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Abstract

Cerebellar dysfunction can lead to a wide range of movement disorders. Studying the cerebellar 

atrophy pattern associated with different cerebellar disease types can potentially help in diagnosis, 

prognosis, and treatment planning. In this paper, we present a landmark based shape analysis 

pipeline to classify healthy control and different ataxia types and to visualize the characteristic 

cerebellar atrophy patterns associated with different types. A highly informative feature 

representation of the cerebellar structure is constructed by extracting dense homologous landmarks 

on the boundary surfaces of cerebellar sub-structures. A diagnosis group classifier based on this 

representation is built using partial least square dimension reduction and regularized linear 

discriminant analysis. The characteristic atrophy pattern for an ataxia type is visualized by 

sampling along the discriminant direction between healthy controls and the ataxia type. 

Experimental results show that the proposed method can successfully classify healthy controls and 

different ataxia types. The visualized cerebellar atrophy patterns were consistent with the regional 

volume decreases observed in previous studies, but the proposed method provides intuitive and 

detailed understanding about changes of overall size and shape of the cerebellum, as well as that of 

individual lobules.
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1. Introduction

The cerebellum plays an important part in motor control, and is also involved in cognitive 

functions such as attention and language1. Cerebellar dysfunction can lead to a wide range 
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of movement disorders including incoordination, reduced manual dexterity, postural 

instability, and gait disturbances1. Despite the significant impact of cerebellar diseases on 

patients' lives, the current standard of diagnosis and treatment of cerebellar diseases is 

inadequate2,3. Magnetic resonance (MR) imaging provide potentials to improve the 

understanding and evaluation of cerebellar neuro-degeneration by revealing the structural 

changes of the cerebellum. Figure 1 shows example coronal sections of the cerebellum from 

healthy control (HC), spinocerebellar ataxia type 2 (SCA2), spinocerebellar ataxia type 6 

(SCA6), and ataxia-telangiectasia (AT). We can see that the three ataxia types show 

cerebellar atrophy as compared to the healthy control, each has different regional atrophy 

patterns. It is of great interest to study the cerebellar structural pattern associated with each 

disease type, and to correlate the structural change with specific functional degeneration. On 

the scientific side, it helps researchers further understand the localized function map of the 

cerebellum. On the clinical side, it may help in the development of disease-modifying 

therapy, designing efficient therapeutic trials, and monitoring individual patient progress.

Various methods have been proposed to study structural changes of the brain based on MR 

images4. Region of interest (ROI) volumetry has been traditionally used to obtain regional 

measurement of anatomical volumes and to investigate abnormal tissue structures with 

disease5. ROI volumetric measure is simple and reliable, but it often cannot capture 

localized structural change patterns. Voxel-based analysis (VBA) overcome the limitations 

of ROI volumetry. It maps a subject image to a standard template space and applies a voxel-

wise linear statistical test on voxel morphometric measures, such as a Jacobian determinant 

of the deformation and tissue density6. To overcome the limitations of mass-univariate 

analysis in VBA, high-dimensional pattern classification methods have been proposed7–10. 

These methods aim to capture multivariate nonlinear relationships in the data and seek to 

achieve high classification accuracy at the individual level. Statistical shape analysis also 

plays an important role in structural analysis11–13, where the complete shape of the 

anatomical structure is encoded in a vector and statistical analysis methods are designed to 

study the population distribution in high-dimensional shape space.

Our approach is closely related to statistical shape analysis and high-dimensional pattern 

classification methods. In particular, we propose a method to classify cerebellar ataxia types 

and visualize the cerebellar atrophy patterns associated with different disease types based on 

landmark shape representation of cerebellar lobules. Dense homologous landmarks are 

generated on the boundary surfaces of cerebellar sub-structures and a high-dimensional 

feature vector is generated by stacking the spatial coordinates of all the landmarks. This 

shape representation provides a highly informative feature representation of cerebellar 

structure. Partial least squares is used to reduce the data dimension, and regularized linear 

discriminant analysis is carried out in the dimension-reduced space to classify different 

ataxia types. Due to the linear properties of both dimension-reduction and discriminant 

analysis, the characteristic cerebellar atrophy patterns for different ataxia types can be 

visualized by sampling along the discriminant direction between healthy controls and the 

ataxia types and reprojecting to the high-dimension shape space.
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2. Method

2.1 Cerebellar lobules and lobes

The cerebellum includes a central mass of white matter called the corpus medullare (CM) 

and surrounding gray matter branches, called lobules, numbered from I to X14. Specific 

groups of lobules are referred to as lobes; for example, lobules I through V make up the 

anterior lobe. Figure 2 shows a surface rendering of the cerebellar lobules and their names.

