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Abstract

Data from diffusion magnetic resonance imaging (dMRI) can be used to reconstruct fiber tracts, 

for example, in muscle and white matter. Estimation of fiber orientations (FOs) is a crucial step in 

the reconstruction process and these estimates can be corrupted by noise. In this paper, a new 

method called Fiber Orientation Reconstruction using Neighborhood Information (FORNI) is 

described and shown to reduce the effects of noise and improve FO estimation performance by 

incorporating spatial consistency. FORNI uses a fixed tensor basis to model the diffusion weighted 

signals, which has the advantage of providing an explicit relationship between the basis vectors 

and the FOs. FO spatial coherence is encouraged using weighted ℓ1-norm regularization terms, 

which contain the interaction of directional information between neighbor voxels. Data fidelity is 

encouraged using a squared error between the observed and reconstructed diffusion weighted 

signals. After appropriate weighting of these competing objectives, the resulting objective function 

is minimized using a block coordinate descent algorithm, and a straightforward parallelization 

strategy is used to speed up processing. Experiments were performed on a digital crossing 

phantom, ex vivo tongue dMRI data, and in vivo brain dMRI data for both qualitative and 

quantitative evaluation. The results demonstrate that FORNI improves the quality of FO estimation 

over other state of the art algorithms.
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1. Introduction

By capturing both the magnitude and the anisotropy of water diffusion, diffusion magnetic 
resonance imaging (dMRI) provides a noninvasive means to reconstruct fiber tracts, for 

example, in white matter and muscle (Johansen-Berg and Behrens, 2013). Diffusion tensor 
imaging (DTI), which is a basic dMRI strategy, models the water diffusion using a 

symmetric positive definite tensor (Basser et al., 1994). Since DTI is known to be 

insufficient to represent crossing fiber tracts, more advanced dMRI techniques, such as high 
angular resolution diffusion imaging (HARDI) (Tuch et al., 2002) and diffusion spectrum 
imaging (DSI) (Wedeen et al., 2005), have been developed.

In order to carry out tractography (Mori et al., 1999; Basser et al., 2000; Qazi et al., 2009; 

Reisert et al., 2011) and volumetric fiber tract segmentation (Bazin et al., 2011; Nazem-

Zadeh et al., 2011; Yendiki et al., 2011; Ye et al., 2015b), fiber orientations (FOs) are 

computed from the dMRI data. In tractography, fiber streamlines are propagated according 

to the computed FOs or the distribution of FOs, and in volumetric tract segmentation the FO 

is a key feature upon which the voxels are labeled. Since accurate estimation of FOs is 

critical in these algorithms, it has been a major topic of research. For example, spherical 

deconvolution (Tournier et al., 2004, 2007; Cheng et al., 2014; Jeurissen et al., 2014), q-ball 

reconstruction (Tuch, 2004; Hess et al., 2006; Descoteaux et al., 2007), multi-tensor models 

(Landman et al., 2012; Peled et al., 2006; Behrens et al., 2007; Ramirez-Manzanares et al., 

2007; Zhou et al., 2014; Liu et al., 2015; Ye et al., 2014), and ensemble average propagator 

methods (Michailovich et al., 2011; Rathi et al., 2014; Wedeen et al., 2008; Pickalov and 

Basser, 2006; Özarslan et al., 2006; Merlet and Deriche, 2013) have been developed so that 

multiple FOs can be estimated in each voxel.

A large number of diffusion gradient directions may be required to accurately estimate FOs 

when fiber tracts cross, which takes a long acquisition time and limits the use of dMRI in 

clinical practice (Bilgic et al., 2012). Therefore, methods have been developed to reduce the 

required number of gradient directions so that the dMRI acquisition is clinically achievable. 

Because the number of crossing FOs in a voxel is small, modeling the diffusion data as 

having arisen from a sparse subset of basis sources and solving the resulting optimization 

problem using sparsity regularization is particularly effective (Ramirez-Manzanares et al., 
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2007; Landman et al., 2012; Daducci et al., 2014; Merlet et al., 2012; Zhou et al., 2014; 

Michailovich et al., 2011; Rathi et al., 2014). The basis has been selected to be prolate 

diffusion tensors (Ramirez-Manzanares et al., 2007; Landman et al., 2012; Daducci et al., 

2014; Zhou et al., 2014), spherical ridgelets (Michailovich et al., 2011; Rathi et al., 2014), 

and spherical polar Fourier basis (Merlet et al., 2012).

Noise can have a deleterious effect on FO estimation, especially in areas where fibers cross 

(Cheng et al., 2006; Aranda et al., 2014). A 3D toy example of two crossing tracts is shown 

in the axial view (the x–y plane) in Figure 1(a), where noise is added to the simulated dMRI 

data. Here, the CFARI algorithm (Landman et al., 2012) estimates FOs at each voxel 

independently; it yields noisy estimates and occasionally fails to yield a second direction at 

all (Figure 1(a)).

To reduce the effect of noise, spatial coherence (or smoothness) has been used to improve 

FO estimation. In Becker et al. (2014) diffusion weighted images are smoothed before FO 

estimation. In Sigurdsson and Prince (2014), FOs are smoothed after voxelwise estimation 

using the CFARI method. In Duits and Franken (2011), FOs are smoothed using left-

invariant diffusions on the space of positions and orientations. Tournier et al. (2013) and 

Reisert and Kiselev (2011) incorporate the continuity of FOs as regularization terms in the 

estimation to enforce FO smoothness, but sparsity regularization is not used. There are also 

methods that seek to simultaneously estimate and smooth FOs by combining spatial 

continuity with sparsity. In Michailovich et al. (2011) and Rathi et al. (2014), the TV-norm 

of diffusion weighted images is incorporated as a smoothness regularization term in the 

objective function. In Ramirez-Manzanares et al. (2007) and Zhou et al. (2014), spatial 

consistency of FOs is encouraged by adding regularization terms that smooth the mixture 

fractions of each basis tensor. However, spatial coherence is preserved in an indirect way in 

Michailovich et al. (2011), Rathi et al. (2014), Ramirez-Manzanares et al. (2007), and Zhou 

et al. (2014) because the objective functions do not explicitly model and smooth the 

directional information in the FOs. Recently, Auría et al. (2015a) define a spatially 

structured sparsity regularization term to incorporate directional information in the sparse 

reconstruction of FOs.

