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Short-term administration of the GLP-1 analog liraglutide
decreases circulating leptin and increases GIP levels and these
changes are associated with alterations in CNS responses to
food cues: A randomized, placebo-controlled, crossover study
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Abstract

Background—GLP-1 agonists, including liraglutide, have emerged as effective therapies for
type 2 diabetes (DM) and obesity. Here, we attempted to delineate how liraglutide, at doses
approved for DM, may impact circulating hormones influencing energy homeostasis in diabetics.

Basic Procedures—Using a randomized, placebo-controlled, double-blind, cross-over trial of
20 patients with type 2 diabetes, we examined the effects of liraglutide as compared to placebo on
fasting levels of circulating hormones important to energy homeostasis, including leptin, ghrelin,
PYY, and GIP. After 17 days (0.6 mg for 7 days, 1.2 mg for 7 days and 1.8 mg for 3 days) of
treatment, we also studied changes in fMRI responses to food cues.

Main Findings—BY design, to avoid any confounding by weight changes, subjects were studied
for 17 days, i.e. before body weight changed. Participants on liraglutide had significantly increased
GLP-1 levels (p<0.001), decreased percent change in leptin levels (p<0.01) and increased GIP
levels (p<0.03) in comparison to placebo treated subjects. Whole brain regressions of functional
activity in response to food cues reveal that increased GIP levels were associated with deactivation
of the attention- and reward-related insula. Decreases in leptin levels were associated with
activations in the reward-related midbrain, precuneus, and dorsolateral prefrontal cortex (DLPFC),
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and sensorimotor-related motor cortex and with deactivations in the attention-related parietal
cortex and the cognitive control-related thalamus and pre-SMA.

Principal Conclusions—We demonstrate herein short-term changes to circulating levels of
GIP and leptin in response to GLP-1 agonist liraglutide therapy. These findings suggest that
liraglutide may alter the circulating levels of hormones important in energy homeostasis that, in
turn, influence CNS perception of food cues. This could possibly lead to compensatory changes in
energy homeostasis that would over time limit the efficacy of liraglutide to decrease body weight.
These novel findings, which, pointing to the potential advantages of combination therapies, may
have therapeutic implications, will need to be confirmed by larger and longer-term trials.

Obesity and its comorbidies, including type 2 diabetes, are rapidly increasing problems in
need of effective therapies [1]. Multiple circulating hormones, including glucagon-like
peptide-1 (GLP-1), that are secreted from the gut are known to convey information about
nutritional status to the brain, regulating satiety and food intake, thus providing a crucial link
between peripheral metabolic processes and the central nervous system. GLP-1 agonists,
such as liraglutide, are becoming an increasingly attractive option for patients with type 2
diabetes whose symptoms would also be improved by weight loss and for whom glycated
hemoglobin levels are moderately elevated [2]. Through mechanisms not fully understood,
liraglutide in doses approved for type 2 diabetes (1.8 mg) is associated with a significant
reduction in weight (treatment difference —1.4 to —3.5 kg when compared with placebo
and/or other anti-diabetes medications such as the dipeptidyl-peptidase-4 inhibitor
sitagliptin, insulin, or sulfonylureas such as glimepiride) [3].

Although GLP-1 slows gastric emptying, thereby promoting gastric distention and sensation
of satiety [4], increasing evidence points to central mechanisms of action, demonstrating that
GLP-1 acts in the brain of mice and limited number of human studies [5-7]. Enterohormonal
signals may also mediate how the brain responds to food cues, providing an indirect
mechanism for central actions of GLP-1 agonists [8-11]. We have recently shown decreased
attention-related parietal cortex activations to highly desirable food cues during a fasting-
state fMRI study with a short course of liraglutide, pointing to a central mechanism of action
[12]. However, whether GLP-1 analog administration interacts with peripheral signals, i.e.
alters levels of circulating hormones in the fasting state, and these changes lead, in turn, to
altered functional brain activation, remains to be studied.

