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Abstract
Objectives To benchmark the performance of state-of-the-art
computer-aided detection (CAD) of pulmonary nodules using
the largest publicly available annotated CT database
(LIDC/IDRI), and to show that CAD finds lesions not identi-
fied by the LIDC’s four-fold double reading process.
Methods The LIDC/IDRI database contains 888 thoracic CT
scans with a section thickness of 2.5 mm or lower. We report
performance of two commercial and one academic CAD sys-
tem. The influence of presence of contrast, section thickness,
and reconstruction kernel on CAD performance was assessed.
Four radiologists independently analyzed the false positive
CAD marks of the best CAD system.
Results The updated commercial CAD system showed the best
performance with a sensitivity of 82 % at an average of 3.1 false
positive detections per scan. Forty-five false positive CADmarks
were scored as nodules by all four radiologists in our study.
Conclusions On the largest publicly available reference data-
base for lung nodule detection in chest CT, the updated com-
mercial CAD system locates the vast majority of pulmonary
nodules at a low false positive rate. Potential for CAD is sub-
stantiated by the fact that it identifies pulmonary nodules that

were not marked during the extensive four-fold LIDC anno-
tation process.
Key Points
• CAD systems should be validated on public, heterogeneous
databases.

• The LIDC/IDRI database is an excellent database for
benchmarking nodule CAD.

•CAD can identify the majority of pulmonary nodules at a low
false positive rate.

• CAD can identify nodules missed by an extensive two-stage
annotation process.

Keywords Computer-assisted diagnosis . Image
interpretation, computer-assisted . Lung cancer . Solitary
pulmonary nodule . Lung

Abbreviations
CAD Computer-aided detection
CT Computed tomography
LIDC Lung image database consortium
IDRI Image database resource initiative

Introduction

The last two decades have shown substantial research into
computer-aided detection (CAD) of pulmonary nodules in
thoracic computed tomography (CT) scans [1, 2]. Although
many academic and several commercial CAD algorithms
have been developed, CAD for lung nodules is still not com-
monly used in daily clinical practice. Possible explanations for
this are a lack of reimbursement, technical impediments to
integration into PACS systems, but also low sensitivity and
high false positive rates. The recent positive results of the
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NLST lung cancer screening trial [3] and the subsequent de-
velopments towards implementation of lung cancer screening
in the United States [4, 5] have renewed the interest into CAD
for pulmonary nodules. If lung cancer screening will be im-
plemented on a large scale, the burden on radiologists will be
substantial and CAD could play an important role in reducing
reading time and thereby improving cost-effectiveness [6, 7].

Following the general demand for open and reproducible
science, public databases have been established to facilitate
objective measures of CAD performance, and to move CAD
development to a next level [8–10]. In 2011, the complete
LIDC/IDRI (Lung Image Database Consortium / Image Da-
tabase Resource Initiative) database was released [10]. This
dataset provides by far the largest public resource to assess the
performance of algorithms for the detection of pulmonary
nodules in thoracic CT scans. A large effort has gone into
the collection of annotations on these cases, but CAD was
not used to assist the readers [10].

In this paper, we apply two commercial and one state-of-
the-art academic nodule detection systems on the LIDC/IDRI
database with the aim to set a first benchmark performance on
the full database. To our knowledge, this is the first paper,
which reports the performance of CAD systems on the full
LIDC/IDRI database. We performed an extensive analysis of
the performance of the applied CAD systems and make our
evaluation publicly available so that other CAD developers
can compare with this benchmark. Furthermore, we hypothe-
size that CAD can find lesions, which were not detected in the
extensive LIDC annotation process consisting of a blinded
and unblinded review by four radiologists. To investigate the
latter, we evaluated the false positives of the best CAD system
using a similar reading protocol as had been used in LIDC.

Materials and methods

Data

This study used the LIDC/IDRI data set [10], consisting of 1,
018 helical thoracic CT scans collected retrospectively from
seven academic centres. Nine cases with inconsistent slice
spacing or missing slices were excluded. In addition, 121
CT scans, which had a section thickness of 3 mm and higher,
were excluded since thick section data is not optimal for CAD
analysis. This resulted in 888 CT cases available for evalua-
tion. In Tables 1, 2, and 3, the characteristics of the input data
are shown.