In this paper, we present the method Fiber Orientation Reconstruction using Neighborhood 
Information (FORNI), which is an FO estimation algorithm that incorporates spatial 

coherence. Preliminary results of this work were presented in a conference paper (Ye et al., 

2016). An example of the FORNI FO estimation on the toy example in Figure 1(a) is shown 

in Figure 1(b). In contrast to most previous works, we form an objective function that 

directly encodes the directional information in the neighborhood to encourage spatial 

coherence of FOs. Specifically, a fixed tensor basis is used to represent diffusion weighted 

signals, which has the advantage of providing an explicit relationship between the basis and 

FOs. Spatial coherence is encouraged using weighted ℓ1-norm regularization, where the 

interaction of directional information in neighboring voxels is modeled. In the weighted ℓ1-

norm regularization terms, basis directions that are more consistent with the FOs in the 

neighborhood are encouraged. Data fidelity is encouraged using a term that measures 

agreement between the observed and reconstructed diffusion signals. The resulting objective 
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function is minimized using a block coordinate descent algorithm, and a straightforward 

parallelization strategy is used to speed up processing.

The remainder of the paper is organized as follows. Section 2 describes the FORNI 

algorithm and Section 3 presents the experiments on a digital crossing phantom, ex vivo 
tongue dMRI data, and in vivo brain dMRI data for qualitative and quantitative evaluation. 

Section 4 discusses the results and future works. Finally, Section 5 concludes the paper.

2. Methods

In this section, we first provide a background on diffusion signal modeling using a fixed 

tensor basis. Then, we describe our approach to the incorporation of directional information 

from neighboring voxels to improve FO estimation. Finally, the resulting objective function 

and the optimization strategy are presented.

2.1. A Multi-tensor Model with a Fixed Tensor Basis

Using the unified framework presented in Jian and Vemuri (2007), the diffusion weighted 

signal at each voxel can be modeled as

(1)

where x is a point on a smooth manifold ℳ, S(q) is the diffusion weighted signal with the 

diffusion gradient q, S0 is the baseline signal without diffusion weighting, f(x) is a 

probability density function, and R(q, x) is a kernel function.

The diffusion signals can be represented by a basis, and one commonly used basis is a set of 

fixed prolate tensors (Landman et al., 2012; Zhou et al., 2014; Ramirez-Manzanares et al., 

2007; Daducci et al., 2014). The primary eigenvector (PEV) of each basis tensor represents a 

possible FO and is referred to as a basis direction. In this work, we use the tensor basis 

comprising N = 289 prolate tensors Di whose PEVs vi are approximately evenly oriented 

over the unit sphere. These basis directions were determined by tessellating an octahedron, 

and the number of basis directions (N = 289) lies in the range of previously used numbers 

(Ramirez-Manzanares et al., 2007; Landman et al., 2012; Auría et al., 2015a). The shape of 

the basis tensor is determined by its eigenvalues (λ1 ≥ λ2 ≥ λ3 > 0). The second and third 

eigenvalues are set equal, and each eigenvalue is determined by examining the diffusion 

tensors of a noncrossing fiber tract (Landman et al., 2012).

With this tensor basis, we have ℳ = 2 (a unit sphere), x = v (a unit vector), f(v) = fiδ(v; vi), 

and R(q, vi) = e−qTDiq (based on the Stejskal-Tanner tensor formulation (Stejskal and Tanner, 

1965)). By normalizing the diffusion gradient as q̃ = q/|q|, the gradient direction q̃ is 

associated with a constant b determined by the imaging sequence. Taking image noise into 

account, Eq. (1) then becomes (Landman et al., 2012)
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(2)

where fi is the (unknown) nonnegative mixture fraction for Di, , and n(q) is noise.

After defining y(q) = S(q)/S0 and η(q) = n(q)/S0 and letting K be the number of diffusion 

gradient measurements, Eq. (2) can be written as

(3)

where y = (y(q1), y(q2), …, y(qK))T, G is a K×N matrix comprising the attenuation terms 

, f = (f1, f2, …, fN)T, and η = (η(q1), η(q2), …, η(qK))T. Because the number 

of FOs at each voxel is usually small with respect to the number of diffusion gradients, the 

mixture fractions can be estimated using the following sparse reconstruction formulation

(4)

To solve Eq. (4), the constraint of  is relaxed (Landman et al., 2012; Ramirez-

Manzanares et al., 2007) and then the ℓ0-norm is replaced by the ℓ1-norm, yielding the 

following simpler problem,

(5)

After solving this, the estimated vector f̂ is normalized so that its elements add to one. Note 

that in this paper we interpret small mixture fractions as components of isotropic diffusion; 

therefore, FOs are given by those basis directions whose mixture fractions are greater than a 

threshold fth. Accordingly, by focusing on the estimation of mixture fractions, we are also 

estimating the FOs.

2.2. FO Estimation Using Neighborhood Information

Incorporation of spatial coherence in the estimation of FOs can reduce the effects of noise 

(Michailovich et al., 2011). Some researchers have incorporated neighborhood information 

in order to maintain smoothness of mixture fractions (Ramirez-Manzanares et al., 2007; 

Zhou et al., 2014). But having smooth mixture fractions does not equate to having smooth 

FO angles. For example, suppose we have three side-by-side voxels a, b, and c, whose 

mixture fractions are fa = (1, 0, …, 0)T, fb = (0, 1, 0, …, 0)T, and fc = (0, 0, 1, 0, …, 0)T, 
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respectively. The magnitude of the difference ||fa − fb|| between the mixture fractions of a 
and b is the same as the magnitude of the difference ||fa − fc|| between a and c, while the 

desired measure of difference should be related to the angles between the basis directions 

with nonzero mixture fraction entries. Figure 2 gives a graphical example of a curved tract, 

where simply using the smoothness of mixture fractions could lead to identical FOs along 

the tract instead of a desired gradually-changing FO structure. This limitation exists in the 

case of crossing fibers as well. In this work, we encourage spatial coherence of FOs by 

explicitly incorporating the directional information in neighboring voxels into the FO 

estimation. The symbols used in FORNI are listed in Table 1.