We sought to explore whether GLP-1 related weight loss in humans is linked to altered
levels of hormones important in energy homeostasis using the maximum daily dose (1.8 mg)
of liraglutide approved for diabetics in the context of a dose escalation, randomized,
placebo-controlled, cross-over study for 17 days, i.e. a time period that allows for
participants to escalate to the maximum dose to eliminate side effects but which does not
allow for weight loss. We first studied how circulating biomarkers and hormones which are
important in energy homeostasis and weight loss may be changed in response to treatment
with liraglutide and thus mediate the effects of liraglutide in the short-term, i.e. before actual
weight loss had occurred. We also analyzed how these hormonal changes in turn related to
functional changes in the brain, thus determining whether liraglutide’s actions on peripheral
cues may mediate a central (brain) response.
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Research Design and Methods

As part of a larger study, twenty men and women with type 2 diabetes mellitus (DM; defined
as fasting plasma glucose > 125 mg/dL and/or HbAlc > 6.5%) provided written informed
consent to participate in a randomized, cross-over, placebo-controlled, double-blind study,
approved by the Beth Israel Deaconess Medical Center (BIDMC) Institutional Review
Board (full study details in [12]). Patients were being treated for their DM with metformin
or with lifestyle modification (diet and exercise); patients receiving other treatments were
excluded from the study.

Briefly, participants were randomized to receive liraglutide or placebo for their first phase;
they then received the opposite for the second phase after a three week to three month wash-
out period. Doses of liraglutide were escalated during the phase, which consisted of four
visits. The first three visits were each a week apart where daily doses of 0.6mg and 1.2mg
were begun at the first two and 1.8mg began at the third and continued for 3 days before
participants returned for their 41 visit of the phase, which consisted of an overnight visit
after which they underwent MRI (as previously described [12]). Detailed anthropometric
data (e.g. dual energy x-ray absorptiometry or DEXA) and resting metabolic rate (RMR)
were collected at the first and fourth visit of each phase.

Biochemical measurements and analysis

Fasting blood was drawn by venipuncture by a registered nurse between 8 and 10 am.
Nurses took vital signs in the morning before fasting blood draws. Samples were
immediately processed for plasma and serum isolation according to standard operating
procedures and stored at —80°C until analysis as previously described [12-14]. All samples
and standards were assayed in duplicate and only results with a CV <15% were used.

Amylin, gastric inhibitory peptide (GIP), and pancreatic polypeptide (PP) were measured in
serum samples by commercially available enzyme-linked immunosorbent assay (ELISA;
Millipore, Billerica, MA, USA). The GIP ELISA does not cross-react with GLP-1 or GLP-2.
Fibroblast growth factor 21 (FGF-21) was measured by commercially available ELISA
(R&D Systems, Inc. Minneapolis, MN). Irisin was measured by ELISA (Phoenix
Pharmaceuticals. Burlingame, CA). GLP-1, leptin, ghrelin, peptide YY (PYY), and
adiponectin in serum was measured by commercially available radioimmunoassay
(Millipore Co. Billerica, MA USA). Fructosamine was analyzed in serum samples by the
Roche cobas ¢311 clinical chemistry analyzer using a standardized kit (cat#04537939-190).
All assays were performed as previously described [12-14].

Fasting serum glucose, total cholesterol, triglycerides, high-density lipoprotein (HDL), low-
density lipoprotein (LDL), amylase, and lipase were measured by LabCorp (Raritan, NJ), a
CLIA-certified laboratory. Fasting blood samples were sent directly to LabCorp by the
BIDMC CRC as per standard protocols.

Data were analyzed using the Statistical Package for Social Sciences (SPSS), v.19 and were
first summarized with descriptive statistics. For example, continuous variables are presented
as mean + standard error of the mean (SE). Data for categorical variables are presented as
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numbers and/or percentages. Kolmogorov-Smirnov test and frequency histograms were used
to check the normality of distribution of the continuous variables. We obtained the skew
statistic and standard error of skew (using the descriptive command in SPSS) to identify
variables that are non-normal. The treatment effect was assessed using a general linear
mixed model. The variables of treatment, visit, and sequence were included in the model as
fixed effects and patient-within-sequence was included as a random effect. Baseline values
were included as a covariate. The values of anthropometric, clinical, and laboratory variables
in visit 4 and visit 8 were compared and used as a dependent variables. The dependent
variables which did not fulfill the normality assumptions were log-transformed before
analysis. The difference in values between visit 4 and visit 1 and visit 8 and visit 5 as well as
the percent change between each period [(value in visit 4 — value in visit 1)/value in visit
1*100 vs. (value in visit 8 — value in visit 5)/value in visit 5 *100] was also compared and
assessed as dependent variables. Visual analog scale ratings were correlated using a
Spearman correlation with hormones that showed a significant change with liraglutide, and
those with P<.025 were considered significant.

fMRI protocol and analysis

Results

MRI scanning occurred at the Center for Biomedical Imaging, Boston University School of
Medicine, using a 3-T Philips Intera whole-body MRI (Philips Medical Systems, Best, The
Netherlands), as previously described [12]. The fMRI protocol consisted of six runs during
both the fasting and fed scans, during which subjects viewed blocks of images and provided
responses on how much they like each image (on a 1-3 scale) using a fiberoptic response
box held in their right hand.