2.2 Materials and preprocessing

T1-weighted magnetization prepared rapid gradient echo (MPRAGE) images of 123 subjects 

were acquired on a 3.0T MR scanner (Intera, Phillips Medical Systems, Netherlands). There 

are 65 healthy controls (HC) and 58 patients with four types of cerebellar ataxia. The 

subjects were diagnosed by blood test. Demographic information is provided in Table 1. The 

cerebellum was segmented from the MR image and parcellated into 22 cerebellar sub-

structures defined in Sec. 2.1, using the method proposed in Yang et al. (2013)15. A dense 

triangulation of the boundary surface of each lobule was generated by the marching cubes 

algorithm16. Figure 3 shows the input MR image, the lobule segmentation, and the generated 

triangular meshes of lobules.

2.3 Landmark based shape representation

The landmark representation describes a shape by locating a set of landmarks on the outline, 

where a landmark is defined as “a point of correspondence on each object that matches 

between and within the populations”17. Landmark has been widely used in modeling shape 

priors in segmenting anatomical structures18–20 and in studying the structural changes 

associated with growth and diseases12, 13. A challenge of using the landmark representation 

to model anatomical structures, especially 3D structures, is establishing dense corresponding 

landmarks across different subjects. Multi-structure shape (as in the collection of lobules 

comprising a cerebellum) adds another level of complexity21. We address the 

correspondence building problem for multiple structures by applying a two-step nonrigid 

point set registration between the template point set and the subject point set, with the first 

step registering all lobules as a whole and the second step registering each lobule separately. 

The deformed template point set is then used as the landmarks of the subject. The steps for 

generating landmark representation is described in detail next.

Let Pk be the ordered set of points from the kth lobule mesh of a subject, generated as 

described in Sec. 2.2. P = {P1, P2, …, Pk} is the ordered set of points from all lobules, where 

K is the number of lobules, and K = 22. P is called the point set of a subject or subject point 

set. An arbitrary subject was selected as the template, and the template point set is denoted 

by P0. First, each subject point set P is aligned to P0 by a rigid transformation in order to 

remove its rotation and translation, resulting in Pr. Then, the two-step nonrigid registration is 

carried out for each subject: 1) P0 is registered to Pr through a nonrigid registration, resulting 

in P1. Coherent point drift (CPD)22 is used to implement the nonrigid point set registration. 

2) For each lobule k,  (the set of points in P1 that belongs to lobule k) is registered to 

(the set of points in Pr that belongs to lobule k) through a nonrigid transformation, resulting 

in .
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 is therefore the set of landmarks for the subject, since it outlines the 

shape of the subject and at the same time has one-to-one point correspondence with the 

template point set P0, and thus with all the other subject point sets. Figure 4 shows the initial 

template point set P0, and the template point set after each step of nonrigid registration, i.e., 

P1 and P2, overlaid with subject point set Pr. Let {xi, yi, zi} be the spatial coordinates of the 

ith landmark. The landmark representation of the subject is the vector

(1)

where  is the number of landmarks from all lobules. In our case M ≈ 15000. 

The landmark representation s will be used as the feature vector for each subject in the 

following analysis.

2.4 Dimension reduction and discriminant analysis

The high-dimensional feature vector s (the spatial coordinates of 15000 landmarks) and the 

small sample size N (∼100 subjects) make the discriminant analysis ill-posed. A critical step 

before analysis is dimension reduction. We use partial least squares (PLS), a supervised 

linear dimension-reduction method23. PLS constructs new predictor variables as linear 

combinations of the original predictor variables; it is closely related to principal component 
analysis (PCA). PCA finds combinations of the predictors with large variance, while PLS 

finds combinations of the predictors that have a large covariance with the response values. 

PLS therefore combines information about the variances of both the predictors and the 

responses while also considering the correlations among them. Figure 5(a) shows the subject 

shape representations projected to the first two components of PLS. We can see that HC, 

SCA6, and AT form clusters.

After dimension reduction, linear discriminant analysis (LDA)24 is used to classify the 

diagnosis groups and to find the discriminant pattern between any two diagnosis groups. 