2.2.1. FO Estimation with Known Neighborhood Information—First, we consider a 

simplified case where the mixture fractions fm are to be estimated in the voxel m and the 

mixture fractions are known at all voxels in a neighborhood m of voxel m. Let n be a 

voxel in m and let voxel n have mixture fractions fn; then the FOs at voxel n are given by 

the set

(6)

where fn,i is the i-th element of fn, and fth is the threshold for mixture fractions. We further 

let , where wn,j is the j-th FO in voxel n and Wn is the cardinality of n. For 

concreteness, we assume at this stage and for the remainder of the paper that the 

neighborhood consists of the nearest 26 neighbors (Auría et al., 2015a) and fth = 0.1 

(Landman et al., 2012). We want to estimate the mixture fractions fm (and therefore the 

associated FOs  using Eq. (6)) at voxel m given the neighborhood 

information.

Our main goal is to use the patterns of FOs in the neighboring voxels to encourage a similar 

pattern of FOs in voxel m—this is the idea of FO smoothness or coherence. A set m of 

likely FOs for the voxel m can be computed given knowledge of the mixture fractions and 

FOs in its neighbors (the details will be described later). The likely FO information is then 

used to influence the mixture fraction estimation in voxel m using the sparse estimation 

framework previously described (for the incorporation of prior knowledge in FO estimation) 

in the FIEBR algorithm (Ye et al., 2015a). In particular, we solve the following weighted ℓ1-

norm regularized least squares problem

(7)

where Cm is a diagonal matrix that weights the basis directions according to their distance to 

the likely FOs in m. For example, the basis directions vi that are closer to the likely FOs in 

m have smaller weights in the weighted ℓ1-norm; therefore, they have smaller penalty in 

the objective function and are more likely to be selected as FOs in m.
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Ye et al. (2015a) specified the diagonal entries of Cm as

(8)

where um,p ∈ m, Um is the cardinality of m, and α ∈ [0, 1) is a constant. Since vi and um,p 

are unit vectors, |vi · um,p| ∈ [0, 1] and Cm,i is positive for all i. In this work, we find it useful 

to normalize these diagonal entries so that the weights on the most likely FOs are nearly the 

same as when there is no neighboring FO information used at all. Accordingly, here we 

specify the diagonal weights in Cm as

(9)

We see that the weights in Eq. (9) are just the weights in Eq. (8) normalized by the smallest 

diagonal entry. Note that we require α ∈ [0, 1) in order to ensure that Cm,i > 0, ∀i.

Ye et al. (2015a) developed the above framework to incorporate fixed prior directions at each 

voxel in the estimation of FOs. These prior directions were either hand-drawn or determined 

by atlas registration. To apply this framework to spatial smoothness, we replace the concept 

of prior directions with that of likely FOs. Note that our application of FO estimation with 

spatial coherence is fundamentally different than Ye et al. (2015a) in two respects: 1) likely 

FOs are computed based on neighbors and no manual intervention or anatomical atlas 

registration is needed; 2) because computations of FOs depend on neighbors, the FOs for all 

voxels need to be simultaneously estimated and the independent FO computation at each 

voxel in Eq. (7) is inappropriate. The proposed approach to the computation of likely FOs 

and simultaneous FO estimation is presented next in Sections 2.2.2 and 2.2.3, respectively.

2.2.2. Computation of Likely FOs from Neighbors—A flow chart of the likely FO 

computation at each voxel is shown in Figure 3. We first consider a single neighbor voxel; in 

particular, let voxel n be the neighbor of voxel m. Let Dm and Dn be the diffusion tensors fit 

from diffusion weighted signals at voxels m and n, respectively. Based on the tensors, we 

define the voxel similarity wm,n between voxels m and n as

(10)

where μ is a constant and d(·, ·) is the measure of distance between tensors given by Arsigny 

et al. (2006)
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(11)

Given the definition of voxel similarity, we now want a measure of the similarity of each 

basis direction vi to the FOs  in voxel n. Accordingly, we define the basis-
neighbor similarity rm,n(i) as

(12)

In order for a given basis vector to be similar to a neighbor’s computed FO, the voxels must 

be similar and the directions must be well-aligned.

Now consider all voxels that are neighbors of voxel m. We define an aggregate basis-
neighbor similarity Rm(i) at voxel m for each basis vector vi as

(13)

Basis directions with larger aggregate basis-neighbor similarity correspond to directions that 

are close to FOs in many neighboring voxels or in a few neighbors that have strong voxel 

similarity. These are directions that are more likely to be FOs in voxel m by virtue of the 

current FOs in neighboring voxels.

Given Rm we can extract a set of likely FOs for voxel m. We could simply choose the 

directions with the largest Rm values or those with Rm values greater than a threshold. 

However, a special circumstance should be noted. In a crossing region, such as that depicted 

in Figure 4(a), some of the neighboring voxels could fail to estimate a crossing FO due to 

noise. In particular, suppose there are two crossing FOs ṽ1 and ṽ2 in this region, and ṽ1 fails 

to be reconstructed in more than one neighboring voxel while the other neighbors have both 

FOs reconstructed. In this case, as is shown in Figure 4(b), the basis vector vi corresponding 

to ṽ1 could have a smaller Rm(i) value than a basis direction ṽ3, for example, which is 

distant from both ṽ1 and ṽ2. In this case, the desired ṽ1 is not included in the top two likely 

FOs and thus ṽ1 may not be properly encouraged, while an undesired ṽ3 may be encouraged 

and create false FOs.

