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Abstract

A fully automated and robust method was developed to quantify β-III-tubulin-stained retinal 

ganglion cells, combining computational recognition of individual cells by CellProfiler and a 

machine-learning tool to teach phenotypic classification of the retinal ganglion cells by 

CellProfiler Analyst. In animal models of glaucoma, quantification of immunolabeled retinal 

ganglion cells is currently performed manually and remains time-consuming. Using this 

automated method, quantifications of retinal ganglion cell images were accelerated tenfold: 1800 

images were counted in 3 hours using our automated method, while manual counting of the same 

images took 72 hours. This new method was validated in an established murine model of 

microbead-induced optic neuropathy. The use of the publicly available software and the method’s 

user-friendly design allows this technique to be easily implemented in any laboratory.
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1. Introduction

Glaucoma is the leading cause of irreversible blindness worldwide, affecting an estimated 60 

million people (Tham et al., 2014). While there are many forms of glaucoma, all are 

associated with an optic neuropathy characterized by the loss of retinal ganglion cells 

(RGCs) and their axons, resulting in optic nerve degeneration and irreversible vision loss. 

Animal models of glaucoma that simulate the optic neuropathy observed in human disease 

facilitate the elucidation of possible mechanisms of RGC loss and enable researchers to 

develop and evaluate neuroprotective therapies. The ability to specifically identify and 

accurately count RGCs is essential to assess the death or survival of RGCs in models of the 

disease.

Various techniques for visualizing and quantifying RGCs have been reported, including 

retrograde labeling and immunolabeling (Buckingham et al., 2008; Huihui et al., 2011). In a 

healthy, non-diseased retina, fluorogold retrograde labeling is a specific and accurate method 

to label and automatically quantify RGCs (Buckingham et al., 2008; Danias et al., 2003). 

However, this method is technically challenging, requiring intracranial surgery and, in a 

glaucomatous retina, retrograde labeling can result in the labeling of retinal microglia in 

addition to RGCs, due to the phagocytosis of degenerating RGCs (Peinado-Ramon et al., 

1996; Thanos, 1991a, b). An alternative quantification method of RGC viability may be 

carried out with immunolabeling of RGCs in retinal flatmounts using an RGC-specific 

antibody directed against β-III-tubulin, which labels the RGC somata and nerve fiber 

extensions. The specificity of the β-III-tubulin antibody has been confirmed by 

colocalization of β-III-tubulin staining with fluorogold-labeled RGCs (Huihui et al., 2011).

While the immunolabeling method is technically simpler than fluorogold labeling, manual 

quantification of immunolabeled murine RGCs is onerously time-consuming. In a small-

scale pre-clinical project with only 2 experimental groups, an investigator would be required 

to manually quantify RGCs in approximately 1000 images, necessitating at least 48 hours of 

effort. In addition, manual counting can be inconsistent, with significant inter- and even 

intra-observer variability, due to the use of differing quantification techniques and/or 

inhomogeneous staining.

2. Materials and Supplies

Animals

This study was carried out in strict accordance with the recommendations in the Guide for 

the Care and Use of Laboratory Animals of the National Institute of Health. Wild-type mice 

bred on a 129S6 background (129S6/SvEvTac, Taconic Farms Inc.) were used in this study. 

All animals were treated in accordance with the Institutional Animal Care and Use 

Committees (IACUC) of Massachusetts General Hospital (Subcommittee on Research 

Animal Care), and the Schepens Eye Research Institute.

Processing and imaging of retinas

Animals were sacrificed under CO2. Eyes were enucleated and retinas dissected from the 

anterior segments at the conclusion of the study: day 32 post-injection. Resultant retinal 
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cups were incised to create four quadrants of similar size and were fixed in 4% 

paraformaldehyde at 4°C overnight. Retinas were then treated with 1% Triton-X-100 and 

5% fetal BSA in PBS for 1 hour, followed by a 2 hour incubation with DAPI (1:500) and the 

primary antibody against an RGC marker, β-III-tubulin (anti-TUJ1+, Millipore, Billerica, 

MA, 1:500), and 1 hour incubation with the Alexa Fluor® 594 Goat Anti-Mouse IgG 

secondary antibody (Life Technologies, Carlsbad, CA, 1:500) at room temperature. Retinal 

whole-mounts were then flattened on SuperFrost Plus slides (VWR, Batavia, IL), 

coverslipped with mounting medium for fluorescence (VectaShield®, Vector Laboratories, 

Burlingame, CA) and imaged under the Leica TSC SP5 confocal microscope at x63 

magnification. Imaging was performed on the mid-peripheral area of the retina (around 0.5 

mm distal from the optic nerve head) divided into 4–5 distinct areas across all four 

quadrants. Each retina was imaged in 20–25 frames of 0.0696 mm2.