LIDC/IDRI image annotation

The LIDC/IDRI employed a two-phase image annotation pro-
cess [10]. In the first phase (the blind phase), four radiologists
independently reviewed all cases. In the second phase (the

unblinded phase), all annotations of the other three radiolo-
gists were made available and each radiologist independently
reviewed their marks along with the anonymized marks of
their colleagues. Findings were annotated and categorized into
nodule≥3 mm, nodule<3 mm, or non-nodule. Non-nodule
marks were used to indicate abnormalities in the scan, which
were not considered a nodule. Using this two-phase process,
the LIDC investigators aimed to identify as completely as
possible all lung nodules, without forcing consensus among
the readers. More details about the annotation process can be
found in [10]. An XML file with the annotations is publicly
available for every case.

Nodule selection and purpose

In this study, we included all annotations available in the XML
files for the 888 scans. The focus of this study was on the

Table 1 Manufacturer and scanner model distribution of the 888 CT
scans in our dataset

Manufacturer Model name Number

GE MEDICAL SYSTEMS LightSpeed16 197

GE MEDICAL SYSTEMS LightSpeed Ultra 162

GE MEDICAL SYSTEMS LightSpeed QX/i 97

GE MEDICAL SYSTEMS LightSpeed Pro 16 79

GE MEDICAL SYSTEMS LightSpeed VCT 61

GE MEDICAL SYSTEMS LightSpeed Plus 56

GE MEDICAL SYSTEMS LightSpeed Power 10

Philips Brilliance 16P 54

Philips Brilliance 64 49

Philips Brilliance 40 9

Philips Brilliance16 5

SIEMENS Sensation 16 95

SIEMENS Sensation 64 5

SIEMENS Definition 3

SIEMENS Emotion 6 1

TOSHIBA Aquilion 5

Total 888

Table 2 Section
thickness distribution of
the 888 CT scans in our
dataset

Section thickness Number

0.6 7

0.75 30

0.9 2

1 58

1.25 343

1.5 5

2 123

2.5 320

Total 888
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nodule≥3 mm group. As a result of the LIDC/IDRI image
annotation process, each nodule≥3 mm had been annotated
by one, two, three, or four radiologists. In total, the data set
of this study included 777 locations, which were marked as
nodule≥3 mm by all four radiologists. The 777 nodule≥3 mm
annotations marked by all four radiologists can be categorized
by size as follows: 22 nodules <4 mm, 228 nodules 4–6 mm,
199 nodules 6–8mm, and 328 nodules >8mm. The number of
nodules per scan ranged between 1 and 8.

The purpose of this study was twofold. First, we aimed to
assess the performance of three state-of-the-art nodule CAD

systems. Secondly, we performed an observer experiment to
investigate whether CAD can find additional lesions, missed
during the extensive LIDC annotation process.

CAD systems

Three CAD systems were used: a commercial CAD sys-
tem Visia (MeVis Medical Solutions AG, Bremen, Ger-
many), a commercial prototype CAD system Herakles
(MeVis Medical Solutions AG, Bremen, Germany), and
an academic nodule CAD system ISICAD (Utrecht Med-
ical Center, Utrecht, the Netherlands) [11]. ISICAD was
the leading academic CAD system in the ANODE09
nodule detection challenge [9]. For all three CAD sys-
tems, a list of candidate marks per CT scan was obtain-
ed. Each CAD candidate is described by a 3D location.
Additionally, Herakles and ISICAD also provide a CAD
score per CAD candidate. The CAD score is the output
of the internal classification scheme of the CAD system
and is a measure of the likelihood that a candidate is a
pulmonary nodule. An internal threshold on the CAD
scores determines which candidates are active CAD
marks and, hence, will be shown to the user, and which
candidates are not shown. Since different thresholds can
be applied on the CAD score, a CAD system can have
multiple operating points. A low threshold generates
more CAD marks, thereby typically increasing sensitiv-
ity at the cost of more false positive detections. A high
threshold will generate less false positives but may re-
duce the sensitivity of a CAD system. For all three
CAD systems, one fixed operating point is internally
set which we will refer to as the system operating point.

