-fidelity, solid-state, 

micromanometer-tipped vascular catheters were placed in the right atrium, pulmonary artery, 

and aorta for continuous hemodynamic measurements. A bipolar pacing wire was advanced 

through a vascular introducer sheath into the right ventricle for VF induction. Prior to and 

during the experimental protocol, the electrocardiograph, aortic blood pressure, right atrial 

pressure, pulse oximetry, and ETCO2 waveforms were displayed and recorded. CoPP was 

calculated and displayed in real time by subtracting the mid-diastolic right atrial pressure 

from the mid-diastolic aortic pressure.

Experimental Protocol

Injury Period—Animals were randomized to one of two different injury groups:

1. Untreated VF cardiac arrest: VF was induced and left untreated for 7 minutes, after 

which the resuscitation period commenced.

2. Asphyxia-associated VF cardiac arrest: Asphyxia was induced and left untreated 

for 7 minutes, after which VF was induced and the resuscitation period 

commenced. Further descriptions of these protocols are available in previous 

publications.21–23

Resuscitation Period—In all animals, after completion of the 7-minute injury period, 

chest compressions (100 per minute), ventilations (6 per minute with 100% inhaled oxygen), 

and vasopressor therapy were initiated. Animals from each injury group were randomized to 

one of two treatment groups:

1. AHA guideline-based care (“Guideline Care”): Chest compression depth was 

targeted to the AHA-recommended depth of 51mm with standard ACLS 

epinephrine dosing.28

2. Patient-centric blood pressure-targeted CPR (“BP Care”): Chest compression depth 

was actively titrated to maintain a systolic blood pressure of 100mmHg and 
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vasopressors (epinephrine and vasopressin) were titrated to maintain a CoPP of at 

least 20mmHg.

Full descriptions of both treatment groups are available in our previous publications.21–23 In 

both groups, after 10 minutes of CPR, an initial defibrillation attempt was provided. Waiting 

10 minutes for the initial defibrillation attempt allowed for a substantial period of time in 

which to study CPR prior to achieving ROSC. Resuscitation according to treatment group 

continued with defibrillation attempts up to every two minutes until sustained ROSC was 

achieved or until an additional 10 minutes of resuscitation efforts after the initial 

defibrillation attempt failed to result in ROSC. The primary survival outcome was 45-minute 

ICU survival.

Outcomes

Continuous waveform data was recorded in PowerLab (ADInstruments, Colorado Springs, 

CO) and converted to numerical data that was then summarized into 15-second data epochs 

utilizing a custom code (Python, Enthought Canopy; Austin, TX). The mean aortic DBP and 

mean ETCO2 from the two minutes (eight 15-second epochs) immediately preceding the 

initial defibrillation attempt were chosen a priori for primary analysis. This time period was 

chosen in order to minimize the differences in ETCO2 between the animals with and without 

pre-VF asphyxia and because the last two minutes of CPR may be most reflective of 

myocardial perfusion and readiness at the time of defibrillation. The final two epochs were 

eliminated due to artifact from the movement of pressure transducers immediately prior to 

the countershock. The mean values for each variable of the remaining six epochs for each 

animal (minutes 15–16.5 of the experimental protocol) constitute the data contributing to the 

final analysis (Table 1).

Statistical Methods

Wilcoxon rank-sum tests were used to compare the distribution of resuscitation variables 

between survivors and non-survivors. Receiver operating characteristic (ROC) curves with 

area under the curve (AUC) analyses were used to compare the ability of mean aortic DBP 

and mean ETCO2 to discriminate between survivors versus non-survivors. The optimal cut 

point in mean aortic DBP for discriminating survival versus non-survival, as determined by 

the Youden index, was generated using 10-fold cross validation. In each of 10 iterations, 15 

animals from the primary VF cardiac arrest group and 15 animals from the asphyxia-

associated VF cardiac arrest group were randomly sampled. The optimal cut point was then 

applied to the remaining animals. Summary statistics related to the ability of this cut point to 

predict survival were reported. Statistical analyses were performed with Stata 14 (StataCorp, 

College Station, TX) or R 3.0 (R Foundation for Statistical Computing, Vienna, Austria).

