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Abstract

Using a compendium of cell-state-specific gene expression data, we identified genes that uniquely 

define cell states, including those thought to represent various developmental stages. Our analysis 

sheds light on human cell fate through the identification of core genes that are altered over several 

developmental milestones, and across regional specification. Here we present cell-type specific 

gene expression data for 17 distinct cell states and demonstrate that these modules of genes can in 

fact define cell fate. Lastly, we introduce a web-based database to disseminate the results.

1. Introduction

If each cell type is defined by the genes it expresses, then one would expect every cell type 

to show a distinct pattern of expression, characterizing that cell type. Such cell type-specific 

knowledge is important for advancing our basic understanding of biology and as a useful 

starting point for drug discovery. Such knowledge also sheds light on how one might 

reprogram one cell type in to another—a major hurdle in the process of direct 

reprogramming (Vierbuchen et al., 2010). However, elucidating a unique expression pattern 

for each cell type requires comparisons across a broad set of cell types. If one were to 

compare only fibroblasts to neurons, for example, one would find unique signatures 

distinguishing these cell types from each other, but not from other cells. Therefore, data-

derived comparative signatures are context-dependent—subject to the diversity of cell types 

included in the comparison. Ignoring the context-dependency has lead previous analyses 

astray—many genes that were identified as being expressed specifically in a particular cell 
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type (i.e., markers for that cell type), were later found to be expressed in several different 

cell types (Juuri et al., 2012).

One would expect that with an increasing number and variety of cell types, recovered cell-

specific signatures would become more refined, and eventually plateau as the amount of data 

within each cell type added becomes less informative. Herein, we show that as we add more 

and more data from various cell states to our analysis, the set of identified core expression 

factors initially changed rapidly, and then became more stable. Our goal here was to define 

cell states, including those representing various developmental stages, in a context-

independent manner, by using a newly-generated, cell-state specific compendium of gene 

expression.

A secondary goal was to find the unique regulatory core for each cell state—the elements 

which drive and maintain cell fate (Kim et al., 2008; Wang et al., 2006). Direct 

reprogramming of cells (e.g., from fibroblast to PSC), has shown that overexpression of a 

small number of transcription factors can drive a cell to become a completely different type 

of cell (Takahashi and Yamanaka, 2006). This direct reprogramming approach is quickly 

serving to identify robust transcriptional networks that drive particular cell fates, even when 

introduced into cells of a different germ layer. However, identifying these core expression 

factors has typically taken years of painstaking effort. Normally, the first step in identifying 

these small groups of cell fate drivers is to compare the gene expression of just two types of 

cells (or against several others in aggregate), and then to select the most upregulated 

transcription factors in the desired cell type. Next, through trial and error, cocktails of 

successful reprogramming factors (not necessarily unique) can sometimes be identified 

(Takahashi and Yamanaka, 2006; Vierbuchen et al., 2010). This overall approach has been 

hampered by the selection of factors based on expression differences between just two cell 

types (or based on comparing one cell type to several others in aggregate). Thus, our second 

goal was to streamline this type of reprogramming pre-selection process by obtaining a more 

refined comparison as a result of using a broader data set. We have named our overall 

approach, CEMA, for Core Expression Module Analysis.

Using a cell-state-by-cell-state logistic regression-based approach (similar in spirit to a one 

way analysis-of-variance with post hoc analysis), we identified putative core elements of 

cell-specific transcription for 17 cell states representing nine unique purified human cell 

types from different germ layers, degree of specification, and developmental age (including 

neural progenitor cells, fibroblasts, keratinocytes, hepatocytes, mesothelial cells, 

myopepithelial cells, kidney epithelial cells, pluripotent stem cells, definitive endoderm, 

smooth muscle cells, and endothelial cells) (Chin et al., 2009; Chin et al., 2010; Patterson et 

al., 2012). This collection of data represents an improvement over previously described 

databases (e.g., BioGPS (Wu et al., 2009)) in that we used strictly purified cells from tissue 

as opposed to whole tissues, and all the analyses were carried out in the same lab to 

minimize batch effect. In addition, data from cells differentiated from human pluripotent 

stem cells were included along with tissue-derived counterparts, opening the possibility of 

identification of gene expression patterns that change across developmental stages. Finally, 

our collection also included the same cell type (endothelial) derived from different locations 

within the body to provide information on regional specialization. The detailed list of cell 

Germanguz et al. Page 2

Stem Cell Res. Author manuscript; available in PMC 2017 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



states is provided in Table 1, along with corresponding shorthand notation used throughout 

the paper. We also make use of an independent and publically available dataset consisting of 

84 different cell types and tissues to validate our results.

We found that many common “marker” genes typically used to define various cell types of 

the nervous system were in fact expressed in many cells not associated with brain or spinal 

cord (Pankratz et al., 2007; Zhao et al., 2004). For example, NESTIN was highly expressed 

in 7 out of 17 cell states. We also show how identified core expression modules changed 

during development or as a result of spatial specification in different tissues. Using results 

generated from this approach, we built an interactive web-based application for 

dissemination and exploration of our results, yielding a valuable resource with a novel 

perspective on human cell fate, as well as potential leads for inducing one cell state from 

another. As validation that our approaches can yield factors important for particular cell 

fates, we provide evidence that CEMA-predicted factors can indeed drive cell fate.

2. Results

2.1. Applying CEMA

Application of our approach, CEMA (see Statistical Methods, Methods Section, allowed for 

the identification of a relatively small number of genes that serve to uniquely distinguish 

each type of cell from every other (the top 10 displayed in Fig. 1A; also shown in 

Supplemental Table 1 with relative expression values (RMA normalized, log2)). We present 

the output of results as a dendrogram (see Methods) comparing the CEMA output from all 

the different cell states (Fig. 1B). The CEMA profiles appeared to cluster almost as expected 

considering their developmental background and state of differentiation. This was also true 

when we restricted the analysis to transcription factors (Fig. 1C), raising the possibility that 

cells can be distinguished by their core transcription factor (TF) expression, an idea 

consistent with the fact that most proteins in “reprogramming” cocktails identified to date 

are TFs (e.g. the Yamanaka factors for re-programming fibroblasts to pluripotent 

cells(Takahashi and Yamanaka, 2006).