Fig. 1 FROC curves for all three
CAD systems on the full database
of 888 CT scans containing 777
nodules for which all four
radiologists classified it as
nodule≥3 mm. The points on the
curves indicate the system
operating points of the three CAD
systems. For Visia, no continuous
FROC curve but only a single
operating point can be provided
since the CAD scores of the CAD
marks are not available. Shaded
areas around the curve indicate
95 % confidence intervals

Table 3 Distribution of the reconstruction kernels used for the 888 CT
scans in our dataset

Manufacturer and reconstruction kernel Type Number

GE MEDICAL SYSTEMS - BONE Enhancing 220

GE MEDICAL SYSTEMS - LUNG Overenhancing 70

GE MEDICAL SYSTEMS - STANDARD Standard 372

Philips - B Standard 21

Philips - C Enhancing 7

Philips - D Overenhancing 45

SIEMENS - B20s Soft 1

SIEMENS - B30f Standard 102

SIEMENS - B31f Standard 1

SIEMENS - B45f Enhancing 30

SIEMENS - B50f Enhancing 2

SIEMENS - B70f Overenhancing 12

TOSHIBA - FC03 Standard 2

TOSHIBA - FC10 Soft 3

Total 888
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Evaluation

The performance of the CAD systems was analyzed on the set
of 777 nodules annotated by 4/4 radiologists as a
nodule≥3 mm. We employed free-response operating charac-
teristic (FROC) analysis [12] where detection sensitivity is
plotted against the average number of false positive detections
per scan. Confidence intervals were estimated using
bootstrapping with 5,000 iterations [13]. If a CAD system
marked locations which were annotated by three or fewer
radiologists as nodule≥3 mm, as nodule<3 mm, and as non-
nodules, these CAD marks were counted as false positives.
For Visia, no CAD scores were available for the CAD candi-
dates. Consequently, only one operating point and not a full
FROC curve could be generated for Visia.

To gain more insight into which type of nodules were
missed by CAD, we looked at the characteristics, as scored
by the LIDC readers, for all nodule≥3 mm findings, of the
false negatives. We defined subsolid nodules as nodules for
which the majority of the radiologists gave a texture score
smaller than 5 (1=ground-glass/non-solid, 3=part-solid,
5=solid). Subtle nodules were defined as nodules for which
the majority of the radiologists gave a subtlety score smaller or
equal than 3 (1=extremely subtle, 5=obvious).

To assess the robustness of the CAD algorithms, we also
evaluated the CAD results on different subsets of the data. The
LIDC-IDRI data set is a heterogeneous set of CT scans and
CAD algorithms that could conceivably exhibit a different
performance on different types of data. We analyzed the fol-
lowing factors: (1) presence of contrast material, i.e., non-

Fig. 2 FROC curves for all three CAD systems on (a) contrast scans
(n=242) versus non-contrast scans (n=646), (b) scans with a section thick-
ness <2 mm (n=445) versus scans with a section thickness ≥2 mm
(n=443), and (c) scans with a soft or standard reconstruction kernel
(n=502) versus scans with an enhancing or overenhancing reconstruction

kernel (n=386). The reference set of nodules consists of nodules for
which all four radiologists classified it as nodule≥3 mm. The points on
the curves indicate the system operating points of the three systems. For
Visia, no continuous FROC curve but only a single operating point can be
provided since the CAD scores of the CAD marks are not available
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contrast versus contrast enhanced scans, (2) section thickness,
i.e., cases with section thickness <2 mm versus section thick-
ness ≥2 mm, and (3) reconstruction kernel, i.e., soft/standard
versus enhancing/overenhancing kernels.