Microbead injections

Mice were anesthetized by intraperitoneal injection of a mixture of ketamine (100 mg/kg; 

Ketaset; Fort Dodge Animal Health, Fort Dodge, IA) and xylazine (9 mg/kg; TranquiVed; 

Vedco, Inc., St. Joseph, MO) and eyes were dilated by topical application of proparacaine 

(0.5%; Bausch & Lomb, Tampa, FL). Elevation of IOP was induced unilaterally in adult 

129S6 mice by injection of polystyrene microbeads (FluoSpheres; Invitrogen, Carlsbad, CA; 

15 μm diameter) into the anterior chamber of the right eye of each animal under a surgical 

microscope. Microbeads were reformulated at a concentration of 5.0 × 106 beads/ml in 

phosphate-buffered saline (PBS). The right cornea was gently punctured near the center 

using a sharp 30-gauge needle (World Precision Instruments Inc., Sarasota, FL). An air 

bubble was injected via the micropipette connected with a Hamilton syringe, itself coupled 

to a syringe pump to avoid overflow of the AqH from the anterior chamber prior to injection 

of microbeads. A precise volume (2 μl) of microbeads was injected through the pre-formed 

hole into the anterior chamber using the micropipette. Mice were placed on a heating pad for 

recovery after the injection, and antibiotic Vetropolycin ointment (Dechra Veterinary 

Products, Overland Park, KS) was applied topically onto the injected eye to prevent 

infection.

IOP measurement

Mice were anesthetized with isoflurane inhalation (2%), which was delivered in 95% oxygen 

with a precision vaporizer. IOP measurement was initiated within 2 min after animal lost toe 

pinch and blink reflex. IOPs were acquired with a TonoLab rebound tonometer (iCare, 

Franconia, NH, USA). Five TonoLab readings were averaged to obtain a single IOP value 

per eye. IOP measurements were carried out at days 4, 10, 15, 18, 22 and 28 of the 32-day 

study.

Statistical analyses

All statistical analyses were performed using GraphPad Prism (version 6.0). Statistical tests 

included the Student’s t-test, Pearson correlation, or multivariate linear regression. In order 

to compare correlation coefficients, the Fisher method of r-to-z transformation was 

employed, using the following equation:
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Pairwise correlations with their respective samples sizes (n1 and n2) were compared with the 

following test statistic:

Correlation dispersion was used to quantify differences between automated and manual 

counts for each retina. Correlation dispersion was determined using the following equation:

where y represents the cell count in RGC/mm2.

P<0.05 was considered significant throughout the study. Data are presented as mean ± s.d.

3. Detailed methods

Generation of a rapid and robust automated quantification technique

To minimize variability and enable faster and more efficient quantification of 

immunolabeled RGCs, we sought to develop and validate a reproducible automated 

quantification method. The approach uses the freely-available softwares, CellProfiler and 

CellProfiler Analyst (CPA) (Carpenter et al., 2006; Kamentsky et al., 2011; Lamprecht et al., 

2007), and can be used for high-throughput image analysis. The CellProfiler image analysis 

template was designed to recognize all DAPI-positive (nuclear marker) and β-III-tubulin-

labeled cylindrical RGC somata (Box 1).

Box 1

The CellProfiler software is freely available to download at www.cellprofiler.org. The 

image analysis template used for the automated quantification presented in the 

manuscript, the latest software updates and the source code are available to download at 

http://www.cellprofiler.org/published_pipelines.shtml under the “B3-

tubulin_RetinalGanglionCell_Assay.cpproj” nomenclature.