It should also be noted that the vertical lines of the dendrograms are quite long, indicating 

low similarity—to be expected when a broad compendium is used including quite distinct 

cell states. Furthermore, although CEMA implicitly is designed to focus on finding genes 

that are expressed in a single cell state (one vs all), the approach is still flexible enough to 

allow for the same gene showing up in multiple cell states. As an example of this, FABP7 
was represented on all three lists of neural progenitor cells (NPC), but only found with 

HMGB1 in one NPC state (Tissue-NPC early).

As increasingly diverse cell states were added to the analysis, we expected that the 

specificity of each list would be refined. An illustrative example of this refinement can be 

seen in Fig. 1C, which shows a summary plot of how the analysis changed as we increased 

the number of cell types in the comparison from two through to eight. When just two cell 

types were compared, they were distinguished by 1000’s of genes, but once five cell types 

were included in the comparison, the number of unique genes plateaued, presumably owing 

to a fairly broad compendium having already been used at that point. In our final analysis, 
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we used 17 distinct cell states and produced sets of 20–700 genes expressed in unique 

combinations in each cell state. These results stand in stark contrast to the roughly 3000–

7000 genes we found differentially expressed between any two of these cell states.

To determine the relative specificity of the CEMA output, we first looked at the pattern of 

the most highly expressed genes in a particular cell type (NPC), in an expression database 

containing data for 84 cell types and tissues (BioGPS (Wu et al., 2009)). Such an 

examination revealed that simply taking the magnitude of gene expression into account is 

ineffective at uncovering cell state specific genes (Fig. 1D, and Supplemental Fig. 1). 

Instead, sorting for high gene expression within the CEMA refined gene list, produced genes 

with very high specificity when analyzed on an independent data set (BioGPS) 

(Supplemental Fig. 1). For instance, FABP7 was a top CEMA gene in PSC- and tissue- 

derived NPCs (Fig. 1D), and the only positive signal from the BioGPS database that was 

found in brain (Supplemental Fig. 1). Using a similar analysis for hepatocytes further 

demonstrated the specificity of the CEMA output. In this case, the top genes identified by 

CEMA in pluripotent derived hepatocytes showed up as more specific to fetal liver than any 

other cell type in the database (Supplemental Fig. 2A). Furthermore, CEMA analysis on 

hepatocytes taken from adult liver yielded genes that appeared as a group to be more specific 

to adult liver than fetal liver (Supplemental Fig. 2B).

2.2. Temporal and Spatial Analyses

As cells develop from a pluripotent stage through various levels of specification and 

differentiation, it is likely that their core expression factors change. To uncover such factors 

for a particular cell lineage, we analyzed different cell types in the neural lineage, each 

representing a different developmental time point. These cell states were described 

previously to represent different stages of gestational development based on gene expression 

and functional criteria (neurogenic versus gliogenic)(Patterson et al., 2012). This gestational 

timing model was further validated by work showing that PSC-NPCs develop in vitro at a 

similar rate as they would in vivo (Marin, 2013; Maroof et al., 2013; Nicholas et al., 2013).

We first identified all genes using CEMA and found that the resulting CEMA profiles follow 

the expected segregation (Fig. 2A). To enrich for genes likely to play a roles in development, 

we also present results only for transcription factors (Fig. 2B). Note that each time point is 

characterized by a different set of TFs, rather than by the same sets changing in magnitude 

(Fig. 2B), indicating a change in mechanism rather than amount, consistent with what is 

known to happen over time as Yamanaka factors are induced in fibroblasts. Although the 

statistical analysis seeks out such differences, it is nevertheless interesting to note that it in 

this case it finds them. While some core expression factors are found across multiple time 

points, each time stage is, in its entirety, distinct. In addition, while all the NPCs analyzed 

expressed significant levels of typical NPC markers (SOX2, NESTIN, MUSASHI, CD133, 
SOX1 and PAX6) (Patterson et al., 2012), they are distinguished by key sets of transcription 

factors which presumably endow them with different functional capacities. This is typified 

by the fact that the PSC-NPCs profiled are highly neurogenic, while the tis-NPCs analyzed 

are mostly gliogenic (Patterson et al., 2012).
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To uncover differences between core expression modules in the same cell type purified from 

different portions of the human body, we isolated endothelial cells from the vasculature of 

various regions (Coronary (HCA), Umbilical (HUV and HUA), Aortic (HAO), and Dermal 

Lymphatic (HDL) vessels). Applying CEMA to endothelial cells from various tissues 

highlighted a spatial dependence of core expression factors (Fig. 2C), pointing to variability 

in their physiology. While all these endothelial cells express very high levels of markers 

such as VWF and PECAM, there are significant differences in both their total gene and TF 

specific core expression factors that distinguish them not only from non-endothelial cells, 

but also from each other (Fig. 2D). Here, CEMA identified key factors that distinguished 

endothelial cells taken from different tissues with high resolution.

2.3. Finding more consistent constitutive genes

CEMA analysis yielded identification of genes with unique expression patterns. However, 

we postulated that this compendium of cell types should allow for the identification of genes 

that are the least variant across many cell types. These genes could then potentially be used 

to serve as housekeeping control for RT-PCR, western blotting, and so on. First, a list of 

typically-used housekeeping genes (Gur-Dedeoglu et al., 2009) was analyzed for variability 

of expression (standard deviation) across the 17 cell types. Ranking just these typical 

housekeeping genes to find those with the least variance of expression across the 17 cell 

types, we found that RPL41, coding for a ribosomal protein was the least variant across the 

data set, more so than either GAPDH or βACTIN, the most frequently used housekeeping 

genes in the literature (Supplemental Fig. 3A). Furthermore, when instead all genes on the 

array were assayed for the least variability across these cell types, RPL41 again came up as 

the least variant gene (Supplemental Figure. 3B). For some applications it could be more 

accurate to use a housekeeping gene for normalization that is closer in expression level to 

the gene one is studying. Thus, we separated out the aforementioned analyses to provide 

candidate housekeeping genes within different levels of absolute expression (low, medium 

and high expression) (Supplemental Fig. 3B–D).