Observer study

In order to evaluate whether CAD can find lesions missed
during the extensive annotation process of the LIDC/IDRI
database, we considered the CAD marks of the best CAD
algorithm , which were counted as false positives at its
system operating point. Two conditions were differentiat-
ed: the location of the CAD mark had in fact been marked
in the LIDC annotation process, but not by all four
readers as nodule≥3 mm as warranted for being counted
as a true positive. The second condition comprised those
CAD marks that had no corresponding LIDC marks at all.
The CAD marks corresponding to the first condition can
be subdivided according to the LIDC readings. The latter
CAD marks were independently inspected by four chest
radiologists, since these are potentially nodules
overlooked by all four LIDC readers. Thus, we mimic
the original LIDC annotation process as though CAD
had been included as another independent reader in the
first phase of the image annotation process. CAD marks
were categorized as nodule≥3 mm, nodule<3 mm, non-
nodules, or false positive. Electronic measurement tools
were available to measure size. To reduce the workload
for the radiologists, a research scientist (5 years experi-
ence in nodule CAD research) first removed the marks
which were obviously not a nodule. CAD marks which
were marked as nodule>3 mm by all four radiologists in

our study were independently evaluated by an experi-
enced radiologist that scored subtlety, location, type, and
attachment to other structures. Subtlety was scored on a
five-point scale (1=extremely subtle, 5=obvious).

Results

Comparative CAD performance

The performance of the three CAD systems is depicted in
Fig. 1. From the FROC curves it is evident that Herakles
performed best. The system performances were significantly
different (p<0.001). At its system operating point, Herakles
reached a sensitivity of 82 % at an average of 3.1 false posi-
tives per scan for nodules all four LIDC readers had agreed on.

We evaluated the characteristics of the 141 false negative
nodules. 42 (30%) false negatives were subsolid nodules. The
size distribution of the missed nodules was as follows: five
nodules <4mm, 53 nodules 4–6mm, 31 nodules 6–8mm, and
52 nodules >8 mm. Thus, a large portion of the missed nod-
ules were smaller than 6 mm, but still a substantial number of
missed nodules, 52 (37%), were larger than 8 mm. Finally, we
found that 33 (23 %) of the missed nodules were subtle. Fig-
ure 3 shows eight randomly chosen missed nodules.

The performance of the three CAD systems on the different
subsets is depicted in Fig. 2. This figure shows that the per-
formance of ISICAD and Visia was influenced by different
data sources. ISICAD shows the largest performance differ-
ence between soft/standard versus enhancing/overenhancing
reconstruction kernels. Herakles showed the most stable and

Fig. 3 Eight randomly chosen examples of false negatives ofHerakles. Each image shows a transverse field of view of 60 x 60 mm in which the nodule
is centred. Note that many missed nodules are subsolid
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robust performance for all different data sources and consis-
tently outperformed the other two CAD systems.

We categorized the CAD marks of Herakles, which were
counted as false positives at its system operating point. In
total, there were 2,720 false positive CAD marks in the 888
cases (Table 4). The majority of the CAD marks, 1,612 out of
2,720 (59 %), had at least one corresponding mark from the
LIDC readers. These CAD marks can be further categorized
into marks on annotations marked as nodule≥3 mm by three
out of four radiologists, two out of four radiologists, one out of
four radiologists; and annotations marked as nodule<3 mm by
at least one radiologist (and, hence, no nodule≥3 mm annota-
tions); and finally annotations marked as non-nodule by at
least one out of four radiologists (and, hence, no nodule≥3 mm
or nodule<3 mm annotations). Table 4 shows how the CAD
marks were further split out into these categories. The remain-
ing 1,108 false positive CAD marks had no corresponding
mark from the LIDC readers.

Observer study results

In our observer experiment, we focused on these 1,108 false
positive CAD marks of Herakles, which had no correspond-
ing mark from any of the LIDC readers. These are locations,
which were potentially overlooked by all four LIDC readers.
After CAD marks, which were obviously not a nodule had
been removed by the research scientist, 269 CAD marks were
left for analysis by the four radiologists. Common sources of
false positive detections removed by the research scientist
included fissure thickening at the chest wall, vessel bifurca-
tions and (micro-)atelectasis. Table 5 depicts how each of the
observers scored these 269 CAD marks. In total, 45 CAD
marks were considered to be a nodule≥3 mm by all four radi-
ologists; 177 CAD marks were considered to be a
nodule≥3 mm by at least one of the radiologists. The size
distribution of the 45 CAD marks was as follows: nine nod-
ules <4 mm, 27 nodules 4-6 mm, seven nodules 6-8 mm, and
two nodules >8 mm. Subtlety was scored lower or equal than
3 for 32 (71 %) nodules. Location was scored as central for 11
nodules, peripheral for 11 nodules, and in-between for 23
nodules. Nodule type was scored as follows: 32 solid, 2
ground-glass, 1 part-solid, and 10 calcified. Vascular, pleural
or fissural attachment was found for 18 (40 %) nodules. Fig-
ure 4 shows eight randomly chosen examples of CAD marks,
which were considered a nodule≥3 mm by all four radiologists
and were scored as solid. In addition, 169 marks were consid-
ered a nodule≥ 3 mm or a nodule<3 mm by all four radiolo-
gists; 250 marks were considered a nodule≥3 mm or a
nodule<3 mm by at least one of the radiologists. Thus, follow-
ing the reference of the 4-reader agreement and adding these
45 CADmarks to the set of nodules, the updated performance
of Herakles at its system operating point would reach a sen-
sitivity of 83 % at an average of 3.0 false positive detections

