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Abstract

Seasonal influenza virus vaccines have to be re-formulated and re-administered on an annual basis 

due to antigenic drift of the influenza virus surface glycoproteins. In addition, seasonal vaccines 

show limited efficacy against novel pandemic influenza virus strains, and producing tailored 

vaccines for these strains in a timely manner is challenging. Several novel broadly protective 

vaccine candidates targeting the conserved stalk domain of the viral hemagglutinin have been 

developed. Here we review these novel constructs and discuss several important findings and 

considerations regarding the protective efficacy of stalk-based vaccines.

Introduction

Influenza virus infections cause significant morbidity and mortality worldwide [1]. Current 

influenza virus vaccines provide good protection against disease but have to be re-

formulated and re-administered on an annual bases due to antigenic drift of the virus [2]. 

This antigenic drift is caused by human herd immunity, which is mostly directed against the 

globular head domain of the viral hemagglutinin (HA, Figure 1). Antibodies against this 

immunodominant, membrane distal HA head domain are potent neutralizers of the virus. 

However, the high plasticity of the head domain [3] makes it easy for the virus to escape 

immune pressure. The membrane proximal stalk domain of the HA (Figure 1) is more 

conserved and antibodies that target this domain have been shown to broadly neutralize 

influenza viruses across several subtypes [4–12]. Unfortunately, the stalk domain is 

immunosubdominant compared to the head domain and is usually not targeted by the 

immune system following exposure to influenza virus vaccines. In the past it has been 

difficult to design vaccines that target the stalk domain due to the immunosubdominant and 

fragile nature of the conformational epitopes to which most neutralizing anti-stalk antibodies 

bind.

Stalk-based vaccine approaches

Two major strategies to induce stalk-based immunity have been developed so far. The first 

focuses on removal of the entire immunosubdominant head domain to construct headless 
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HAs [13]. (Table 1) Graves and colleagues recognized in the 1980s that the HA2 subunit 

(which forms the majority of the stalk domain) is more conserved than the HA1 subunit 

(which includes the globular head domain) [14]. In order to unmask the HA2 on the viral 

surface they treated virus preparations with acid (to induce a post-fusion conformation) and 

then removed the HA1 using a reducing agent [15]. Unfortunately, this treatment most likely 

destroyed the conformational epitopes which can induce neutralizing anti-stalk antibodies. 

In the 1990s, the first anti-stalk antibody, mAb C179 was isolated [8], and cells expressing a 

construct including the HA2 domain were used as immunogens in mice providing partial 

protection against heterosubtypic H1N1 challenge [16]. Steel and colleagues expressed their 

headless HA construct on virus-like particles and achieved homologous protection [17]. A 

construct based on the same design but expressed as soluble protein in insect cells showed 

full homologous and partial heterosubtypic protection following challenge of vaccinated 

mice [18]. Several other constructs were developed and provided protection against viral 

challenge in the mouse model [19–21]. However, the structural integrity of these constructs 

with respect to complex, conformational stalk epitopes was most likely suboptimal. Lu and 

colleagues improved on these constructs using an iterative design process and a cell free 

expression platform [22]. They were the first to show binding of broadly-neutralizing stalk 

mAbs to their immunogen (in an ELISA). However, animal studies with this headless HA 

construct have not been published. Recently, Yassine et al. and Impagliazzo et al. 
independently reported stable, correctly folded headless immunogens [23,24]. Interestingly 

both groups used a similar strategy to stabilize their respective stalk structures. Removal of 

the globular head domain exposes an area at the membrane distal part of the stalk at the very 

end of the HA2 long alpha helix (LAH) that is usually covered by the head domain. In both 

studies, this membrane distal part of the stalk was stabilized by a trimerization domain. 

While Yassine et al. used an HIV gp41 trimerization domain that was later removed, 

Impagliazzo et al. replaced the upper part of the LAH with a helical leucine zipper 

trimerization domain (which is present in the final construct). In addition, Yassine et al. 
fused their construct to a bacterial ferritin, which forms nanoparticles. This strategy was 

chosen to further stabilize the stalk and to make the construct more immunogenic. Structures 

based on X-ray crystallography and electron microscopy show binding of stalk mAbs to 

both constructs suggesting that their structure closely resembles the native HA stalk with 

respect to conformational stalk epitopes. Both constructs induced stalk-reactive antibodies in 

animal models and protected from challenge with highly pathogenic H5N1 viruses. 