2.4. Dissemination to the scientific community

To provide general access to our results, a web-based application was developed, intended 

both for dissemination of our results, as well as to provide a data-driven roadmap for human 

cell states (www.cemagenes.com, username=preview, password=preview). As of now, the 

website contains template nodes for most known cell types, with populated nodes for those 

cell types that have been analyzed thus far. Results restricted to only transcription factors 

were also generated (Supplemental Fig. 4A and B). The application also allows one to 

display histograms of the relative expression of individual genes of interest across all cell 

types analyzed (Supplemental Fig. 4C). At regular intervals we expect to add data for 

additional cell types, which will generate refined CEMA lists for all cell types analyzed to 

that point, while maintaining previous versions of the analysis to monitor change over 

various iterations.

2.5. Evidence that CEMA-identified modules can drive cell fate

To demonstrate that CEMA identified factors can define cell fate, we designed a system that 

would allow for a determination of whether these factors can either reprogram cell fate 
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between somatic cell types, or program the cell fate of human pluripotent stem cells. The 

factors that were used for cell fate experiments were first chosen based on their specificity to 

the target cell type as identified by the CEMA algorithm. We then sorted them by relative 

expression level in the target cell. Finally, we identified those that are bona fide TFs, as TFs 

are well established to play a profound role in reprogramming(Takahashi and Yamanaka, 

2006). Polycistronic inducible lentiviral vectors bearing 4 genes identified by the CEMA 

algorithm for two cell types: early (6 to 8 weeks gestation) neural progenitor cells (eNPC) 

and endothelial cells were created. The vectors also included a puromycin selection gene and 

a reporter YFP allele. Early passage primary neonatal dermal fibroblasts (NHDF) were 

driven to express the reverse tetracycline transactivator (rtTA) upon doxycycline (dox) by 

lentiviral infection and were stably selected with G418. Similarly, hESC and iPSC rtTA 

expressing clones were also derived (see schematic in Fig. 3A).

Following infection and activation of ectopic expression of the polycistron containing the 

eNPC factors predicted by CEMA, YFP positive fibroblasts were sorted and subsequently 

cultured conditions supporting reprogramming (Fig. 3B). Induced early-NPC (iNPC) 

fibroblasts exhibited distinct morphology changes apparent as early as 10 days post 

induction of ectopic expression (Fig. 3C); upregulated expression of neural markers such as 

SOX1, PAX6 and MAP2; downregulated fibroblast genes (CD44, CD73); and activated 

endogenous versions of the CEMA-predicted genes (SOX2, HOPX), which would be a key 

step of reprogramming (Fig. 3D and E). However, the iNPCs were unable to induce 

expression of NPC markers to a similar level found in tissue-derived NPCs. Moreover, the 

iNPCs appeared to proceed spontaneously to a neuronal fate as judged by staining for 

MAP2, suggesting that reprogramming to a stable NPC state was not achieved (Fig. 3D). 

These results were consistent across at least three independent reprogramming attempts. To 

further analyze the degree of cell fate conversion achieved, we compared the gene 

expression of reprogrammed cells to control fibroblasts using microarray, and found 

significant changes in gene expression, some of which were retained upon dox withdrawal, a 

hallmark for reprogramming (Fig. 3E). Differentially expressed genes were related to several 

biological Gene Ontology (GO) terms categories: cell structure, cell adhesion, regulation of 

neurogenesis and cell division.

Three to four weeks following CEMA endothelial gene set induction (Fig. 4A), YFP+ 

fibroblasts began to decrease their cytoplasmic volume, exhibited a “cobblestone” like 

morphology (Fig. 4B), and upregulated endothelial markers such as CD31 and VE-cad (Fig. 

4C) as well as the endogenous versions of CEMA-predicted genes (TAL1, FLI1). Again, the 

degree of induction of endogenous endothelial markers, across three independent 

experiments, was significantly lower than that found in bona fide endothelial cells 

(HUVEC), consistent with results from reprogramming to NPCs from FBs with CEMA-

predicted factors. Taken together, these results suggest that at least partial reprogramming 

can be achieved using CEMA selected genes, but that complete reprogramming is not 

possible without potentially significant modifications to the protocol or addition of more 

factors.
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2.6. Using CEMA predicted factors to program cell fate

Reprogramming cells from one somatic fate to another requires massive molecular changes. 

It is quite possible that the CEMA-selected factors are important for cell fate, but cannot 

reprogram fate from an alternate somatic state. Therefore, we hypothesized that these factors 

could drive fate more robustly when starting with cells at the pluripotent state. We generated 

human PSC clones with stable expression of rtTA and infected them with cocktails of 

CEMA selected gene sets through polycistronic lentiviral induction. After selection for 

infected cells, and subsequent doxycycline induction, YFP+/YFP− populations were sorted 

out and cultured in spontaneous differentiation conditions (without bFGF). After 2 weeks, 

medium was replaced to target cell culturing conditions.

In concordance with our hypothesis, hPSC engineered to express CEMA-selected NPC 

factors, differentiated homogenously to NPCs exhibiting typical NPC morphology 2–3 

weeks post ectopic induction (Fig. 5A and B), and expressed NPC markers in a level similar 

to that of early tissue- derived NPC as shown by RT-PCR (Fig. 5C). In stark contrast with 

typical hPSC derived NPCs, which tend to differentiate mainly towards the neuronal lineage 

(Patterson et al., 2012), NPCs generated by forced expression of CEMA predicted factors 

instead exhibited a high tendency to differentiate to astrocytes as measured by GFAP upon 

growth factor withdrawal (Fig. 5D). This is a very important distinction as the CEMA 

factors were generated from NPCs from tissue with a glial bias. RT-PCR for gene expression 

in the induced clones demonstrated that CEMA-predicted factors promoted robust induction 

of typical NPC markers, and to a degree more similar to that found in tissue-derived NPCs 

(Fig. 5C). Remarkably, these iNPCs even appeared to suppress expression of let-7 target 

genes, as would be expected for NPCs derived from tissue, as opposed to those differentiated 

from pluripotent cells (Fig. 5C)(Patterson et al., 2014). In addition, this pattern of let-7 target 

expression is consistent with their terminal differentiation pattern (Fig. 5D) (Patterson et al., 

2014). This indicates that CEMA-predicted factors not only induced cell fate, but also drove 

a specific cell fate, relevant to the cell types from which the CEMA factors were identified. 