per scan. In this FROC analysis, CAD marks on locations
marked as nodule≥3 mm by three out of four radiologists,
two out of four radiologist, one out of four radiologists, or as
nodule<3 mm by at least one radiologist were counted as false
positives. Evidently, one could argue whether CAD marks on
these locations should be counted as false positives or not. If
CAD marks on these locations were not to be counted as false
positives but ignored in the FROC analysis, a performance of
83 % sensitivity at an average of only 1.0 false positives per
scan would be reached.

Discussion

Though clear definitions are available for what represents a
pulmonary nodule (Fleischner Glossary [14]), the literature
lists a number of publications demonstrating the lack of ob-
server agreement of what indeed represents a pulmonary nod-
ule [15–17]. Not surprisingly this effect is larger for small

Table 4 Overview of the categories in which the false positives of
Herakles at the system operating point can be divided. In this analysis,
we first check for corresponding nodule≥3 mm annotations, then we
check for corresponding nodule<3 mm annotations, and finally we
check for corresponding non-nodule annotations. This means that in the
top row where three out of four radiologists annotated the location as
nodule≥3 mm, the fourth radiologist may have marked the location as
nodule<3 mm, non-nodule, or did not mark it at all. In the
nodule<3 mm category, all false positives whose location was marked
as nodule<3 mm by at least one radiologist were placed (and, hence, no
radiologist marked it as nodule≥3 mm). The non-nodule category contains
all false positives whose location was marked as non-nodule by at least
one radiologist (and, hence, no radiologist marked the location as
nodule≥3 mm or nodule<3mm). False positives for which no correspond-
ing annotation was found were assigned to the last category

Category Number

Nodule≥3 mm - 3/4 254

Nodule≥3 mm - 2/4 208

Nodule≥3 mm - 1/4 219

Nodule<3 mm 423

Non-nodule 508

No corresponding annotation 1108

Total 2720

Table 5 Results of the observer experiment. The distribution of the
scores of all observers is tabulated

Type Observer 1 Observer 2 Observer 3 Observer 4

Nodule≥3 mm 119 97 84 153

Nodule<3 mm 125 141 136 50

Non-nodule 20 20 46 41

False positive 5 11 3 25

Total 269 269 269 269
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lesions [15]. This lack of an absolute standard of truth makes
benchmarking of CAD systems very difficult. Therefore, we
decided to use the largest publicly available database of CT
annotated pulmonary nodules. An elaborate double reading
process involving four radiologists had been undertaken to
define various levels of evidence for the presence of nodules
to avoid the need for a consensus statement. In our study we
used the extensive annotation information of the LIDC/IDRI
database to benchmark the performance of state-of-the-art
nodule CAD systems. To our knowledge, this is the first study
that uses the full LIDC database and secondly accepts the fact
that there is no absolute standard of truth for the presence of
pulmonary nodules in the absence of pathological correlation.

Our study showed substantial performance differences be-
tween the three CAD systems, with the commercial prototype
Herakles demonstrating the best performance. At its system
operating point, Herakles detected 82 % of all nodule≥3 mm
findings marked by all four LIDC readers at an average of 3.1
false positives per scan. If marks on the other LIDC annota-
tions were ignored in the analysis, a sensitivity of 83 % at an
average of only 1.0 false positives was reached.