A more robust definition of the likely FOs is as those directions which comprise the local 

maxima of Rm. In particular, consider the direction vi and compare its value Rm(i) to all 

values of Rm(i′) corresponding to directions vi′ within θR = 20°. If Rm(i) is maximum, then vi 

is included in the likely FOs. Following this reasoning, the likely FOs at voxel m are given 

by
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(14)

Note that θR is converted to have a unit of radians so that it can be compared with arccos(|vi · 

vi′ |).

An example of the Rm values of a voxel in the crossing region in Figure 1 is shown in Figure 

5, where the Rm values are plotted on the unit sphere according to their associated basis 

directions. The Rm values of the likely FOs are indicated by the larger dots and black 

arrows. The two likely FOs are the horizontal (x) and vertical (y) directions in Figure 1 that 

correspond to the desired FOs.

2.2.3. FO Estimation for All Voxels—After the likely FOs for voxel m are determined, 

the weighting matrix Cm can be obtained. Note that in Eq. (7), we have assumed known 

neighbor information. However, the FOs in the neighboring voxels are also unknown and 

must be estimated, which means that FOs cannot be estimated independently—it is a joint 

FO estimation problem.

Suppose the total number of voxels of interest is M. The estimation of all unknown mixture 

fractions  (through which the FOs are also estimated) can be written 

as

(15)

Here Cm encodes the interaction between neighbors. Since Cm depends on the parameter α 

(see Eq. (9)), α and β are the two parameters that must be specified by the user. When α is 

larger there is more influence from neighboring voxels, and when β is larger the mixture 

fractions tend to be more sparse and therefore there are fewer estimated FOs.

2.3. Minimization of the Objective Function and Parallelization

In Eq. (15), the FOs in each voxel are coupled with neighbor voxels in the weighting matrix 

Cm. We use an iterative block coordinate descent (BCD) method (Bertsekas, 1999) to 

decouple the interaction and optimize the objective function. At iteration t, each fm is 

estimated by solving

(16)

Ye et al. Page 9

Med Image Anal. Author manuscript; available in PMC 2017 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(17)

where  is the diagonal weighting matrix at iteration t and it is determined by the likely 

FOs computed from the neighbor FOs at iteration t or t − 1 according to Eq. (9). The 

detailed update of  at each iteration and the optimization of Eq. (17) are given in 

Appendix A. Finally,  is normalized so that entries sum to unity and the FOs  at voxel 

m at time t are determined using Eq. (6).

Because the ℓ1-norm regularized least squares problem in Eq. (17) must be solved for every 

voxel in each iteration, the algorithm requires heavy computation and can be time-

consuming. Therefore, we modified the BCD optimization in Eq. (17) so that multiple 

voxels can be simultaneously solved to speed up processing. We process Np ≥ 2 voxels 

together (in this work Np = 8). Each voxel m can be represented as m = aNp + b, where a and 

b are integers (  and 1 ≤ b ≤ Np). For each group aNp + 1 ≤ m ≤ (a + 1)Np with 

fixed a, we have

(18)

and these fm’s can be solved in parallel.

The above iterative algorithm is initialized using CFARI (Landman et al., 2012), which 

provides the mixture fractions  at each voxel independently. The algorithm terminates 

when the FO difference between two successive iterations is small or when the maximum 

number of iterations is reached. The complete algorithm is summarized in Algorithm 1.

Algorithm 1

FORNI

Input: Diffusion weighted signals ; baseline signals  without 

diffusion weighting; diffusion gradients {q1, …, qK}; size of parallel processing: Np; the tensor basis  and 

their PEVs ; maximum number of iterations tmax; the initialization of FOs  computed from 
Landman et al. (2012); the iteration number starts from t = 1;

Output: Mixture fractions  and FOs 

1:

Compute the attenuation matrix G: 

2:

Compute : ym = (Sm(q1)/S0m, …, Sm(qK)/
S0m)T
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3:

Initialize FOs: 

4: while t ≤ tmax do

5:

 for  do

6:   parfor b = 1 : min(Np, M − aNp) do

7:    m := aNp + b

8:    for all basis directions vi do

9:

     

10:    end for

11:

    

12:    for i = 1 : N do

13:

     

14:    end for

15:

   Solve Eq. (17) to obtain 

16:

    

17:   end parfor

18:   for b = 1 : min(Np, M − aNp) do

19:    m := aNp + b

20:    m := {vi|fm,i > fth, i = 1, …, N}

21:   end for

22:  end for

23:  t := t + 1 until convergence

24: end while

25:

return  nd 

3. Experiments

FORNI was evaluated first on a digital crossing phantom, then on ex vivo tongue dMRI data 

from one subject, and finally on an in vivo brain dMRI dataset comprising six subjects. 

FORNI was compared to the SHORE algorithm (Merlet and Deriche, 2013) which estimates 

the ensemble average propagator and orientation distribution function using the SHORE 

basis (Cheng et al., 2011), the constrained spherical deconvolution (CSD) algorithm 

(Tournier et al., 2007) which introduces a nonnegative constraint on the spherical harmonics 

framework, the CFARI algorithm that estimates the FOs using a voxelwise sparse 

reconstruction (Landman et al., 2012), an FO smoothing algorithm (CFARI-s) (Sigurdsson 

and Prince, 2014) that smooths the CFARI results, and an FO estimation algorithm 

Ye et al. Page 11

Med Image Anal. Author manuscript; available in PMC 2017 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(L2L0NW) (Auría et al., 2015a) that uses structured sparsity to enforce smooth FO 

estimation. In the experiments on the tongue dMRI data, we have also compared our method 

with the FIEBR algorithm (Ye et al., 2015a) that is designed for the tongue to improve FO 

estimation by using atlas information. In the experiments on brain dMRI, because multiple 

b-values were used to acquire the brain dMRI data, the CSD algorithm was replaced by 

generalized q-sampling imaging (GQI) (Yeh et al., 2010) which can reconstruct FOs using 

multishell dMRI. SHORE and CSD are implemented using the Dipy software (Garyfallidis 

et al., 2014) (http://nipy.org/dipy/documentation.html); CFARI and CFARI-s are 

implemented in the JIST software framework (Lucas et al., 2010); GQI is implemented in 

the DSI Studio software (http://dsistudio.labsolver.org/Manual/Reconstruction); and 

L2L0NW was performed using the code provided by its authors at https://github.com/basp-

group/co-dmri.