Programming cell fate to the neural lineage with these CEMA defined factors was highly 

reproducible, as the data presented are representative of three independent experiments.

Genome-wide profiling of iNPCs in comparison to NPCs isolated from tissue or 

differentiated under standard conditions from PSCs by RNA-seq further demonstrated the 

robustness of the CEMA driven approach. For comprehensive comparison, RNA-seq reads 

from 5 additional primary cells from the ENCODE project were added to the analyses: hair 

follicular keratinocyte (ENCFF236EYN), dermis fibroblast (ENCFF000HWI), kidney 

epithelial cell (ENCFF109IUU), frontal cortex (ENCFF001RNU), cerebellum 

(ENCFF001ROK). We performed unsupervised hierarchical clustering using cummeRbund 

and found that CEMA derived iNPCs clustered closer to tissue-NPCs compared to PSC-

NPCs made by traditional differentiation (Fig. 5E), particularly when analyzing CEMA 

identified genes expression (Fig. 5E, left panel).

Differentiation of hESCs to the endothelial state is notoriously difficult, typically with a low 

yield. Here, we used H9-hESCs engineered to inducibly express the CEMA-predicted 

endothelial factors (same factors as used for reprogramming) to drive fate. Two days post 

dox induction YFP+/− cells were sorted and grown for 5 days in ESC differentiation 

Germanguz et al. Page 7

Stem Cell Res. Author manuscript; available in PMC 2017 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



medium which was then replaced to EGM2 endothelial growth medium. As shown in Figure 

6A, CEMA-factor induced cultures exhibited high differentiation capacity toward the 

endothelial lineage. At early time points, nearly 50% of YFP positive cells expressed 

endothelial markers such as CD31, while at later time points greater that 80% of YFP 

positive cells expressed CD31 (Fig. 6A) compared to 5–10% reported for standard 

spontaneous differentiation protocols (Levenberg et al., 2010), as well as other endothelial 

related genes (Fig.6B and 6C). In contrast, YFP− or GFP control cells, induced to 

spontaneously differentiate, had very rare CD31 positive cells (Fig.6A and 6B) in similar 

conditions. The programming data shown were typical of at least three independent 

experiments. To further functionally test the CEMA derived endothelial-like cells, we tested 

their ability to form tube-like structures. A standard tube formation assay in matrigel 

demonstrated that CD31 sorted iEndothelial cells were able to form robust vessels, to a 

degree similar to that observed for HUVEC cells. On the other hand, YFP− or GFP infected 

cells showed no ability to form tubular structures. (Fig. 6D). Finally, gene expression 

profiling of the differentiated H9-endo cells was analyzed by microarray and compared 

against CEMA gene expression database, showing high similarity to primary endothelial 

cells (Fig. 6E).

3. Discussion

We have generated a compendium of 17 cell-state-specific gene expression data, and 

analyzed it to identify unique gene expression patterns. This approach focused on (1) cell-

state-specific data, and (2) data from a single laboratory and platform. The latter is an 

important distinction because of well-known issues with inter-laboratory effects that plague 

meta-analyses (Guenther et al., 2010). The focus on data from a single laboratory can be 

viewed either as a restriction, or as a benefit. In general, integration of independent 

microarray studies is challenging and there is increasing acceptance that only data from the 

same platform can be integrated (Lukk et al., 2010). It has, however, been shown that when 

data are combined from different laboratories, and where biological experiments are 

replicated across laboratories, that the biological effects are stronger than the laboratory 

effects. Nevertheless, for such a merger to be informative, one must have the same biological 

condition across several labs, otherwise, lab-specific effects cannot be distinguished from 

biological effects because both are being changed at the same time. Because our focus was 

to investigate cell-specificity through developmental stages and across regional specification, 

it was difficult to amass such redundant public data across laboratories. Additionally, when 

we tried including new cell types generated in other laboratories, apparent artifacts were 

introduced in to the analysis. As such, we focused our analysis on the rich cell-state-specific 

compendium of data generated in our laboratory, for which no such artifacts were apparent.

Using murine ESCs, Correa-Cerro and colleagues (Correa-Cerro et al., 2011) screened the 

effect of single overexpressed TFs from a panel of 137 transcription factors and selected for 

those which had the ability to induce a transcriptome shift towards specific lineages at 48 

hours post induction. They followed that report by testing some of their selected TF by 

directly differentiating four distinct cell types and verifying some successful differentiation 

(Yamamizu et al., 2013). The authors suggested that upon identification and expression of a 
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downstream cell-specific gene combination of TF, rapid specific differentiation to mature 

cell subtypes can be achieved.

As this manuscript was in preparation, two groups published important studies showing that 

a similar type of algorithm applied to identify transcription factors specific to particular cell 

types profiled and deposited into public databases. Both studies also showed that cell state 

expression patterns can be used to predict transcription factors able reprogram cell fate from 

fibroblasts to retinal pigment epithelial cells (RPE) or keratinocytes (D'Alessio et al., 2015; 

Rackham et al., 2016). Both of these studies took advantage of large public databases 

containing data from at least 100 cell states to compile lists transcription factors with cell-

type specific expression patterns. Rackham et al also made a tool to allow simple prediction 

of TFs that could effectively reprogram cell fate, and used it to demonstrate the accuracy of 

prediction (Mogrify)(Rackham et al., 2016). Together, these studies, demonstrated that 

reprogramming factors can be identified solely on the basis of their gene expression pattern.