BOLD data was preprocessed using the SPM8 (Statistical Parametric Mapping; The
Wellcome Trust Centre of Neuroimaging; London, UK). First-level processing occurred as
previously described [12]. The contrast images of the first-level analysis were used for the
second-level group statistics. Whole brain regressions were run with hormone levels or
change in hormone levels for fasting state images with the highly desirable- less desirable
food cues contrast. Activations significant at p<.001, uncorrected and p<.025, Family-wise
Error (FWE) corrected for voxel are reported. We chose the stringent criteria of p<.025 since
we tested 2 hormones (leptin and GIP; 0.05/2=0.025).

Metabolic Impacts of liraglutide

20 participants completed the study (11 males; aged 49.7+2.4 years). As previously reported,
during the short course of liraglutide therapy, body weight and weight circumference did not
change by design (i.e. duration of the study; Table 1) to avoid any confounding effects of
weight loss. As previously reported, participants consumed less kcal per day while on 1.8mg
liraglutide than while on placebo (placebo(averaged): 1782+127; 0.6mg: 1723+150; 1.2mg:
1640+93; 1.8mg: 1424+127; t(7)= 2.11; p<.07, two-tailed; p<.03, one-tailed).

There was a significant decrease in the percentage change of leptin while on liraglutide
therapy (-10.4 + 7.1%) compared to the placebo (16.6 + 7.1%; p<.010), and this remained
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significant when adjusted for BMI (p<.014). Furthermore, this percentage change in leptin
while on liraglutide inversely correlates with feelings of fullness from visual analog scale

(\VVAS) ratings (rho=-.544, p=0.016). There were no changes in adiponectin (p<.371), irisin
(p<.630), ghrelin (p<.723), amylin (p<.448), or thyroid hormone levels. Gastric inhibitory
peptide (GIP) showed a significant increase with liraglutide treatment (p<.030). However,

many other gut and neural related hormones showed no significant changes (Table 1).

Neurocognitive impacts of liraglutide

There were no changes in brain activations to food cues during the fed state. Whole brain
regressions of the fMRI scans in the fasting state with significant hormones after 17 days of
liraglutide therapy, reveal that GIP levels inversely correlate with activation of the insula
while participants viewed highly desirable as compared to less desirable food images (Figure
1). Additionally, for the same contrast and time point, the change in leptin levels correlates
positively with activations in the thalamus, parietal cortex, and pre-SMA, while it correlates
inversely with activations in the dorsolateral prefrontal cortex (DLPFC), motor cortex,
precuneus, midbrain, and cerebellum (Figure 2).

Discussion

This study gives insights for the first time into how GLP-1 agonists influence hormones
important to energy homeostasis in the short-term (17 days) and how these changes in turn
influence central nervous system response to food cues in the fasting (but not the fed) state
17 days after initiation of therapy. These changes, observed using the ideal randomized,
cross-over, double-blind design, if they persist, may influence weight loss outcomes
indirectly and in a compensatory manner over time.

We have reported a significant decrease of caloric intake with liraglutide during the 17 days
of treatment (using a one-tailed t-test consistent with our a priorihypothesis) [12]. In
contrast, we do not observe any changes in resting energy expenditure. Of note, we did not
measure 24-hour energy expenditure and thus cannot state whether activity/energy
expenditure changed with liraglutide therapy. In another study, 24-hour energy expenditure,
as measured in a respiratory chamber, was reduced after incremental doses of liraglutide (1.8
mg/d and 3.0 mg/d) for 5 weeks in apparently healthy, obese participants by 350kJ and
581kJ (~3-5%), respectively [15]. Longer-term studies have found no effects of liraglutide
administration (0.6, 1.2 or 1.8 mg/day) either alone or in combination with metformin on
energy expenditure and/or RQ acutely [16], after 4 weeks [17] or 1 year [18] compared to
control and/or other medication in obese patients with type 2 diabetes, suggesting that
falling leptin levels with prolonged therapy may be responsible for the discrepant results.