Interestingly, despite robust protection, neutralizing antibody titers against homologous 

viruses were low and titers against heterosubtypic viruses were almost undetectable, a 

finding that will be further discussed below.

The second major strategy seeks to break the immunodominance of the head domain by 

sequential exposure of the immune system to chimeric HAs (cHAs) [14,25,26] (Table 1). 

cHAs consist of stalk domains from H1 (group 1), H3 (group 2) or influenza B viruses in 

combination with head domains of exotic – mostly avian – influenza virus subtypes [27–29]. 

By sequential vaccination with cHAs that have different head domains but the same stalk 

domain, it is possible to refocus the immune response towards the (usually) subdominant 

stalk domain (Figure 2A). This concept has proven successful in mouse and ferret models, 

using constructs from both group 1 and group 2 HAs [30–35]. Importantly, this strategy 
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provided complete protection against a heterosubtypic challenge using H5N1, H6N1 or 

H7N9 viruses [30,31]. cHA vaccination also reduced lung titers in mice challenged with 

H3N8, H10N7, and non-lethal H3N2 variant viruses [32] and reduced transmission of 

pandemic H1N1 virus in the ferret model [36]. Typically, three sequential vaccinations with 

cHAs that have the same stalk domain but different head domains are necessary in naive 

animals to induce protective immunity. However, humans already have low levels of B-cells 

and antibodies with specificities for stalk epitopes and are therefore already primed [12,37–

40]. This pre-existing immunity is most likely induced by natural infection with influenza 

viruses and/or influenza vaccinations [41–44]. Therefore, it is likely that the administration 

of one or two cHA-based vaccines induces high titers of stalk-reactive antibodies. It remains 

to be tested if these titers will be sufficiently high to confer protection. Clinical studies with 

pre-pandemic avian influenza virus vaccines provide evidence for this hypothesis. When 

subtype H5 or H7 vaccines are administered in clinical studies these vaccines significantly 

boost anti-stalk titers [38,39,45,46]. Importantly, these subtypes have completely different 

head domains in combination with stalk domains that express conserved group 1 (H5) or 

group 2 (H7) stalk epitopes. To some extent, this phenomenon of an enhanced stalk response 

also occurred during the H1N1 pandemic of 2009 [28,40,47–50]. While the 2009 pandemic 

H1N1 and the pre-pandemic seasonal H1N1 strains both share a highly conserved stalk 

domain, the HA head domains of the two strains are largely antigenically distinct. In 

contrast, vaccination with seasonal influenza virus vaccines or repeated administration of the 

pandemic H1N1 strain results in more narrow and head-specific responses [38,42,51–53].

In addition to headless HA and cHA immunogens, a number of other antigen designs and 

strategies have been proposed (Table 1). These include the presentation of stalk epitopes on 

virus-like particles [54,55], peptide based approaches [56,57], strategies that shield the HA 

head domain from recognition by the immune system [58,59] and heterologous prime-boost 

strategies [60–64] that consist of a prime with DNA, a live virus-vector or live-attenuated 

virus followed by a protein or inactivated vaccine boost.

Vaccination with cHA and headless HA immunogens may result in different 

antibody profiles

The type of antibody response induced by headless and chimeric HAs on a monoclonal level 

is currently unknown. cHAs are full length HAs that have H1, H3 or influenza B stalk 

domains combined with 'exotic' globular head domains and can be produced using 

traditional influenza vaccine production platforms as inactivated or live-attenuated vaccines. 