The best CAD system still misses a subset of the nodules
(18 % of the 777 nodules). We observed that a substantial part
of the missed nodules (30 %) were subsolid nodules, which
are more rare and have a markedly different internal character
than solid nodules. Therefore, integrating a dedicated subsolid
nodule detection scheme [18] in a complete CAD solution for
pulmonary nodules may prove helpful to improve overall
CAD performance.

Both Visia and ISICAD showed substantial performance
differences on different subsets of the data, but Herakles
achieved a more robust performance. The performance of

ISICAD dropped substantially on data with enhancing or
overenhancing reconstruction kernels. This may be attributed
to the fact that ISICADwas developed and trained exclusively
with data from the Dutch-Belgian NELSON lung cancer
screening trial, which consists of homogeneous thin-slice data
reconstructed with a soft/standard reconstruction kernel [19].
This indicates that although ISICAD was the leading CAD
system for the data used in the ANODE challenge [9], which
consisted only of data obtained from the NELSON trial, its
performance drops when applied to data of other sources.
Therefore, the heterogeneity of a reference database is an im-
portant aspect for a reliable CAD evaluation and an advantage
of the LIDC/IDRI database.

Although a blinded and unblinded review of all images had
been performed by the LIDC investigators, we showed that
CAD can find lesions missed by the original LIDC readers.
We found 45 nodules, which were accepted as a nodule≥3 mm
by all four radiologists involved in our observer study. Previ-
ous studies have already shown that CAD can find lesions
missed by multiple readers [18, 20]. One possible reason
why the LIDC readers missed nodules may be that the LIDC
readers only inspected transverse sections [10]. Characteristic
features of the 45 nodules not included in the LIDC/IDRI
database but seen by CAD were subtle conspicuity, small size
(<6 mm), and attachment to pleura or vasculature.

Since an extensive evaluation on a large reference database
is essential to move CAD to the next level, we have published
our results on a public website (http://luna.grand-challenge.
org/) which allows other CAD researchers to upload results
of their CAD systems for which the same FROC curves as
presented in Figs. 1 and 2 will be computed and published on
the website. The annotation files of the reference standard and

Fig. 4 Eight randomly chosen examples of solid nodule annotations
marked as nodule≥3 mm by all four readers in our observer experiment.
These nodules were not annotated by any of the original LIDC readers.

Each image shows a transverse field of view of 60 x 60 mm in which the
nodule is centred
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the extra annotations by the human readers in our observer
study are available for download. By making the extra
annotations available to other researchers, this study
contributes to an improved reference standard for the LIDC/
IDRI database, and we hope future CAD studies will use the
improved reference standard.

We primarily evaluated the performance of CAD on nod-
ules for which all four radiologists agreed that it was a
nodule≥3 mm. Previous publications have also focused on
the nodules detected by three, two, or one out of four radiol-
ogists [21, 22]. For using CAD in a screening setting, a high
sensitivity even at the expense of specificity is desirable to
find all potential cancerous nodules. High false positive rates,
on the other hand, increase the workload to radiologists and
potentially increase unnecessary follow-up. We, therefore, re-
port the sensitivity using the highest level of evidence (four
out of four readers) and considered the lower levels of agree-
ment for quantifying the false positive rates. For future CAD
reference databases, a large database of CT images in-
cluding follow-up CT and histopathological correlation
would be helpful to remove subjectivity from the refer-
ence standard, and to verify whether CAD detects the
clinically relevant nodules.

In conclusion, we found that, on the largest publicly avail-
able database of annotated chest CT scans for lung nodule
detection, Herakles detects the vast majority of pulmonary
nodules at a low false positive rate. The results show that the
new prototype outperforms the other two CAD systems and is
robust to different acquisition factors, such as presence of
contrast, section thickness, and reconstruction kernel. Our ob-
server experiment showed that Herakles was able show to
pulmonary nodules that had been missed by the extensive
LIDC annotation process. Given the growing interest and
need for CAD in the context of screening, it can be expected
that new CAD algorithms will be presented in the near future.
Our results are publicly available and other CAD researchers
may compare the performance of their CAD algorithm to the
results reported here, utilizing the LIDC/IDRI database for
benchmarking of available CAD systems.
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