The workflow was as follows: the CellProfiler template was loaded and images from 

experimental set-ups were fetched into the “File list”. Automated processing of each image 

was initiated (“Analyze Images”): the morphological features for each cell, including the 

nuclei and cellular shapes, as well as intensity-based and textural features from both the 

DAPI and β-III-tubulin channels were recognized and measured by CellProfiler; the 

complete set of these measurements for each cell is defined as the “cytoprofile” (Carpenter 

et al., 2006). Once the measurements were collected, the supervised machine-learning tool 

Dordea et al. Page 4

Exp Eye Res. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.cellprofiler.org/published_pipelines.shtml


“Classifier” in CPA (Jones et al., 2008) was used to perform phenotypic classification of the 

RGCs. In brief, a “training set” was initialized by the researcher, first “fetching” a small 

selection of sample cells drawn at random from the experiment that exhibit the desired RGC 

phenotype (i.e. β-III-tubulin-stained cells co-labeled with DAPI: “positives”), as well as cells 

that did not present that phenotype (“negatives”). The researcher then assigned images of 

cells that were deemed to be “RGC-positive” to the “positive” window and images of cells 

that were deemed “RGC-negative” to the “negative” window (Fig. 1A). Following 

classification of each “fetched” image, the “Train Classifier” tool was activated and a 

tentative “rule” was formed based on the cytoprofiles of the positive and negative example 

cells (Fig. 1A). The researcher was then presented with new sample cells to score as positive 

or negative, the score of which was used by the CPA to improve the training set by 

correcting errors (Fig. 1A) and refine the quantification “rule”. Following each classification 

step, the “Train Classifier” tool was initiated to save recognition refinements to the “rule”. 

This iterative process allowed the researcher to produce a classifier specific to the RGC 

phenotype of interest within a few (on average, three to five) rounds of corrections and 

refinements. Overall, the training step generally takes 20 minutes. An example of a “rule” 

classifier is provided in Figure 1A; each line represents a measurement deemed useful by the 

CPA classifier in distinguishing the phenotype, with the more valuable measurements 

located towards the top. The accuracy of the classifier’s ability to correctly identify positive 

and negative cells was assessed at each training step using cross-validation (“Check 

Progress”), until training based on 50% of the training set was equally effective as 95% of 

the training set, i.e. until the training set was large enough that adding more samples would 

not increase accuracy (Fig. 1B). An accuracy above 80% was considered adequate (Jones et 

al., 2009). The final step was to apply the classifier to the experimental groups, scoring all 

cells as positive or negative (“Score All” Fig. 1A; engendering a results table, Fig. 1C).

To test the workflow, 72 retinas (1800 images: 25 confocal images per retina) were first 

quantified using manual and automated techniques. Manual quantifications were carried out 

using ImageJ (Box 2).

Box 2

The (Fiji is Just) ImageJ software is freely available to download at http://fiji.sc/Fiji. The 

Cell Counter plugin information used for manual quantifications of RGCs in this study is 

available at http://fiji.sc/Cell_Counter.

Images were loaded consecutively through the (Fiji is Just) ImageJ software. Using the “Cell 

Counter” plugin (Supplementary Fig. 1A), the image loaded into ImageJ was “initialized” 

and the color counter type was chosen (Supplementary Fig. 1B). “Type 3” was our counter 

of choice for its green color, enabling clear partition with the β-III-tubulin-positive RGC 

cells.

A linear regression model, comparing manual and automated quantifications, initially 

revealed only a weak correlation between results from the automated quantification method 

and those obtained by manual quantification (Fig. 2A). We hypothesized that image quality 

affected the ability of an observer (manual counting) and/or the image processing algorithms 
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(automated counting) to accurately identify and count RGCs. To probe this assumption, we 

first assessed the quality of the images visually (Figs. 2B, 2C and 2D). While some images 

displayed consistent staining, homogeneous exposure, and clean RGC delineations (Fig. 

2B), other images were of lower quality, due to heterogenous immunostaining (Fig. 2C), 

increased density of nerve fibers, or uneven imaging (Fig. 2D).

Quality control using ImageJ

A guideline in ImageJ was developed to select images of sufficient quality to be 

reproducibly counted (manually or automatically) based on the averages of circularity and 

pixel thresholds of RGCs in each image. Specifically, for each image, a binary contrast 

enhancement was carried out: images were converted from the original color (red-green-blue 

(RGB), Supplementary Figs. 2A and 2D) to an 8-bit grayscale, set to a threshold intensity of 

89 and inverted so that fluorescent cells would appear as black objects on a white 

background (Supplementary Figs. 2B and 2E). Particles were then analyzed to assess 

circular areas of pixels (with thresholds set to include Circularity 0.05–1.00 and Size in pixel 

units 200-Infinity), denoting circular RGCs within same-sized frames in “high-quality/

included” (Supplementary Fig. 2C) and “low-quality/excluded” images (Supplementary Fig. 