We then focused on peripheral hormones potentially mediating or otherwise modifying the
weight loss induced by liraglutide. We observed changes in GIP and leptin levels. Leptin is
the prototypical adipokine which signals energy homeostasis to the brain by circulating at
levels proportional to the amount of body fat as well as to acute changes in caloric intake
[19]. We observed acute changes in leptin without changes in fat mass, which remained
significantly different after controlling for BMI. These changes may reflect either the effect
of decreasing caloric intake and/or a direct effect of GLP-1 to decrease leptin levels. The
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possibility that GLP-1 may decrease leptin production by adipocytes remains to be
confirmed by dedicated molecular studies in humans, but this effect has already been
observed in two studies of liraglutide with rodents [20, 21]. Other GLP-1 analogs have
resulted in similar decreases of leptin levels in rodents [20-29]. However, other studies with
rodents have not showed decreases in leptin with GLP-1 analogs [30-33]. Similarly, one
study has shown that GLP-1 analogs decrease levels of leptin in humans [34], while most
have shown no changes in leptin levels [35-40].Such a decrease of leptin levels could
possibly be expected to be even more pronounced in response to long-term weight loss
resulting in decreases of both main predictors of leptin levels i.e. energy intake and fat mass.

Greater liraglutide-induced decreases of fasting leptin levels result in increased activation of
the reward-related midbrain, precuneus, and DLPFC and sensorimotor-related motor cortex
(inverse correlation with the change in leptin levels) and less activation of the attention-
related parietal cortex and cognitive control-related thalamus and pre-SMA (positive
correlation with the change in leptin levels) to highly desirable as compared to less desirable
food cues. Leptin receptors are expressed throughout the brain [41, 42], and thus may
mediate the central response to GLP-1 analogs, leading to changes in energy intake and/or
expenditure. These findings, if confirmed, could be interpreted as decreased leptin leading to
altered brain activations to food cues and consequent weight changes.

Increased activity of the DLPFC, midbrain, and precuneus with decreased leptin may
indicate altered control and reward-related circuitry induced by leptin in response to GLP-1
administration. Indeed, decreased control- and reward-related DLPFC activation after food
consumption has been associated with obesity [43-45]. Additionally, the midbrain, including
the ventral tegmental area, is well-known to be involved in the rewarding aspect of food
[46]. The precuneus is more involved in attention and saliency processing but has also been
shown to be impacted by rewarding stimuli, as these are highly salient [47-50]. The motor
cortex activation encompasses a large area of sensorimotor cortex and may indicate greater
sensory and motor processing of highly desirable food cues with greater decreases in leptin
while on liraglutide, indicating that they may be more appetitive or salient [51]. Altogether,
these results support the notion that lower leptin levels may be counteracting the effects of
liraglutide, by increasing reward and salience related brain activations and decreasing
cortical and control related activations to highly palatable food cues during the fasting state.

Furthermore, we observed greater changes in leptin levels with liraglutide correlating with
decreased activity in the thalamus, parietal cortex, and pre-SMA while viewing highly
desirable food cues in the fasting state. The thalamus and pre-SMA are involved in cognitive
and motor-related control [52-54], while the parietal cortex is a part of the attention system
and shows activation to salient stimuli [55-57]. This may suggest that these higher cortical
attention- and cognitive-related systems are attempting to counteract the appetite-reducing
effects of liraglutide in the brain.

Taken altogether, these results suggest a number of systems related to the control of eating
are impacted in relation to leptin levels during liraglutide therapy. The role of leptin in
feeding is known to be complex. One recent study has shown that communication between
frontal and parietal regions plays a role in value-based choices [58]. The relationship of
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leptin with pre-SMA, motor cortex, parietal cortex, and precuneus that we observed in this
study could suggest a potential role for leptin in those complex neuronal circuits which
evaluate food choices. The decreases in leptin before weight loss may be a compensatory
mechanism which counteracts the appetite-reducing effects of liraglutide peripherally and
centrally. Thus, a future study combining leptin in replacement doses with liraglutide
therapy could be warranted since it could potentially offer additional weight loss.