3.1. 3D Digital Crossing Phantom

A 3D digital crossing phantom (available at https://www.iacl.ece.jhu.edu/Chuyang) was 

generated to simulate five fiber tracts (see Figure 6), where one b0 image and 60 gradient 

directions (b = 1000 s/mm2) were used. A two-tensor/three-tensor model was used to create 

the simulated diffusion signals for regions with two/three crossing tracts. The eigenvalues of 

each individual tensor are λ1 = 2.0 × 10−3 mm2/s and λ2 = λ3 = 0.5 × 10−3 mm2/s. Thus, for 

each individual tensor the fractional anisotropy (FA) is 0.71 and the mean diffusivity (MD) 

is 1.0×10−3 mm2/s. Rician noise with different signal-to-noise ratio (SNR) (SNR = 10, 20, 

and 30) on the b0 image was added to the diffusion weighted images (DWIs).

FORNI (with α = 0.8, β = 0.5, and μ = 3.0) was applied and compared with SHORE (Merlet 

and Deriche, 2013), CSD (Tournier et al., 2007), CFARI (Landman et al., 2012), CFARI-s 

(Sigurdsson and Prince, 2014), L2L0NW (Auría et al., 2015a), and the ground truth. The 

ground truth FOs are shown in Figure 7. Because the FOs in the z-direction are not visible in 

the axial view, the regions containing these FOs are also shown in the coronal view. A 

qualitative evaluation of FO estimation is shown in Figure 8 using the results at SNR = 20 in 

the highlighted regions in Figure 7. The FOs are color-coded by the standard DTI color 

scheme (red: left–right; green: front–back; and blue: up–down) (Pajevic and Pierpaoli, 1999) 

and overlaid on the map indicating the number of ground truth FOs at each voxel. We can 

see that FORNI produces smooth FOs compared with SHORE, CSD, and CFARI which 

perform voxelwise FO estimation. In the regions (highlighted by the orange box in Figures 7 

and 8) containing three crossing tracts, both L2L0NW and FORNI are able to better recover 

the crossing patterns than SHORE, CSD, CFARI, and CFARI-s. In addition, FORNI does 

not produce false positive FOs (see the white boxes in Figure 8) as in the results of L2L0NW 

when neighbor information is used.

To quantitatively evaluate the results, we define a voxelwise error measure of FOs in 

degrees:

(19)
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Here, wi and uj are the estimated and ground truth FOs, respectively, and N1 and N2 are the 

numbers of wi and uj, respectively. Note that arccos(·) is in radians and it is converted to 

degrees by multiplying . In the max function of Eq. (19), the first term measures how far 

away the estimated FOs are from the true FOs, and the second term measures how accurate 

the true FOs are estimated. Since both terms are expected to be small when the FO 

estimation is accurate, the worst of the two errors is reported.

We compared the FO errors of FORNI over the entire phantom with those of SHORE, CSD, 

CFARI, CFARI-s, and L2L0NW using all three noise levels. The results are shown in Figure 

9, where means and standard deviations of the FO errors are plotted. It can be seen for all 

methods the FO errors increase as SNR decreases. FORNI produces more accurate FOs than 

the competing methods in all three cases.

Next, we studied the effect of the parameters, mixture fraction thresholds, and initialization 

in FORNI. Because in the tongue and brain dMRI data used in this work, the SNR is close to 

20 on the b0 images, we used the phantom at SNR = 20 for the evaluation below.

To evaluate the impact of parameters, we experimented with different α, β, and μ settings: α 

∈ {0.0, 0.1, …, 0.9}, β ∈ {0.1, 0.3, …, 0.9}, and μ ∈ {1.0, 2.0, …, 5.0}. The average FO 

errors for each α, β, and μ combination over the entire phantom are plotted in Figures 10(a)–

(e). Note that when α = 0.0, the basis directions are uniformly weighted and no neighbor 

information is used, which is equivalent to the CFARI algorithm. At each μ for most β, 

increasing α reduces FO errors until α is too large, and in most cases incorporation of 

neighborhood information (α > 0) improves the estimation accuracy. Figure 10(f) gives the 

means and standard deviations of these average FO errors using all α and β combinations at 

each μ. It can be seen that the error starts to become stable when μ reaches 3.0. In addition, 

the variance is smallest at μ = 3.0, indicating the performance is less affected by changing α 

and β values than at other μ. Therefore, for our real data application, we use μ = 3.0. Then, at 

μ = 3.0 we select α and β for the real data experiments with the following rationale. First, 

because in many cases α = 0.9 causes errors even larger than those without neighbor 

information, we only consider the choices with α < 0.9. Second, we have found from 

experience that choosing β too large can lead to instabilities in the ℓ1 solver. Therefore, we 

have picked α = 0.8 and β = 0.5 for the remaining experiments. From Figure 10(c), we see 

that at μ = 3.0 this selection yields a performance that is comparable to the other four top 

performing operating points.