RESULTS

Of the 65 eligible experiments performed on three-month old swine in our laboratory, five 

were eliminated from analysis due to incomplete hemodynamic data recordings, leaving 60 

individual animal experiments for inclusion in this study (Figure 1). There were 30 

experiments in each of the primary VF cardiac arrest and asphyxia-associated cardiac arrest 

groups. Half of the experiments in each of these groups were conducted with Guideline Care 
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and the other half were conducted with BP Care. As previously reported, 45-minute survival 

was more likely in animals treated with BP Care than in those treated with Guideline Care 

(27/30 vs. 10/30; p<0.001).21–23

Mean aortic DBP was significantly higher in survivors than in non-survivors 

(40.6±1.8mmHg vs. 25.9±2.4mmHg; p<0.001) (Figure 2a), whereas ETCO2 did not differ 

between survivors and non-survivors (30.0±1.5mmHg vs. 32.5±1.8mmHg; p=0.20) (Figure 

2b). Other resuscitation variables are summarized in Table 1. Chest compression depth and 

right atrial systolic pressure were significantly higher in non-survivors, while mean aortic 

pressure, right atrial diastolic pressure, and CoPP were higher in survivors. In the subgroup 

analysis of animals with primary VF cardiac arrest (n=30), mean aortic DBP was 

significantly higher in survivors than in non-survivors (39.9±2.6mmHg vs. 24.3±4.1mmHg; 

p=0.005), whereas ETCO2 did not differ between survivors and non-survivors 

(28.7±2.0mmHg vs. 30.0±2.9mmHg; p=0.43). In animals with asphyxia-associated cardiac 

arrest (n=30), mean aortic DBP was significantly higher in survivors than in non-survivors 

(41.4±2.5mmHg vs. 27.1±3.1mmHg; p=0.001), whereas ETCO2 did not differ between 

survivors and non-survivors (31.6±2.3mmHg vs. 34.4±2.1mmHg; p=0.46).

The AUC for mean aortic DBP was 0.82 vs. 0.60 for ETCO2 (p=0.025; Figure 3). The 

optimal cut point from the derivation cohort (n=30 in each of 10 iterations) in mean aortic 

DBP for discriminating survivors from non-survivors was 34.1mmHg. When applied to the 

validation cohort (n=30 in each of 10 iterations), this cut point demonstrated a sensitivity of 

0.78 (95% CI: 0.40–0.97), a specificity of 0.81 (95% CI: 0.58–0.95), a positive predictive 

value of 0.64 (95% CI: 0.31–0.89) and a negative predictive value of 0.89 (95% CI: 0.67–

0.99). The positive likelihood ratio was 4.08 (95%CI: 1.58–10.5) and the negative likelihood 

ratio was 0.27 (95% CI: 0.08–0.95). In a post hoc supplemental analysis of the final five 

minutes of CPR, mean aortic DBP was significantly higher in survivors than in non-

survivors (39.6±1.29mmHg vs. 26.8±2.00mmHg; p<0.001), whereas ETCO2 did not differ 

between survivors and non-survivors (31.9±1.69mmHg vs. 31.6±1.31mmHg; p=0.87). The 

AUC for mean aortic DBP in the final five minutes was 0.83 (95%CI: 0.72–0.94) versus 0.50 

(95%CI: 0.35–0.65) for ETCO2 (p<0.001).

DISCUSSION

Our data establish that mean arterial DBP is a superior discriminator of survival than mean 

ETCO2 in porcine models of IHCA. Whereas DBP values during the final two minutes of 

CPR preceding the first defibrillation attempt were substantially higher among survivors 

compared with non-survivors, the concomitant ETCO2 measurements did not differ between 

survivors and non-survivors. The optimal DBP cut point of 34.1mmHg from the derivation 

dataset had a negative predictive value of 89% in the validation dataset, providing evidence 

that values lower than this during CPR are unlikely to be survivable. These data suggest that 

maintaining DBP >34mmHg enhances the likelihood of a successful resuscitation.

These findings demonstrating the predictive value of DBP during CPR are relevant because 

IHCAs occur greater than 200,000 times annually in the United States and frequently occur 

in settings where both invasive arterial blood pressure monitoring and ETCO2 measurement 
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are feasible. Greater than half of adult IHCAs occur in the ICU and many have invasive 

arterial catheters at the time of cardiac arrest.29 More than 95% of pediatric IHCAs occur in 

the ICU, and 40% of children have invasive arterial blood pressure monitoring in place 

during CPR.3,30 Therefore, titration of chest compression depth and vasopressor dosing to 

DBP is feasible.

It is important to note that these experiments were conducted in a controlled environment in 

young, healthy swine with presumably normal coronary vasculature. We acknowledge that 

greater variability exists among human cardiac arrest victims. However, our findings were 

robust across cohorts from two different injury groups (primary VF and asphyxia-associated 

cardiac arrest) and two different treatment groups (Guideline Care and BP Care). Further, in 

subgroup analyses of DBP and ETCO2 within each injury group, DBP remained an effective 

discriminator between survivors and non-survivors, while ETCO2 once again was not. 