Stalk antibodies induced by cHAs will likely bind and affect wild type HAs on virions and 

infected cells (Figure 2A and B). Antibodies induced against the 'exotic' globular head 

domains will be irrelevant against currently circulating strains (but may be useful in 

protecting against pandemic viruses of the matched HA subtype). Headless HA constructs, 

however, may induce antibodies that bind to the immunogen but not to wild type HA on 

virions (Figure 2C and D). This scenario is likely since headless HAs expose areas on the 

top of the stalk domain that are not accessible on wild type HAs because they are covered by 

the head domain. Furthermore, the absence of the head domain might allow for angles of 

antibody binding which are not possible in the presence of a head domain on infectious 
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virus. An immune response against headless HAs might therefore result in the induction of 

antibodies that do not bind to wild type HAs and therefore cannot contribute to protection.

Stalk neutralization titers are typically low in mice

It has been noted that neutralization titers induced by stalk-based vaccines are low in animal 

models specifically mice. Although this observation is complicated by the different types of 

assays used in the studies, low or undetectable neutralization titers appear to be common 

[18,23,24,30,31,42]. This is in stark contrast to studies in humans, in which stalk-based 

neutralization titers can be readily measured when individuals have experienced pandemic 

H1N1 infections or H5N1 vaccinations (both scenarios have shown to stimulate anti-stalk 

antibodies) [38,39,41,65]. Several reasons may explain these findings. First, the in vitro 
neutralizing potency of stalk reactive antibodies is generally lower than that of head-reactive 

hemagglutination inhibition (HI) antibodies. As an example, He and colleagues [66] 

reported a potency difference between murine head and stalk antibodies of 4–6 logs, a 

finding confirmed by Dilillo and colleagues [67]. This divergence between the potency of 

murine head and stalk antibodies is not observed for human head and stalk antibodies 

(Figure 3). The latter are generally more similar with respect to their potency when unbiased 

data from plasmablast responses are considered [47,68]. For example Li and colleagues 

report 23 HI active, head reactive and 3 stalk-reactive mAbs recovered from plasmablasts 

after pandemic H1N1 vaccination. While only 8 (34.8%) of their recovered anti-head mAbs 

had neutralization IC50 values of below 1 ug/ml (with the remaining 15 HI active mAbs 

having IC50 values between 32 and 1 ug/ml) all three recovered anti-stalk antibodies showed 

IC50 values below 1 ug/ml [47]. Second, the serum IgG concentration of human blood is 

approximately 10 fold higher than that of standard laboratory mouse strains. IgG serum 

concentrations in human adults range from 4–22 mg/ml serum with averages between 11–12 

mg/ml depending on age, ethnicity and gender [69–71]. The level of serum IgG in mice 

usually used in vaccine studies (6–20 weeks) has been shown to be between 1–2 mg/ml 

[72,73]. Third, inherent differences in CDR composition and length between humans and 

mice might influence neutralization potency as well [74]. Based on these considerations, 

anti-stalk neutralization titers should be readily measured in adult human sera while very 

high levels of anti-stalk antibody levels would be needed in the mouse model to reach the 

limit of detection in common microneutralization assays.

Stalk antibodies show enhanced protective potency in vivo as compared to 

in vitro

While anti-head antibodies show higher potency than anti-stalk antibodies in vitro, it has 

been demonstrated that the protective effect of both types of antibodies is almost equal in 
vivo in murine challenge models with mouse-adapted and non-mouse-adapted viruses 

(Figure 3) [67,75,76]. As discussed above differences between head- and stalk-stalk 

antibodies in in vitro potency can be more than thousand fold [66,67,76]. Monoclonal 

antibody CR9114 shows an even stronger difference and displays no neutralizing activity 

against influenza B viruses in vitro, while affording robust protection against challenge with 

divergent influenza B strains in the mouse model [75]. This enhancement of potency of anti-
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stalk antibodies in vivo is most likely caused by Fc-mediated mechanisms like antibody 

dependent cell-mediated cytotoxicity (ADCC) and complement dependent cytotoxicity 

(CDC) which are not readily measured in (classical) in vitro neutralization assays. Recent 

studies have clearly demonstrated the efficacy-enhancing effect of ADCC on cross-reactive 

antibodies both on a monoclonal [67] as well as a polyclonal level [77–80]. A possible effect 

of CDC was also reported in vitro [81] but the significance of mediating complement 

activity for anti-stalk antibodies in vivo has not yet been elucidated. In addition to ADCC 

and CDC, more complex mechanisms like interactions between alveolar macrophages, 

CD8+ T-cells and antibodies may play a role as well [82]. Finally, it cannot be ruled out that 

the neutralizing activity of anti-stalk antibodies is enhanced in vivo by yet to be described 

interactions with host defense proteins, specific cell types or by the micro-environment of 

the lung architecture.