LDA finds a linear combination of features that characterizes or separates two or more 

classes of objects. The resulting combination is often used as a linear classifier. Let x denote 

the feature vector of a sample in the dimension-reduced space associated with a class label y 
∈ {0, 1, …, C}. LDA assumes that the conditional probability density functions p(x|y = c), c 
= 0, 1, …, C, are normally distributed with common covariance Σ and different mean vectors 

μc, c = 0, 1, …, C. The class prediction problem is solved by maximizing the posterior 

probability that the observation belongs to a particular class p(y|x). In the case of two 

classes, the decision criterion becomes a threshold on the dot product

(2)

for some threshold constant h, where
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(3)

ω, called the discriminant direction, is the direction that the data from the two classes are 

most separated when projected on a line in this direction.

In this work, we use the shrunken centroids regularized discriminant analysis25, a modified 

version of LDA. Instead of using the sample covariance matrix estimation Σ̂ in the 

discriminant function, they use a shrunken version of the sample covariance matrix

(4)

where Ip is the p × p identity matrix and 0 ≤ α ≤ 1. By introducing a slightly biased 

covariance matrix, it stabilizes the sample covariance estimates. It also stabilizes the 

variance and reduces the bias of the discriminant function, leading to an improved prediction 

accuracy25.

2.5 Characteristic atrophy pattern visualization

Visualization of the anatomical shapes and shape differences between different diagnosis 

groups are key elements in the exploration of data, formulating and testing of hypotheses. In 

this section, we aim to visualize the characteristic cerebellar atrophy patterns as they change 

from HC to a particular ataxia type. We visualize the cerebellar atrophy pattern of a 

particular ataxia type as a series of synthetic shapes sampled along a line in the discriminant 

direction ω between HC and the ataxia type.

Given the discriminant direction ω, as computed in Sec. 2.4, in the dimension-reduced 

space, the corresponding direction in high-dimensional shape space can be computed as

(5)

where V = [v1, v2, …, vd] and vi is the ith component computed from PLS. In order to be 

representative of the data, we select the line trajectory in the direction w that passes through 

the point μ, the mean of all subjects, and we call it the discriminant line. The parametric 

representation of the discriminant line sl can then be written as

(6)

To visualize the line trajectory, we sample five equidistant points sl(t0 + kΔt), k = 0, 1, …, 4 

on the line, and reconstruct the cerebellar lobule surfaces from the points. The points are 

sampled so that the first and third ones are the projection of the HC mean, μHC, and the 
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mean of the ataxia type of interest, μAtaxia, respectively. The shape corresponding to the fifth 

point sl(t0 + 4Δt) depicts a conjectured extreme disease subject of the ataxia type, so that the 

cerebellar atrophy can be observed more evidently.

3. Result

3.1 Diagnosis group classification

In this experiment, we tested the proposed method on classifying HC and different ataxia 

types, i.e., SCA2, SCA3, SCA6, SCA8, and AT. See Table 1 for the number and 

demographic information for each diagnosis group. A leave-one-out experiment was carried 

out to evaluate the classification performance, where each of the 123 subjects was used as a 

test subject while the remaining 122 were used to compute the PLS projection and train the 

linear discriminant classifier. The average leave-one-out classification successful rate is 

0.829, which is computed as the number of correctly predicted diagnosis prediction divided 

by the number of subjects used. Figure 5(b) is the confusion matrix between the true 

diagnosis and predicted diagnosis. We can see that the classifier predicts the majority 

diagnosis groups well (HC, SCA6, and AT), proving the representational and discriminant 

power of the proposed shape representation. The classifier did not predict SCA2, SCA3, and 

SCA8 well, we believe due to the limited training samples. A major source of error is 

classifying ataxia types as HC. This may be because that the cerebellum of patients with a 

short disease duration have mild cerebellar atrophy, and it is therefore difficult to distinguish 

their cerebella from healthy subjects.

3.2 Disease-specific atrophy pattern visualization

In this section, we show the characteristic atrophy patterns associated with different 

cerebellar ataxia types, as described in Sec. 2.5. Figures 6 and 7 shows the cerebellar 

atrophy patterns for SCA2, SCA3, SCA6, and AT, viewed from the front and back of the 

cerebellum. We can see that noticeable cerebellar atrophy is observed for all ataxia types, 

but different ataxia types have different patterns of shape changes.

SCA2 has the biggest atrophy in the corpus medullare among the four ataxia types (see the 

shrinking corpus medullare in Fig. 7), indicating large white matter atrophy. There is 

significant atrophy in the anterior and middle lobes (see the primary and horizontal fissure 

become wider from Fig. 7), while the caudal lobes do not change much. These observations 

agree with the observations in Jung et al. (2012)5 that the volume of corpus medullare, the 

anterior lobe, middle lobe of SCA2 patients were reduced compared to controls, while the 

caudal lobes are relatively preserved. The visualization also suggests that although there is 

atrophy in most of the cerebellum, the overall size of the cerebellum does not change too 

much.