In the current study, we narrowed the pool of cell-type specific transcription factors to those 

that are particular to individual cell states, such as different developmental stages of neural 

progenitors. In doing so, we identified cocktails of transcription factors that can be 

introduced into the pluripotent state and drive nearly uniform cell fate towards particular 

states. This allowed for the generation of neural progenitors that were more advanced 

developmentally at the transcriptional level, and in addition, we more prone to generating 

astrocytes.

Some examples for human ESC directed differentiation have been reported as well. Ectopic 

expression of a cocktail of neurogenin-2 (Ngn2) or NeuroD1 (Zhang et al., 2013) and 

ASCL1 (Chanda et al., 2014) result in efficient rapid induction of mature specific subtype of 

neuronal cells. Similarly, the 4 endothelial factors selected by CEMA (ERG- FLI1- HHEX- 

TAL1) were previously tested individually for their ability to induce hemato-endothelial 

programs in hPSC (Elcheva et al., 2014), however only induction of ERG was successful in 

promoting endothelial-like cells. The authors further reported that a single factor induction 

was not sufficient for a faithful induction of mature endothelial fate as witnessed by the 

failure of the differentiated cells to turn off their pluripotent gene expression program. In 

contrast, expression of combination of four endothelial CEMA-selected genes drove 

homogeneous differentiation toward the endothelial fate.

The results presented here point to factors that not only define particular cell lineages such 

as neural progenitor cells and endothelial cells but also characterize both a temporal (i.e., 
developmental) and regional patterns of core genes. Lastly, we have provided an interactive 

web-based tool to allow users to query unique factors of expression, or, simply to obtain the 

pattern of expression of a particular gene of interest across many human cell types. Our 

expectation is that the results of the CEMA output will be refined as more cell types are 

added. We hope that the scientific community will benefit as a result from these analyses 

that provide information on the types of gene expression patterns that define individual cell 

states.
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Beyond reprogramming and direct differentiation, we expect users will benefit from having 

the ability to phenotype cells derived from tissue or created from PSCs in their own lab 

using the new groups of genes defined here. For instance, if one simply uses SOX2 and 

NESTIN as neural progenitor markers, it is clear from the CEMA output, that a wide array 

of different types of NPC express these markers. Instead, one could look to CEMA to 

provide a more complete picture of a cell of interest, from the tissue from which it was 

derived to the stage of development it might represent.

Our findings suggest that expression of CEMA selected factors can improve standard PSC 

differentiation protocols and facilitate generation of mature functional differentiated cells 

with high homogeneity. These data validate CEMA as a tool to identify gene modules 

important for particular cell fates, and point towards methods that could be used to generate 

any cell type desired from human pluripotent stem cells as long as a gene expression profile 

has been obtained.

4. Materials and Methods

4.1. Statistical Analysis

To determine the core set of genes uniquely expressed within a given cell type, one statistical 

approach would be to apply a t-test for the one cell type of interest against all others, or use 

analysis of variance with post-hoc tests. In fact, there are many statistical approaches which 

would serve a similar purpose (Cavalli et al., 2011; Liu et al., 2008; Lukk et al., 2010; 

McCall et al., 2011; Ogasawara et al., 2006; Su et al., 2002). We used a statistical test that 

compares the transcriptome of one cell type to that of every other cell type, on a cell-type-

by-cell-type basis, rather than in a one-against-rest approach. That is, we queried which 

genes in one cell type were being expressed differently from every other cell type, and only 

then aggregated these pair-wise comparisons into a single test statistic.

More formally, our null hypothesis for one cell type, i, and one gene, g, was that the mean 

gene expression in cell type i was similar to that in at least one other cell type, j. The test 

statistic was computed by making use of the maximum likelihood of a set of logistic 

regression models for predicting the cell type from Robust Multiarray Averaged (RMA) 

expression values. Within each logistic regression we re-weighted each cell type so as to 

mitigate the effect of the number of replicates available for each class (which differed). This 

re-weighting ensured that cell types with more available replicates did not dominate the 

computation (a similar re-weighting approach was taken in (McCall et al., 2011)).

In particular, our test statistic, , for gene g and cell type of interest i, was given by 

, where  was the change in log likelihood between two logistic regression 

models for predicting cell type i: (a) one which uses the expression levels for gene g and an 

offset term as features (the alternative model), and (b) another which used just an offset term 

(the null model). Furthermore, the data used to compute  was restricted to only those 

arrays from cell types i and j, and then the test statistic for cell type i was aggregated over all 

cell types j. As mentioned, we used an array-weighted logistic regression in order to 

appropriate equal weight to each cell type regardless of the number of replicates available. 

Germanguz et al. Page 10

Stem Cell Res. Author manuscript; available in PMC 2017 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We additionally set  if the mean gene expression was not higher in the cell type of 

interest (i) as compared to cell type j, thereby creating a one-tailed test. This enabled us to 

find genes that were not only uniquely expressed in cell type i, but also expressed more 

highly as compared to all of the other cell types, which prioritized genes for follow-up.

To compute p-values for our test statistic, we estimated the null distribution by way of a 

permutation test, assuming that the null distribution of the test statistic was the same for each 

gene when examining a particular cell type, i. In particular, we estimated the null 

distribution for  by using 100 permutations of the mapping from array to cell type. Note 

that these 100 permutations yielded 5,467,500 empirical null-distributed test statistics 

because there were 54,675 probes. Because our null hypothesis is that the mean gene 

expression is similar to at least one other cell type, we permuted the mapping for only one 

cell type j, that is, for only one term  in the test statistic (where j is chosen at random 

from among the other cell types for each permutation). (Using a null hypothesis in which 

one instead permuted the mapping for all other cell types would have yielded more 

significant hypotheses, likely with a similar rank order to the analysis actually used, but 

would not have adhered as well to our analysis goals of finding uniquely-expressed genes.) 