Therefore, we believe that the underlying benefit of titrating CPR to patient physiology 

should apply to all patients in whom it is possible (i.e., invasive monitoring in place at the 

time of the arrest).

Notably, these findings are biologically plausible and consistent with the well-established 

importance of CoPP in the physiology of cardiac arrest. The driving pressure for myocardial 

blood flow during CPR is CoPP;16,31,32 therefore, higher values of CoPP during CPR are 

associated with survival.15–17,32 Recent work in the swine cardiac arrest models reported 

here has demonstrated that a patient-centric method of CPR, relying upon CoPP as an intra-

arrest target, results in improved rates of ROSC22,23 and 24-hour survival21 compared with 

AHA guideline-based care. However, the use of CoPP during cardiac arrest is dependent 

upon the ability to monitor both invasive arterial blood pressure and central venous pressure 

and promptly calculate the difference between them during the relaxation phase of chest 

compressions.3 We therefore chose to evaluate DBP rather than CoPP during CPR as a 

predictor of outcome because DBP is the major driver of CoPP and is more readily available 

during CPR. Importantly, both DBP and CoPP during CPR discriminated between survivors 

and non-survivors in this study, while ETCO2 did not.

A number of factors influence ETCO2, including minute ventilation, pulmonary pathology, 

and the ventilation/perfusion defects that occur with vasopressor administration.19,33–36 

During CPR, ETCO2 primarily reflects pulmonary blood flow, and therefore cardiac output 

rather than myocardial blood flow.9,11,37 Animal studies9,38 and investigations in adults with 

out-of-hospital cardiac arrest10,12,13,18,19 demonstrated that ETCO2 values <10mmHg are 

incompatible with ROSC. Presumably, animals and patients with ETCO2 <10mmHg have 

very low pulmonary blood flow, cardiac output, and systemic blood pressures, precluding 

successful resuscitation. ETCO2 was not useful as a predictor of outcome in this swine study 

because the mean ETCO2 levels during CPR among both survivors and non-survivors were 

>30mmHg, reflecting reasonably adequate pulmonary blood flow and cardiac output. 

Cardiac output does not necessarily correlate with adequacy of DBP and its downstream 

effects on myocardial blood flow. That the survivors had mean DBP >40mmHg and non-

survivors had mean DBP <26mmHg suggests that systemic vascular resistance was a key 

determinant of myocardial blood flow and survival.
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Interestingly, chest compression depth was inversely associated with survival in this study. 

Since most of the survivors were in the BP Care group, in which chest compression depth 

was actively titrated to systolic blood pressure goals, we hypothesize that the depth 

necessary to generate these pressures is not uniform between individuals. Though in 

concordance with CPR guidelines, the standardized chest compression depths provided to 

animals in the Guideline Care group may not have been physiologically necessary. Recent 

evidence points to potential harm with chest compressions that are too deep,39 leading to the 

inclusion of an upper depth limit of 6cm in the 2015 AHA guidelines.40 Arguably, the 

optimal scenario in an ICU setting would be to provide the smallest depth necessary to 

achieve a targeted physiologic goal.

This study examined short-term, 45-minute survival from cardiac arrest as the primary 

outcome. With improvement in IHCA survival rates in recent years,5 increased focus has 

been on long-term survival and functional status after cardiac arrest. Notably, in an 

investigation by our group of longer-term survival within these models of CPR, 9 of 10 

(90%) animals treated with BP Care survived to 45-minutes as compared to 0/10 animals 

treated with Guideline Care. Of those 9 survivors, 8 (89%) survived to 24 hours and 7 (78%) 

had favorable neurologic status at 24 hours as evidenced by a swine cerebral performance 

category of 1 or 2.21 Other previous work has established that both cerebral perfusion 

pressure and brain tissue oxygen tension were strongly associated with higher CoPPs with 

the same resuscitation methods that are described in this report.26 Thus, within these pre-

clinical models, targeting intra-arrest hemodynamics not only results in the improved short-

term survival reported here, but also longer-term survival with favorable neurologic 

outcomes.21,26

This study has important limitations. First, this was a retrospective analytic study of 

previously performed experiments. This exposes the results to potential confounding by 

treatment group membership and vasopressor administration, as the majority of survivors 

were in the BP Care group, in which animals have on average received more vasopressors in 

our previous publications.21–23 Therefore, the increased DBP seen in survivors was likely 

driven, at least in part, by vasopressor administration. As further evidence of this, right atrial 

diastolic blood pressures were also higher in survivors, likely due to vasopressor-induced 

increases in pulmonary vascular resistance.35 Clearly, a prospective comparison of DBP-

guided versus ETCO2-guided resuscitation strategies would limit the inherent biases of this 

study design but does not detract from the findings of better discrimination of survival by 