How broad is 'broad protection'?

An important feature of stalk-reactive antibodies is their breadth of binding and 

neutralization. Typical stalk-reactive antibodies bind to HAs within the phylogenetic group 1 

(H1, H2, H5, H6, H8, H9, H11, H12, H13, H16, H17 and H18) or group 2 (H3, H4, H7, 

H10, H14, H15) [7–9,83–85]. Exceptions are mAbs 12D1 [11] and 6F12 [10] which are 

restricted to one subtype but bind broadly within this subtype and several antibodies that are 

capable of cross-group binding [6,12,86–88] with one mAb even recognizing influenza B 

HAs [75]. Polyclonal antibodies induced by stalk-immunogens in mice [23,24,30] or 

vaccination with pandemic influenza virus vaccines [38,39,45,46] in humans usually follow 

the same trend with good group 1 cross-reactivity induced by H1 stalks and good group 2 

cross-reactivity induced by H3 stalks. Cross-group reactivity at a very low level can be 

detected but does not provide full protection from challenge [30]. It is important to note that 

reactivity against different viruses within the same group varies. While there is still 

considerable cross-reactivity and cross-protection towards members within the same HA 

group, cross-reactivity in both animals [18,23,24,30,32,33] and humans [38,39] is highest 

towards the stalks that were used to induce the antibodies. For, example, Impagliazzo and 

colleagues reported approximately 100–1000 ELISA units (EU)/ml reactivity against various 

H1 strains, 10 EU/ml against H5 and 0.1 EU against H9 for sera from mice vaccinated with 

their H1-based stalk construct [24]. Reactivity to group 2 HAs (H3, H7) was close to or 

below the limit of detection. This makes sense, since stalk epitopes change only slightly 

from subtype to subtype and affinity maturation will likely result in antibodies that bind 

most efficiently to HAs that the immune system actually encountered. Nevertheless, lower 

titers against heterosubtypic HAs can still confer full protection as demonstrated by several 

studies [18,23,24,30–32]. These data suggests that a vaccine formulation comprised of a 

group 1 stalk, a group 2 stalk and an influenza B HA stalk component will make an effective 

universal influenza virus vaccine for humans.

Longevity of broadly protective vaccines

The primary goal for the development of universal influenza virus vaccines is to induce a 

broadly protective immune response. However, it is crucial that this immune response is 

long-lived. One of the most significant caveats of current inactivated influenza virus 
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vaccines is that the immune response they elicit is relatively short lived and may wane over 

the course of one influenza season [89]. A universal influenza virus vaccine that would 

induce short-lived immunity could be an appealing tool in case of a new pandemic but 

would be less useful in protecting against seasonal influenza viruses since it would have to 

be given annually like current vaccines. It is not well understood why current inactivated 

influenza virus vaccines induce relatively short-lived immune responses. Natural influenza 

virus infection can certainly induce lifelong immunity against a specific strain (which is not 

necessarily an advantage due to antigenic drift) [90]. A better understanding of the 

difference - in quality and quantity - of the immune responses to vaccination versus natural 

infection will be very important in order to design a novel generation of vaccines that induce 

long-lasting immunity. Several strategies to enhance the longevity of the immune response 

to influenza have been tested and might be suitable for stalk-based vaccines as well [34,91].

Conclusions

The discovery of stalk-reactive antibodies has spurred the development of universal 

influenza virus vaccine candidates. Several new designs for stalk-based immunogens and 

vaccination strategies have been proposed and successfully tested in pre-clinical studies. 