Using the selected (α, β, μ) = (0.8, 0.5, 3.0), we computed the FO errors with different 

mixture fraction thresholds (fth ∈ {0.0, 0.1, 0.2}) and different initialization methods 

including SHORE, CSD, and CFARI, which are the voxelwise FO estimation algorithms 

evaluated in this work. The results are shown in Figure 11. In Figure 11(a), we can see that 

fth = 0.1 (as selected in Section 2.2.1) achieves the smallest error. In Figure 11(b), different 

initialization methods achieve very close FO errors in FORNI, which indicates the 

robustness of FORNI to initialization.
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3.2. Ex Vivo Tongue dMRI

Next, FORNI (with α = 0.8, β = 0.5 and β = 3.0) was applied to the ex vivo tongue dMRI 

data. Nine b0 images and 64 DWIs (b = 2000 s/mm2) were acquired on a 3T MRI scanner 

(Magnetom Trio, Siemens, Erlangen, Germany). The resolution is 2 mm isotropic (matrix 

size: 100 × 100) and the number of slices is 30. The SNR on the b0 image is approximately 

20.31, which was estimated by placing bounding boxes in the background and tract regions 

(Ye et al., 2015a). Eddy current correction and diffusion tensor estimation were performed 

by CATNAP (Landman et al., 2007) implemented in the JIST software (Lucas et al., 2010). 

According to the tensors in noncrossing regions, the eigenvalues of the basis tensors used in 

FORNI were λ1 = 7.0×10−4 mm2/s and λ2 = λ3 = 3.0×10−4 mm2/s. The FORNI processing 

took around seven minutes for the data. SHORE (Merlet and Deriche, 2013), CSD (Tournier 

et al., 2007), CFARI (Landman et al., 2012), CFARI-s (Sigurdsson and Prince, 2014), 

L2L0NW (Auría et al., 2015a), and FIEBR (Ye et al., 2015a) were also applied on the data.

Figure 12 shows results in the coronal view with the focus on the crossing region of the 

genioglossus (GG) and the transverse (T) muscle in the tongue. A high resolution structural 

image with a schematic of the anatomy of GG and T is shown in Figure 12(a) for location 

reference. It can be seen that FORNI not only produces smoother FOs but also better 

reconstructs the crossing FOs of GG and T.

3.3. In Vivo Brain dMRI

FORNI was applied to the six subjects in an in vivo brain dMRI dataset. The images were 

acquired on a 3T MRI scanner (Magnetom Trio, Siemens, Erlangen, Germany). Two b-

values were used (b = 1000 s/mm2 and 2000 s/mm2). Each b-value is associated with 30 

gradient directions and each DWI has two repeated scans. Twelve b0 images were also 

acquired. The resolution is 2.7 mm isotropic (matrix size: 84×84) and the number of slices is 

48. The SNR on the b0 image is close to 20 in the dMRI dataset. Motion correction and 

diffusion tensor estimation were performed by CATNAP (Landman et al., 2007).

FORNI (with α = 0.8, β = 0.5, and μ = 3.0) was compared with GQI (Yeh et al., 2010), 

SHORE (Merlet and Deriche, 2013), CFARI (Landman et al., 2012), CFARI-s (Sigurdsson 

and Prince, 2014), and L2L0NW (Auría et al., 2015a). The eigenvalues of the basis tensors 

were λ1 = 2.0 × 10−3 mm2/s and λ2 = λ3 = 5.0 × 10−4 mm2/s as suggested by Landman et al. 

(2012). The FORNI processing took around one hour for each dMRI data.

We highlight two regions for evaluation of the results on the six subjects: the crossing region 

of the superior longitudinal fasciculus (SLF) and the lateral corpus callosum (CC) in the 

axial view (Figure 13) and the crossing region of the lateral CC and the corticospinal tract 

(CST) in the coronal view (Figure 14). The results are shown with FA images in the left 

column. Compared to GQI, SHORE, CFARI, and CFARI-s, both L2L0NW and FORNI 

produces smooth FO estimation results and better identifies the crossing patterns in all cases. 

However, we note that in the region containing highly curved parts of the superior CC, for 

example, the one highlighted by the green box on Subject 1 in Figure 14, L2L0NW does not 

generate the FOs that correspond to the pathway of the superior CC. The effects of these 
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kinds of errors will be better illustrated below in the fiber tracking results of Figures 15 and 

16.

To further validate FORNI and compare it with the competing methods we used the INFACT 

algorithm (Landman et al., 2012) to carry out fiber tracking on the results of each algorithm. 

INFACT is a deterministic streamlining algorithm which extends the FACT algorithm (Mori 

et al., 1999) to our case where there are multiple FOs per voxel. We used an FA threshold of 

0.15 and a turning angle threshold of 40°, which are common settings for tractography 

(Wahl et al., 2007; Glasser and Rilling, 2008; Kaplan et al., 2010). The seeds were placed in 

the noncrossing region of CC. A representative case (Subject 1) is shown in Figure 15, 

where the FORNI result can be compared to the results of GQI, SHORE, CFARI, CFARI-s, 

and L2L0NW. Here each segment of the fiber streamlines is color-coded by the standard 

DTI color scheme (red: left–right; green: front–back; and blue: up–down) (Pajevic and 

Pierpaoli, 1999). It can be seen that the lateral CC fiber streamlines are tracked better using 

FOs estimated by FORNI than GQI, SHORE, CFARI, and CFARI-s. In L2L0NW results, 

although the lateral CC is also well tracked, the superior CC is mostly missing, which is 

consistent with the FO estimation highlighted by the green box in Figure 14. This missing of 

the superior CC also exists in the other subjects, which is shown in Figure 16. Here, we 

applied fiber tracking using FORNI and L2L0NW FOs on the other five subjects with seeds 

placed in CC. We can see that FORNI is able to produce both superior and lateral CC but 

L2L0NW misses the superior CC.