DBP versus ETCO2. Second, ETCO2 in an asphyxiated animal is elevated upon 

commencing ventilation regardless of pulmonary blood flow or cardiac output; therefore, 

this presumably could have lowered the ability of ETCO2 to discriminate between survivors 

and non-survivors in half of our cohort. However, to minimize this bias, our predictor 

variables (ETCO2 and hemodynamics) were acquired 8 minutes into CPR, long after the 

time period when these values would equilibrate between injury groups.21,41 Third, while 

the AUC for DBP (0.82) was significantly superior to that of ETCO2 (0.60), the reader 

should note that it is an imperfect predictor of survival. Caution should be applied in using 

DBP as a standalone predictor of survival or as an indication to cease resuscitation efforts.
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CONCLUSIONS

In these porcine models of primary VF cardiac arrest and asphyxia-related cardiac arrest, 

diastolic blood pressure was an effective predictor of short-term survival, while end-tidal 

carbon dioxide was not. Specifically, inability to obtain an adequate diastolic blood pressure 

was highly predictive of death. These biologically plausible findings support the contention 

that patient-centric titration of CPR to hemodynamics may improve outcomes from in-

hospital cardiac arrest.
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Figure 1. Study Design
65 experiments were evaluated for adherence to protocol and completeness of intra-arrest 

hemodynamic data. Five were eliminated due to incomplete hemodynamic data, leaving 60 

for inclusion in this study. 30 of these were asphyxia-related cardiac arrest experiments and 

30 were primary VF cardiac arrest experiments. Within each injury group, half of animals 

were treated with BP Care and half were treated with Guideline Care. VF = ventricular 

fibrillation; BP = blood pressure.
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Figure 2a
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Figure 2b

Figure 2. Mean Aortic Diastolic Blood Pressure (2a) and Mean End-tidal Carbon Dioxide (2b) in 
Survivors Versus Non-Survivors
Box plots comparing survivors and non-survivors for each of the two primary comparators. 

Depicted values are means of aortic diastolic blood pressure and end-tidal carbon dioxide for 

each animal during minutes 15–16.5 of the experimental protocol.
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Figure 3. Receiver Operating Characteristic Curves Evaluating the Ability of Diastolic Blood 
Pressure and End-tidal Carbon Dioxide to Discriminate between Survivors and Non-survivors
Area under the curve (AUC) of DBP: 0.82, 95% CI: (0.70, 0.93). AUC of ETCO2: 0.60, 

95% CI: (0.45, 0.74).
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Table 1

Resuscitation Variables in Survivors Versus Non-Survivors

Variable Survivors (n=37) Non-survivors (n=23) p-value

ETCO2 30.02 (9.03) 32.48 (8.37) 0.20

CoPP 25.29 (10.30) 12.28 (10.33) <0.001

MAP 56.60 (9.91) 43.42 (10.54) <0.001

SBP 107.45 (22.62) 100.88 (42.14) 0.08

DBP 40.60 (10.82) 25.90 (11.68) <0.001

RAP 27.12 (11.09) 30.40 (15.85) 0.97

RAS 72.68 (50.41) 94.20 (63.51) 0.03

RAD 13.36 (11.35) 7.67 (9.15) 0.003

CC Depth 42.37 (6.49) 49.13 (4.69) <0.001

CC Rate 100.85 (2.14) 100.43 (0.97) 0.96

ICP 20.40 (15.20) 22.92 (45.04) 0.76

Mean measurements from minutes 15–16.5 of the experimental protocol, representing time during CPR preceding the initial defibrillation attempt. 

Displayed values are means (standard deviations). Units are millimeters for CC depth, min−1 for CC rate, and mmHg for all other variables. 
ETCO2 = end-tidal carbon dioxide; CoPP = coronary perfusion pressure; MAP = mean aortic blood pressure; SBP = systolic aortic blood pressure; 

DBP = diastolic aortic blood pressure; RAP = mean right atrial pressure; RAS = systolic right atrial pressure; RAD = diastolic right atrial pressure; 
CC = chest compression; ICP = intracranial pressure.
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