We estimated the p-values from this empirical null distribution of the test statistic in the 

usual manner, that is, by counting the proportion of times a test statistic of equal or greater 

value appears in the permuted data. From these p-values, we computed the False Discovery 

Rate (FDR) for any p-value threshold by way of q-values (Storey and Tibshirani, 2003), 

setting π0 = 1 which yields a conservative FDR estimate. When calling a gene significant, 

we used q<0.2. Dendrograms were constructed in Matlab using a euclidean distance with 

complete linkage for the hierarchical clustering algorithm.

Our goal here was not to improve upon existing statistical approaches in the literature, nor to 

compare and contrast them, only to use one that was reasonable for the problem at hand. It is 

likely that many other approaches would have yielded similar results, and ultimately, it 

would in any case be difficult to assess, in silico, which, if any, is superior. We chose the 

current approach because: (a) it allowed us to re-weight each class to mitigate the difference 

in number of replicates available within each class (a similar re-weighting was done in 

(McCall et al., 2011) using ANOVA with a re-sampling-based scheme, (b) it enabled us to 

avoid complications in estimating P values from multiple ANOVA posthoc tests, and (c), it 

allowed us to contrast each cell type against all other cell types on a cell-type by cell-type 

basis, rather than against all the rest in aggregate.

4.2. General cell culture

For tissue derived cell types, primary cells were derived and cultured in appropriate culture 

medium for up to 3 weeks. For pluripotent derived cell types, hESCs and hiPSCs were 

cultured under standard conditions with feeders and driven to differentiate under conditions 

as described previously. For both tissue and PSC derived cells, the indicated cell types were 

purified from mixed cultures either by expression of reporter construct (such as AFP-GFP 

for hepatocytes) and FACS, or by manual dissection based on morphology (such as rosettes 

for NPCs) (Patterson et al., 2012). All purified cell types were judged to be pure if > 90% 

positive by immunostaining for at least 3 appropriate marker genes. Many of these cell types 
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were also assayed for appropriate function (Patterson et al., 2012). Acronyms for all cell 

types profiled are listed in Table 1.

4.3. Pluripotent stem cells

hESCs and hiPSCs were generated as described previously (Chin et al., 2009; Lowry et al., 

2008) and cultured in standard growth conditions on immortalized feeders in DMEM 

containing Knockout Serum Replacer. The following lines were profiled, and some were 

used to make differentiated progeny described below: H1, HSF1, H9, 

XFiPSC2(Karumbayaram et al., 2011), hiPSC1, hiPSC2, hiPSC18(Lowry et al., 2008), 

hiPSC19, and hiPSC21(Chin et al., 2009; Chin et al., 2010). Each line analyzed was 

extensively characterized by: immunostaining for pluripotency factors (OCT4 and NANOG) 

and cell surface markers such as Tra1-81; Embryoid body (EB) formation and Teratoma 

analysis was conducted to demonstrate pluripotency; and Karyotyping analysis was 

conducted by Cell Line Genetics to ensure a stable karyotype. Immunostaining and gene 

expression analysis demonstrated that these cells were at least 95% pure(Chin et al., 2009; 

Lowry et al., 2008).

4.4. Pluripotent stem cell derived definitive endoderm

hESCs and hiPSCs were starved for serum replacer and administered Activin A. Four days 

later, these cultures showed a dramatic morphological change, and the cells induced 

expression of definitive endoderm markers such as SOX17 and FOXA2. Immunostaining 

and gene expression analysis demonstrated that these cells were at least 95% pure(Chan et 

al., 2012). These endodermal cultures were assayed for their ability to be further 

differentiated into endodermal cell types, such as hepatocytes ((Patterson et al., 2012) and 

below).

4.5. Pluripotent stem cell derived neural progenitor cells

hESCs and hiPSCs were driven towards the neural lineage by addition of Neural induction 

medium (DMEM + B27, N2, EGF, FGF, Retinoic Acid, and Shh). Two weeks later, neural 

rosettes formed, and were manually dissected from the culture and plated onto Laminin/

Ornithine coated plates. This purification scheme produced cultures that were at least 92% 

pure as judged by immunostaining for a variety of NPC markers (SOX2, PAX6, SOX1, 

MUSASHI etc)(Patterson et al., 2012). The differentiation capacity of these NPCs was 

demonstrated upon growth factor withdrawal, where two weeks later, neurons and glia were 

generated(Patterson et al., 2012).

4.6. Pluripotent stem cell derived neurons

PSC-NPCs were subjected to growth factor withdrawal and allowed to differentiate towards 

neurons and glia. The cultures were transfected with DCX-GFP, which shows high 

specificity to neurons in culture. Neurons were then isolated by FACS for GFP positive cells, 

and collected into RNA lysis buffer.
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4.7. Pluripotent stem cell derived fibroblasts

hESCs and hiPSCs were treated with collagenase to produce floating embryoid bodies in 

non-adherent plates. Two days later, the EBs were allowed to reattach to culture dishes in 

Fibroblast medium (DMEM + 10% FBS). Colonies with fibroblast morphology were 

manually isolated and plated into new dishes with FB medium. Cells were passaged four 

more times to generate pure cultures morphologically. Cell purity was assessed by 

immunostaining and judged to be 99% pure(Patterson et al., 2012).

4.8. Pluripotent stem cell derived hepatocytes

hESC and hiPSC derived definitive endoderm was further differentiated towards hepatocytes 

by the addition of various growth factors (HGF, KGF etc). Additionally, the cultures were 

transfected with AFP-GFP construct to highlight the hepatocyte lineage. Hepatocytes were 

then isolated by FACS and lysed for gene expression analysis(Patterson et al., 2012). These 

hepatocytes were judged to be functional by both PAS assay and their ability to secrete 

albumin(Patterson et al., 2012).

4.9. Pluripotent stem cell derived endothelial cells

PSC differentiating cells were FACS sorted for CD31 (PECAM) expression by CD31-PE 
conjugated antibody(Levenberg et al., 2010). Cells were grown in EGM2 media (Lonza) for 

further analysis. Matrigel tube formation assay was performed as described previously 

(Levenberg et al., 2010).