4. Discussion

FORNI uses weighted ℓ1-norm regularization as in the FIEBR algorithm (Ye et al., 2015a), 

but the key ideas are very different between the two algorithms. First, the prior directions/

likely FOs at each voxel are determined very differently. In Ye et al. (2015a), the prior 

directions are calculated based on the anatomical information of known tracts and it is aimed 

at resolving crossing fibers with a very limited number of gradient directions (around 12). Its 

performance could be affected by prior direction inaccuracies, for example, caused by 

inaccurate localization of tracts using registration. In the results in Figure 12 we can see that 

FIEBR can miss the crossing patterns due to the inaccurate specification of anatomical 

priors. In the proposed method no anatomical information is required, and the purpose is to 

improve FO estimation by incorporating spatial coherence of FOs. Second, the FOs are 

estimated at each voxel independently in Ye et al. (2015a) and no interaction between voxels 

is encoded while the proposed method jointly estimates the FOs in all voxels due to the 

interaction.

The L2L0NW algorithm (Auría et al., 2015a) also uses weighted ℓ1-norm to model the 

interaction between neighbors to enforce spatial regularization in its objective function. 

However, the motivation and the actual determination of the weighting are quite different 

between L2L0NW and FORNI. First, our method was motivated by the framework 

developed in Ye et al. (2015a), where the weighted ℓ1-norm is derived in a maximum a 
posteriori framework and is a consequence of modeling the prior density with a Laplace 

distribution and a term that encourages basis directions close to certain prior directions. The 

L2L0NW algorithm is motivated by the iterative reweighting scheme that seeks to better 

Ye et al. Page 15

Med Image Anal. Author manuscript; available in PMC 2017 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



solve the ℓ0-norm minimization problem. Second, the weighting is determined differently. 

L2L0NW directly uses all the neighbor information in the weighting, and a neighbor FO has 

no influence on directions farther than 15° and uniform influence on directions within 15°. 

For a region with a highly curved tract, for example, the turning of the superior CC in Figure 

14, it is possible that the desired FO is more than 15° away from its neighbor FOs and is not 

sufficiently encouraged. In FORNI, we process the information in the neighbors and extract 

likely FOs, and the weight decreases as the directions are closer to likely FOs. This strategy 

avoids the cutoff effect when a threshold of 15° is used in Auría et al. (2015a). In addition, 

we have used a voxel similarity term to avoid leakage of FOs, where the existence of 

undesired FOs at a voxel is a result of the impact of the FOs similar to the undesired ones in 

its neighbors. The voxel similarity puts higher weights on more similar neighbors and 

ensures anisotropic FO spatial consistency. This is especially important at tract boundaries 

and highly curved regions of tracts to suppress the influence of undesired FOs. As seen in 

the phantom experiment (Figure 8) and the brain dMRI results (Figure 14), L2L0NW can 

have leaking FOs at tract boundaries and miss the FOs of the curved superior CC, 

respectively, but this is avoided in FORNI.

A possible limitation of using the tensor distance in the voxel similarity is that at the 

boundary of the noncrossing part of a tract and its crossing part, the information in the 

noncrossing neighbors does not influence the current voxel as much as the crossing 

neighbors. It may be interesting to allow greater influence of noncrossing voxels on the 

crossing voxels that belong to the same tract while maintaining the avoidance of leaking of 

the FOs belonging to a different tract from the crossing voxels to noncrossing voxels.

In FORNI, the interaction between neighbors are decoupled using a BCD strategy. If a 

different update order of the voxels were used, the results of each iteration could be 

different. However, because multiple iterations are applied, the final results are expected to 

be very similar even if the update order is changed. But it would be interesting to explore 

adaptive sweeping patterns, such as Li and Osher (2009), so that the optimization is less 

dependent on the voxel order.

Instead of enforcing pairwise similarity between neighbor voxels, FORNI explicitly models 

neighbor FO information in the FO estimation by placing different penalties on the basis. 

Yet it is possible to combine the pairwise similarity with FORNI. For example, a 

straightforward improvement could be adding post-smoothing of FOs, such as Sigurdsson 

and Prince (2014), to the FORNI results. Indeed, the FORNI processing and the post-

smoothing could be performed alternately with many iterations. These alternating iterative 

steps could actually correspond to the optimization of some unknown form of objective 

functions, which can be explored by future work to develop more powerful FO estimation 

algorithms.

Besides the directional information of FOs, the microstructural property has also been a 

quantity of interest computed from dMRI (Zhang et al., 2012; Daducci et al., 2015; 

Alexander et al., 2010; Auría et al., 2015b), which quantifies the tissue structure at 

mesoscale (Reisert et al., 2014), and recent work has further explored joint estimation of the 

microstructural characteristics and FOs (Girard et al., 2015). Among these works, Daducci 
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et al. (2015) and Auría et al. (2015b) reformulate the estimation of microstructural properties 

by using a dictionary. Using this reformulation, it is possible to extend our framework to 

incorporate the estimation of the tissue organization, which could be improved by the 

incorporation of spatial smoothness.

At higher b-values, the diffusion is not Gaussian due to the restriction effects (Cohen and 

Assaf, 2002). Thus, there can be model inaccuracies caused by using the tensor basis. The 

sparsity and spatial regularization enforced by weighted ℓ1-norm terms could alleviate the 

issue. And it is possible to use the extension where microstructural properties are jointly 

estimated with FOs to account for the slow diffusing components.

5. Summary and Conclusion

In this work, we have proposed FORNI, an FO estimation algorithm that uses neighborhood 

information. A fixed tensor basis is used to represent the diffusion signals. To ensure spatial 

coherence, the directional information in the neighbors is explicitly modeled in weighted ℓ1-

norm regularization terms. The resulting objective function is optimized using a BCD 

strategy and a parallelization approach to speeding up processing is presented. The proposed 

method was applied to a digital crossing phantom, ex vivo tongue dMRI data, and in vivo 
brain dMRI data. The results demonstrate that the proposed method is able to use 

neighborhood information to improve FO estimation.
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Appendix A. Optimization of the Weighted ℓ1-norm Regularized Least 

Squares Problem

In Eq. (17) the diagonal entries of (diagonal matrix)  are given by (see Eq. (9))

(A.1)

Here,  represents the p-th likely FO for voxel m at iteration t and is to be specified, and 

 is the number of likely FOs for voxel m at iteration t. Eq. (17) explicitly acknowledges 

the fact that at time t, the estimate of fm uses information from voxels that have already been 

updated at time t as well as information from voxels that were updated at the previous time t 
− 1. (This is a Gauss-Seidel rather than a Jacobi update strategy.) Using this fact, the 

computed aggregate basis-neighbor similarity function for voxel m at time t is

(A.2)

where 𝟙 is an indicator function providing a shorthand notation to specify whether FOs at 

time t or t−1 are being used. The likely FOs  at time t are then computed according to Eq. 