SCA3 has the mildest cerebellar atrophy among the four, with no significant change in size. 

There is still noticeable lobule atrophy, as we can see that left and right CRUS I lobules 

become smaller in Fig. 7, but the degree of atrophy is less than the other three types. SCA3 

has more WM loss compared to SCA6 and AT. These observations agree with the 

observations in Burk et al. (1996)26 and Lukas et al. (2006)27.
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SCA6 has significant atrophy in almost all parts of the cerebellum and decrease in the 

overall size of the cerebellum. SCA6 has less atrophy in the corpus medullare than SCA2 

and SCA3 (Fig. 6). These observations agree with the observations in Jung et al. (2012)28 

that compared to SCA2, SCA6 has larger atrophy in posterior-inferior regions of the 

cerebellum but less atrophy in the corpus medullare. They also agree with the voxel-based 

morphometry study on SCA3 and SCA6 in Lukas et al. (2006)27, in which significant grey 

matter loss was found in SCA6 in hemispheric lobules bilaterally as well as in the vermis. 

White matter analysis revealed significant changes in SCA3, whereas no significant white 

matter reduction was found in SCA6 patients.

AT has the most significant whole cerebellum atrophy. The size of the cerebellum decreases 

rapidly when moving from healthy to AT. All lobules shrink, especially the middle lobes. 

These observations agree with the observations in Tavani et al. (2003)29 that all parts of the 

cerebellar hemispheres and vermis undergo moderate to severe atrophy in AT patients in the 

age range 9 to 40, and the lateral part of the cerebellar hemispheres has the most severe 

atrophy.

4. Conclusion

In this paper, we present a landmark based cerebellar shape analysis pipeline to discriminate 

and visualize the differences in cerebellar structure associated with different cerebellar 

ataxia types. A leave-one-out experiment demonstrates the effectiveness of the proposed 

analysis in classifying diagnosis. The visualized disease-specific atrophy patterns associated 

with different ataxia types were consistent with the regional volume decreases observed in 

previous studies, and they provide more intuitive and detailed understanding about the shape 

changes of the whole cerebellum as well as the sub-structures. In addition to studying 

disease-specific cerebellar atrophy patterns, the proposed shape analysis pipeline can be 

adapted to study function-specific atrophy patterns.
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Figure 1. 
Example coronal sections of the cerebellum from a HC and three ataxia types.
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Figure 2. 
Cerebellar lobules and lobes. (a) Anterior view; (b) Posterior view.
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Figure 3. 
From MR image to lobule meshes: (a) MR image of the cerebellum; (b) Lobule 

segmentation; (c) Triangular meshes of all lobules; (d) Vertices of the lobule meshes.
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Figure 4. 
Two-step nonrigid point set registration: (a) Template point set and subject point set before 

nonrigid registration; (b) after whole cerebellum nonrigid registration; (c) after individual 

lobule nonrigid registration.
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Figure 5. 
Dimension reduction and discriminant analysis: (a) Subject points in the first two dimension 

after PLS dimension reduction; (b) Confusion matrix between the true diagnosis and 

predicted diagnosis from leave-one-out experiment.
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Figure 6. 
Characteristic cerebellar atrophy patterns for four different ataxia types, viewing from the 

front of the cerebellum. The columns show in turn the five equidistant points sampled on the 

discriminant line, with the first column being the projection of the HC mean and the third 

being the projection of ataxia mean.
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Figure 7. 
Characteristic cerebellar atrophy patterns for four different ataxia types, viewing from the 

back of the cerebellum. The columns show in turn the five equidistant points sampled on the 

discriminant line, with the first column being the projection of the HC mean and the third 

being the projection of ataxia mean.
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Table 1

Demographic information on the 123 subjects being studied. Key: N number of subjects; m/f is the male/

female ratio; Age is the mean age; SD is the standard deviation of the age; healthy controls (HC); 

spinocerebellar ataxia type 2 (SCA2), type 3 (SCA3), type 6 (SCA6) and type 8 (SCA8); ataxia-telangiectasia 

(AT).

N (m/f) Age (SD)

HC 65 (28/37) 50.7 (17.7)

SCA2 4 (3/1) 48.8 (8.8)

SCA3 7 (2/5) 51.7 (9.3)

SCA6 27 (7/20) 58.4 (9.3)

SCA8 2 (2/0) 43.5 (16.3)

AT 18 (12/6) 18.3 (6.2)
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