4.10.Tissue-derived cells

Tissue-NPC- Fetal brain and spinal cord specimens were obtained as discarded, anonymized 

tissues (IRB exempt). These specimens were physically and chemically dissociated to single 

cells and placed into NPC induction medium (see above) on Laminin/Ornithine coated 

plates. These cells were judged to be 100% pure NPCs by immunostaining(Patterson et al., 

2012).

Tissue-fibroblasts, keratinocytes and hepatocytes were isolated from discarded anonymized 

human dermis or liver obtained from Lonza (FBs and Heps) or Invitrogen (Keratinocytes). 

Fibroblasts were grown in fibroblast media (DMEM + FBS) for two weeks prior to lysis for 

RNA extraction. Keratinocytes were grown in KSFM (Invitrogen). Hepatocytes were grown 

in Bullet Kit (Lonza). Hepatocytes were shown to be functional by albumin secretion and 

PAS assays, and purity was assayed by staining for Albumin(Patterson et al., 2012). 

Fibroblasts were assayed for their ability to secrete appropriate collagens (Patterson et al., 

2012), and keratinocytes were assayed for their function in a calcium switch assay as 

described(Blanpain et al., 2006).

Tissue-endothelial cells, and smooth muscle cells were isolated and prepared from 

appropriate human tissue by Promocell. Each were judged by the manufacturer to be at least 

95% pure by immunostaining for various markers.

Tissue-mesothelial, kidney epithelial, and myoepithelial cells were isolated, grown and 

prepared as described previously(Rheinwald et al., 1987).
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4.1. Microarray profiling

Each of these cell types were lysed in the same buffer and RNA was isolated using the same 

method (Stratagene). All RNA samples were submitted to the same facility and hybridized 

to the same type of microarray chip (HUG133 2.0plus, Affymetrix) as described previously 

(Patterson et al., 2012). Initial standard expression analysis demonstrated that all cell types 

were isolated appropriately (Patterson et al., 2012) and data not shown). The expression data 

presented reflect the average of at least two biologically independent replicates. Functional 

annotation was performed using DAVID (Huang da et al., 2009)

4.12. Lentiviral constructs and infection

Polycistronic segments of four CEMA selected genes were custom synthesized by 

BioMatik. Reading frames were separated by the 2A self-cleaving peptide sequence. CEMA 

selected genes were followed by a YFP transcript engineered to be expressed in the nucleus. 

CEMA polycistrons were cloned into the pLVX-Tight-Puro (Lenti-X™ Tet-On, Clontech) 

under the P-Tight composite promoter. Lentiviral particles were generated in 293T cells 

using stranded protocols followed by concentration with Amicon Ultra-15 centrifugal units 

(100K; Millipore). For constitutive expression of the tetracycline-controlled transactivator 

(rtTA), cells were first infected with pLVX-Tet-On. Advanced lentivirus and stable clones 

were selected by G418.

4.13. qRT-PCR analysis

Total RNA was extracted using an RNeasy Mini Kit (QIAGEN). cDNA synthesis was 

performed using the Superscript III first-strand cDNA synthesis kit (Invitrogen). Real-time 

PCR was performed in triplicate using the SYBR green real-time PCR MIX (Roche) in the 

Roche lightcycler 480 machine. Primers are listed in supplementary table S2.

4.14. RNA-sequencing

Libraries were constructed according to manufacturer instructions (TruSeq Stranded Total 

RNA with Ribo-Zero; Illumina). Followed second strand PCR amplification, ~200bp sized 

libraries were excised from agarose gel and pooled together in 10nM concentration each. 

Samples were sequenced using Illumina HiSeq2000 on single-end 50-bp reads and aligned 

to human reference genome (Hg19) using Tophat (Trapnell et al., 2009). Processing using 

Cufflinks and Cuffdiff (Trapnell et al., 2012) was performed to obtain differential fragments 

per kilobase of transcript per million mapped reads (FPKM). Further analysis was performed 

using the cummeRbund suite (Trapnell et al., 2012). Hierarchical distance clustering 

dendrograms were based on Jensen-Shannon clustering metric. Only genes in which FPKM 

was over 0.5 in at least one sample were included.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Development of an algorithm, CEMA, for identification of cell specific 

expression modules.

• Ectopic expression of CEMA selected transcription factors can derive partial 

reprogramming of fibroblasts.

• hPSC engineered to express CEMA factors display robust differentiation 

capacity towards a mature progeny.
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Figure 1. Analysis of 17 cell states produces unique expression modules
(A) a table of the top 10 genes from each cell state shown. (B) and (C) Dendrograms 

showing the relationship between all tissues in the global analysis, using the correlation 

between their p-values for all genes (B) or just transcription factors (C). Note that, in 

general, the CEMA patterns for similar cell states appeared to be more similar for expected 

cell states. In other words, the list of genes ranked by their specificity for a particular cell 

state reflected the similarity that would be uncovered by a Pearson-type correlation. (D) 
Example of how the p-values stabilized as we added more and more cell types In particular, 
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each entry on the x-axis shows the correlation between tis-HEP p-values, when X tissues, or 

X+1 tissues were used. For example, the 2:3 entry shows that when only two tissues were 

used, as compared to three tissues, that the p-values have a correlation of around 0.75. 