GIP is secreted in response to food intake and regulates glucose postprandially by increasing
the secretion of insulin, similar to GLP-1 [59]. It has been repeatedly observed that
individuals with DM have a diminished insulin response to GIP [59]. Furthermore, GIP has
been shown to increase GLP-1 levels in animal models [60] and DPP-4 inhibitors which
increase GLP-1 also increase GIP [61]. Altogether, these data support the existence of a
feedback loop between the incretins GLP-1 and GIP [59, 60], which may be activated by the
GLP-1 analog, liraglutide, as it increases GIP in our study. In the past, others have found no
effect of GLP-1 analogs given intravenously on GIP levels in humans [62—66]. In contrast,
another group found that intravenous GLP-1 decreased GIP in type 1 diabetics and healthy
participants [67], and another found that intravenous GLP-1 attenuated the breakfast-induced
increase of GIP [68]. Confirming our findings, another study of intravenous GLP-1 found
that although GIP decreased over the first hour of GLP-1 administration, it then increased
[69]. Considering our blood samples are obtained more than an hour after liraglutide
administration, we may be capturing this same effect. Regarding the potential liraglutide-
mediating effects of GIP on the brain, we found an inverse correlation between GIP levels
and insula activation while participants are on liraglutide, demonstrating that higher GIP
levels observed with liraglutide decrease insular activation. Insula is known to be involved in
reward and saliency processing [70-74], indicating the higher levels of GIP with liraglutide
decrease the rewarding value and saliency of highly desirable food cues. In addition, GIP per
se has been found to be expressed widely throughout the brain. A role for GIP has been
identified in adult hippocampal progenitor cell proliferation, as well as one of
neurotransmitter or neuromodulator [75, 76]. This may support a role for GIP in mediating
and augmenting, in part, the activity of liraglutide on the central nervous system and
consequently on weight loss.

In summary, an increase in GIP may promote the anorexigenic actions of liraglutide,
whereas compensatory decreases of leptin may counteract the effects of liraglutide. Of note,
these hormonal changes may reflect short-term effects in response to early liraglutide
therapy and may be attenuated or altered with longer term therapy pointing to a need for
more long term studies. Indeed, findings in longer-term studies demonstrate that there are
long-term differences in hormone levels induced by liraglutide that are not captured in our
study. For instance, in a 48-week trial with liraglutide, increases in glucagon levels were
observed with liraglutide [77], while we do not observe any changes in glucagon in the 17
days of our trial. Future longitudinal studies are needed to determine short-term versus long-
term changes with liraglutide therapy both at low-dose 1.8mg daily and high-dose 3.0mg
daily administration. Additionally, a relatively small sample size might account for a lack of
differences and larger studies should confirm our results. If our data are confirmed by future
independent studies, combination therapies with leptin analogues would be warranted for
additional weight loss effects.
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MNI Coordinates (mm)

Cluster Size  Voxel Z

(voxels) Value X Y Z Side Identified Region General Brain Area
Inverse correlation with GIP levels
105 5.34 60 14 4 R insula insula

Statistical threshold: p<0.001, uncorrected; p<.025, FWE-corrected for peak, Gyrus; S, Sulcus; L, left; R, right; C, center.
*significant at p<.05, FWE corrected for cluster. Peaks shown for clusters are the most significant along the same
identified region.

Figure 1.
Results of whole brain regressions while participants were on liraglutide with GIP levels at

17 days during the fasting state while viewing highly desirable as compared to less desirable
food cues at p<.001. BOLD contrasts are superimposed on a T1 structural image in
neurological orientation. The color bar represents voxel T value. Table shown below figure
for activations significant at P<.025, FWE-corrected for peak.
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MNI Coordinates (mm)
Cluster Size  Voxel Z
(voxels) Value X Y Z Side Identified Region General Brain Area
Positive correlation with change in leptin levels (hot colors)
3590%* 6.19 -16 -10 10 L  thalamus thalamus
5.7 -20 -18 12 L  thalamus thalamus
316* 6.12 12 -18 -18 R thalamus thalamus
113 5.5 -54 -34 26 L  inferior parietal G parietal cortex
296* 5.26 -4 -30 64 C  superior parietal G parietal cortex
444* 4.93 -8 4 60 C  superior frontal G pre-SMA
Inverse correlation with change in leptin levels (cold colors)
26513* 6.05 32 12 62 R middle frontal G DLPFC
5.79 56 0 22 R precentral G motor cortex
5.7 52 -4 16 R precentral G motor cortex
48 5.71 16 -74 54 R precuneus precuneus
224% 5.19 -4 -22 -8 C  midbrain midbrain
287* 5.05 -10 -46 -6 L cerebellum cerebellum

Statistical threshold: p<0.001, uncorrected; p<.025, FWE-corrected for peak, Gyrus; S, Sulcus; L, left; R, right; C, center.

*significant at p<.05, FWE corrected for cluster. Peaks shown for clusters are the most significant along the same

identified region.

Figure 2.

Results of whole brain regressions while participants were on liraglutide with the change in
leptin levels from baseline to 17 days during the fasting state while viewing highly desirable
as compared to less desirable food cues at p<.001. BOLD contrasts are superimposed on a
T1 structural image in neurological orientation. The color bar represents voxel T value.
Table shown below figure for activations significant at P<.025, FWE-corrected for peak.
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