Future clinical trials will show if these vaccine candidates perform well in humans in terms 

of safety, immunogenicity and efficacy. Along the way we will learn important lessons that 

will help us in better understanding the mechanisms of immune responses to conserved 

influenza virus epitopes in humans.
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Highlights

• Two different types of stalk-based universal influenza virus vaccine candidates - 

chimeric hemagglutinins and headless hemagglutinins - are currently in 

development

• The two types of vaccines might induce a different antibody profile

• Efficacy of anti-stalk antibodies in vivo is high despite low in vitro 
neutralization potential

• Long lasting immunity is important for universal influenza virus vaccines
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Figure 1. Schematic of the trimeric influenza virus HA
The membrane distal globular head domain is shown in red and the membrane proximal 

stalk domain is shown in blue. Cysteines 52 and 277 - which form a disulfide bond that 

demarcates head and stalk domain - are shown in yellow. The schematic is based on the H1 

HA of A/PR/8/34 (PDB 1RU7 as described in [92]).
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Figure 2. Vaccination with cHA and headless HA immunogens may result in different antibody 
profiles
A cHA vaccination induces stalk-reactive antibodies by sequential exposure of the immune 

system to constructs with a conserved stalk domain but divergent head domains (cH5/1 and 

cH8/1 HAs which share the H1 stalk domain have very different H5 and H8 head domains). 

B Anti-stalk antibodies (blue) generated in response to cHA vaccination bind and neutralize 

incoming viruses. Since these antibodies were induced by full length HAs they should bind 

efficiently to stalk epitopes on wild type full length HAs. Low levels of antibodies induced 

against the different head domains are most likely irrelevant to protection if the head domain 

of the incoming virus is not matched (red and green). If the head domains of the challenge 

virus and the cHA constructs match, these head antibodies might be beneficial for protection 

as well. C and D Antibodies induced by headless HA constructs may belong to three 

different categories: First, antibodies that bind stalk epitopes on headless HA vaccine 

constructs bind and neutralize wild type HA (blue). Second, antibodies that bind to surfaces 

on headless HAs are not exposed on wild type HA (yellow). These antibodies might not bind 

to wild type HA and might not be able to neutralize incoming virus. Third, antibodies that 

bind to stalk epitopes at angles may be unable to bind to stalk epitopes (due to steric 

hindrance) when a head domain is present (orange). These antibodies are unable to bind and 

neutralize incoming virus.
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Figure 3. In vitro neutralizing potency and in vivo protective efficacy for murine and human anti-
head and anti-stalk antibodies
Murine anti-head antibodies usually exhibit high potency in vitro as well as good protective 

efficacy in vivo. Their in vitro IC50 is 2–6 logs lower (better) than those of murine anti-stalk 

antibodies. However, the in vivo protective efficacy of murine head and stalk mAbs is 

similar. On the other hand human head and stalk antibodies behave similar in in vitro 
potency assays with anti-head mAbs performing slightly better. The in vivo protective 

efficacy of both types of human mAbs is similar as well. Anti-stalk antibodies gain in vivo 
potency through Fc-mediated immune mechanisms.
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Table 1

Overview of HA stalk-based influenza vaccine approaches

Candidate Development stage Key points References

Headless HA pre-clinical removal of globular head domain allows the immune system to 
focus on the stalk domain; must be expressed recombinantly and 
cannot be produced using traditional influenza vaccine 
production platforms

[15–24], reviewed 
in [13]

Chimeric HA (cHA) pre-clinical, clinical 
phase in preparation

sequential presentation of the same stalk domain in combination 
with exotic head domains breaks the immunodominance of the 
head domain and refocuses the immune response to the stalk; can 
be produced using traditional influenza virus vaccine production 
platforms

[27,29–33,35,36]

Glycan shielding pre-clinical hyperglycosylation of the globular head domain shields it from 
the immune system

[58,59]

Prime-boost strategies clinical have been developed to increase the efficacy of seasonal, H5 and 
H7 influenza virus vaccines but have also been shown to broaden 
the immune response

[45,60,61,63,64]

Peptides pre-clinical allow the immune response to focus on the epitope of choice 
without distraction by the globular head domain; might not 
capture the right conformation of complex structural epitopes

[56,57]

VLP-based approaches pre-clinical present key epitopes on the surface of immunogenic VLPs, might 
not capture the right conformation of complex structural epitopes

[54,55]
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