However, when we compared the p-values when 8 tissues were used, as compared to 7 (7:8) 

we see the correlation approaches 1. Here, the order of tissues added for comparison with 

tis-HEP were: tis-FB then tis-HEP, tis-KER, tis-MYOEP, tis-KID, tis-MESO, tis-NPCe, tis-

NPC. (E) To assess the specificity of CEMA-identified genes, an example gene for NPCs 

was probed across the BioGPS database of profiled cell types from across dozens of cell 

types. FABP7, identified by CEMA as specific to tis-NPCs, only showed up in fetal brain 

samples in the Novartis dataset. Note that just a subset of cell types are labelled in the image 

(blue text), while the analysis was performed on all cell types. A broader analysis is 

available in Figure S1.
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Figure 2. Temporal and Spatial CEMA analyses
(A) using correlation based on all genes, (B) using only those genes labeled as transcription 

factors (see Methods). In green, the top 10 transcription factors that distinguish each cell 

type are highlighted. Note that TFs shown in italics were uncovered in at least two of 

different types of NPCs. Spatial CEMA analysis (C) Dendrograms showing the 

relationship between all tissues in the spatial analysis, using the correlation between their p-

values using correlation based on all genes or, (D) using only those genes labeled as 

transcription factors (see Methods). In green, the top transcription factors that distinguish 
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each cell type are highlighted. Note that TFs shown in italics were uncovered in at least two 

of the endothelial cells taken from different tissues.
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Figure 3. CEMA selected gene sets can induce at least partial reprogramming
(A) Schematic illustration of experimental design and CEMA selected genes cassettes (B–
E), Reprogrammed NHDF–iNPC (B) NHDF-iNPC cells, sorted for YFP+ and treated with 

dox exhibit distinct morphology changes. The images shown are from a representative 

experiment, selected from over four separate experiments. (C) Some NHDF-iNPCs acquired 

neuronal morphology and stained positive for MAP2. Bars represent 50 microns. (D) 
NHDF-iNPCs expressed various neuronal and NPC markers as measured by quantitative 

real time PCR relative to NHDF-GFP; GAPDH expression was used for normalization. 
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Error bars represent standard error of the mean of four separate reprogramming experiments, 

one tissue-NPC sample was used for comparison (E) Venn diagram of genes of which 

expression level changed 2 fold in NHDF-iNPC, NHDF-iNPC in which Dox was withdrawn 

(wd) compared to NHDF-GFP.
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Figure 4. CEMA selected genes for NHDF–endothelial reprogramming
(A) CEMA endothelial selected genes. (B) NHDF- endo 8 Weeks of Doxycycline treatment, 

Some NHDF-endo stained positive for the endothelial marker CD31. Images of one 

experiment that is representative of three separate experiments are presented. Bars represent 

50 microns. (C) NHDF-endo upregulate various endothelial related genes, though in lower 

levels compared to primary HUVECS as measured by quantitative real time PCR relative to 

NHDF-GFP. These results are representative of three independent experiments.
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Figure 5. CEMA selected genes expression derive specific cell fates
(A) 3 weeks post ectopic induction PSC-iNPC clones exhibited homogenous NPC 

morphology, (B) and expressed NPC markers. Bars represent 50 microns. (C) CEMA-PSC-

iNPC expressed various NPC markers as measured by RT-PCR relative to H9-GFP and 

compared to 6.5w tissue derived NPCs and PSC-NPC derived by standard protocol. Error 

bars represent standard error of the mean of three samples. GAPDH was used for 

normalization. (D) Followed growth factor withdrawal, PSC-iNPC exhibited high tendency 

to differentiate towards the glial lineage (GFAP positive cells) quantification of three 
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separate experiments with different PSC clones is shown. For experiment #4, CEMA-XFiPS 

cells were chemically induced to differentiate towards NPC using small 

molecules(Chambers et al., 2009). YFP+/− NPCs were sorted out followed by growth factor 

withdrawal. (E), Hierarchical clustering of gene expression profiles as measured by strand-

specific RNA-seq, shown as dendrograms. Left panel: CEMA selected early tissue NPC 

genes (see supplementary Figure S1); right panel: total gene expression.
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Figure 6. CEMA selected genes expression enhance differentiation of human PSCs
(A) Flow cytometry analysis of CD31 positive cells in sorted YFP+/YFP− populations 

cultured in endothelial conditions for 8 weeks or 10 weeks (B) CEMA-H9-iendo cells 

exhibit homogenous cobble-stone morphology and endothelial marker expression. Bars 

represent 50 microns. (C) CEMA-PSC-iENDO expressed various endothelial related genes 

in similar levels compared to primary endothelial cells as measured by RT-PCR relative to 

H9-GFP (PSC-GFP). Error bars represent standard error of the mean of three experiments. 

(D) Matrigel tube formation assay: H9-endo-YFP+ formed tube like structure similarly to 
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HUVECs. (E) Heat map of H9-endo gene expression compared to H9 controls and other 

cells in the CEMA gene expression database.
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Table 1

Each of the 17 cell states in our compendium, along with the shorthand used in figures and on the website (in 

parentheses). Also denoted in parentheses is the number of independent biological replicates analyzed.

1 tissue endothelial cell EC (blood vessel)(×10)

2 pluripotent derived definitive endoderm cell PSC-Endo (endodermal progenitor)(×2)

3 pluripotent derived fibroblast cell PSC-FB (paraxial mesoderm)(×8)

4 pluripotent derived hepatocyte cell PSC-HEP (hepatocyte)(×4)

5 pluripotent derived neuron cell PSC-NEU (neuron)(×3)

6 pluripotent derived neural progenitor cell PSC-NPC (neural tube progenitor)(×13)

7 tissue smooth muscle cell SMC (smooth muscle)(×4)

8 squamous cell carcinoma cell lines SSC (squamous cell carcinoma)(×4)

9 tissue derived fibroblast cell tis-FB (paraxial)(×9)

10 tissue derived hepatocyte cell tis-HEP (hepatocyte)(×3)

11 tissue derived keratinocyte cell tis-KER (keratinocyte)(×6)

12 tissue derived kidney epithelial cell tis-KID (kidney proximal tubule)(×2)

13 tissue derived mesothelial cells tis-MESO (mesothelial cell)(×2)

14 tissue derived myoepithelial cell tis-MYOEP (myoepithelial)(×4)

15 tissue derived neural progenitor cell 6–8 PCW tis-NPC-early (early gestational)(×6)

16 tissue derived neural progenitor cell 15–19 PCW tis-NPC-late (mid-gestational)(×5)

17 undifferentiated pluripotent stem cells Undiff (model of epiblast)(12)
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