(14). With these definitions, Eq. (17) is fully specified.

Eq. (17) is a weighted ℓ1-norm regularized least squares problem which can be converted to 

an ℓ1-norm regularized least squares problem. First, we define a new variable . 

Since  is a diagonal matrix and  is invertible and . Then, by 

defining , we have

(A.3)
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which we solve using the efficient optimization method for compressed sensing reported in 

Kim et al. (2007). The mixture fractions can be estimated as

(A.4)
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Highlights

• We estimate fiber orientations (FOs) with the enforcement of spatial coherence.

• Interaction between neighboring FOs is encoded in weighted l1 norm 

regularization.

• Qualitative and quantitative validation was performed on simulated and real 

data.

• The method reduces the effect of noise and improves the estimation of crossing 

FOs.
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Figure 1. 
A 3D toy example of FO estimation on two simulated crossing tracts in the axial view (the 

x–y plane): (a) voxelwise FO estimation using the CFARI algorithm (Landman et al., 2012) 

and (b) FOs estimated by the proposed method (FORNI) incorporating spatial coherence of 

FOs.
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Figure 2. 
A graphical example showing the potential difficulties when the smoothness of mixture 

fractions is used to represent spatial coherence of FOs.
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Figure 3. 
A flow chart of the likely FO computation at a voxel.
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Figure 4. 
An illustration of the Rm(i) profile in the case where one of the crossing FOs fails to be 

reconstructed in some neighboring voxels.
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Figure 5. 
An example of the Rm values of a voxel in the crossing region in Figure 1. Each Rm(i) is 

plotted on the unit sphere according to its associated basis direction vi. The Rm values of the 

likely FOs are indicated by the larger dots and black arrows.
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Figure 6. 
A 3D rendering of the simulated tracts.
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Figure 7. 
Ground truth FOs overlaid on the map indicating the number of FOs at each voxel. The FOs 

in the z-direction are shown in a coronal view. The regions highlighted by the dashed boxes 

are later zoomed in for qualitative evaluation in Figure 8. The visualization of FOs was 

created in FSLView (Jenkinson et al., 2012).
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Figure 8. 
FO estimation results overlaid on the map indicating the number of ground truth FOs at each 

voxel at SNR = 20 in the regions highlighted in Figure 7. Note the white boxes where 

L2L0NW produces false positive FOs. The visualization of FOs was created in FSLView 

(Jenkinson et al., 2012).
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Figure 9. 
Means and standard deviations of FO errors over the entire phantom at SNR = 10, 20, and 

30.
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Figure 10. 
Average FORNI FO errors over the entire phantom at SNR = 20 with different α, β, and μ: 

(a)–(e) μ = 1.0, 2.0, …, 5.0; (f) means and standard deviations of the data points in (a)–(e) at 

different μ.
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Figure 11. 
Means and standard deviations of FORNI FO errors at SNR = 20 with different (a) mixture 

fraction thresholds and (b) initialization methods.
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Figure 12. 
FO estimation on the ex vivo tongue in the coronal view, which is focused on the crossing 

(highlighted by the white dashed box in (a)) of the GG and T muscle. A high resolution 

structural image (left) with a schematic of the anatomy of GG and T is shown for location 

reference.
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Figure 13. 
FO estimation on brain dMRI (overlaid on the FA map) for all six subjects, which is focused 

on the crossing of SLF and the lateral CC (axial view). The FA image and the focused region 

are shown in the left column.
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Figure 14. 
FO estimation on brain dMRI (overlaid on the FA map) for all six subjects, which is focused 

on the crossing of the lateral CC and CST (coronal view). The FA image and the focused 

region are shown in the left column. Note the region highlighted by the green box where 

L2L0NW does not produces FOs that correspond to the geometry of the superior CC.
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Figure 15. 
A representative result (Subject 1) of fiber tracking using the INFACT tracking (Landman et 

al., 2012) overlaid on the FA map in the coronal view. The seeding region is represented as 

the yellow volume. Note the highlighted region where more lateral CC fiber streamlines 

were tracked using FOs computed by FORNI than GQI, SHORE, CFARI, and CFARI-s. The 

visualization was created in TrackVis (Wang et al., 2007).
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Figure 16. 
Fiber tracking results seeded in CC on Subjects 2–6 using L2L0NW and FORNI FOs. The 

seeding ROIs are indicated by the yellow volumes. The visualization was created in Track-

Vis (Wang et al., 2007).
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Table 1

Symbols used in FORNI

Symbol Definition

vi Basis direction

i, q Index for basis directions

N Number of basis directions

G Dictionary matrix containing attenuation terms

m, n, m0, m1 Index for voxels

M Number of voxels

wm,n Voxel similarity between m and n

m Neighborhood of m

Dm Diffusion tensor at m

ym Diffusion signal at m

fm Mixture fraction at m

f̂m Estimated mixture fraction at m

f̃m Normalized mixture fraction estimate at m

fm,i Entry of fm

fth Mixture fraction threshold

wm,j FO at m

j Index for FOs

m The set of all FOs at m

um,p Likely FO at m

p Index for likely FOs

m The set of all likely FOs at m

Cm Weighting matrix at m

Cm,i Diagonal entry of Cm

α, β, μ Parameters in FORNI

rm,n(i) Basis-neighbor similarity

Rm(i) Aggregate basis-neighbor similarity

θR An angle threshold

t Index for iterations

Np Number of voxels processed in parallel
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