2F). This method highlighted the significant differences in circular pixilation areas between 

high-quality and low-quality images (Supplementary Figs. 2C and 2F and Supplementary 

Table 1), irrespective of the RGC counts obtained per image. Images with a circularity score 

≥ 0.13 (selected cut-off value; Supplementary Fig. 2 and Supplementary Table 1) were 

deemed of insufficient quality.

The impact of image quality on the reproducibility of both manual and automated methods 

was studied in 18 selected retinas (21 images per retina): nine retinas representing the 

highest quartile of correlation dispersions (Δ398 ± 80.8 RGC/mm2) and nine retinas 

representing the lowest quartile of correlation dispersions (Δ70.1 ± 68.6 RGC/mm2) (Fig. 

2A, see ‘Statistical analyses’ for a description of correlation dispersions calculations). Using 

the unbiased ImageJ quality assessment platform, 272 images of the total 378 images from 

18 retinas were categorized as included images (Figs. 3A and 3B), while 28% (106 images) 

were labeled as excluded images (Figs. 3C and 3D). The linear regression fit between 

manual and automated quantifications improved markedly for included images (r2 = 0.64, 

Fig. 3E) as compared to excluded images (r2 = 0.22, Fig. 3F), highlighting the advantage of 

a quality control step prior to RGC quantifications, whether performed manually or 

automatically.

Additionally, to investigate whether observer bias may have affected the supervised 

classification quality, two researchers independently counted images manually, and carried 

out automated quantification using CellProfiler and the machine-learning tool in CPA. The 

two observers’ counts were strongly correlated for included (r2 = 0.87) and excluded (r2 = 

0.83) image groups using automated counting (Z = 1.25, Figs. 3G and 3I, respectively), 

while correlations were lower for manual quantification, with r2 = 0.70 for included images 

and r2 = 0.47 for the excluded images (Z = 3.08, Figs. 3H and 3J, respectively). Consistent 

quantification of RGCs was achieved using both techniques. Importantly, the automated 

counting method provided greater reproducibility for images of lower quality as compared to 
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the manual quantification method (Figs. 3I and 3J), highlighting the robustness of our 

automated quantification method. Particularly advantageous is the fact that the automated 

approach was considerably faster than the manual method; manual counting of 1800 images 

took one observer 72 hours to complete, while automated quantification was achieved in 3 

hours.

In vivo validation of the computational quantification method

To validate our approach, the automated counting method was applied to study RGC loss in 

an established mouse model of optic neuropathy, the microbead occlusion model (Huihui et 

al., 2011; Sappington et al., 2010). Injection of 15 μm-diameter microbeads into the anterior 

chamber blocks the outflow of aqueous humor, resulting in a significant increase in 

intraocular pressure (IOP) for up to three weeks post-injection and a 25–40% loss of RGCs 

(Huihui et al., 2011). The microbead-injected eyes exhibited a significant increase in IOP 

over a period of 18 days compared to uninjected contra-lateral eyes (average changes in IOP 

over 18 days: 14 ± 0.8 mmHg to 22 ± 1.1 mmHg, n = 6, P < 0.05). Both our automated 

approach and manual quantification were able to identify significant neuropathy at the 

conclusion of the 32-day study, with comparable RGC loss (29.2 ± 9.1% vs. 29.8 ± 10.3% 

loss of RGC/mm2, Figs. 4A and 4B, respectively). Manual and automated quantifications 

were also correlated (r2 = 0.61, Fig. 4C), highlighting the efficacy and translatability of our 

fully automated quantification method.

4. Potential pitfalls and troubleshooting

The CellProfiler software provides a platform to recognize cells according to texture, size 

and color; the training set in CPA is the tool enabling reproducible quantifications. Since 

CPA is initialized and overseen by the researcher, setting up a template to accurately 

recognize and measure β-III-tubulin-positive RGC somata and training for recognition of 

“positive” and “negative” cells to “include” or “exclude” in quantifications remain relatively 

subjective. However, subjectivity is also inherent to manual quantifications, in which the 

researcher arbitrarily decides which cells to count. The CPA training set will consistently 

quantify cells assigned as “positive” throughout images of experiments, while, during 

manual quantifications, human error may inadvertently occur and subjectivity may fluctuate 

between 2 researchers and/or from one set of images to another. The greater reproducibility 

of the CPA was highlighted with greater correlations between automated quantifications 

from 2 independent researchers than those between manual quantifications from the same 2 

investigators.

Quantifications were also influenced by the quality of the image. In an experimental setting, 

heterogeneous immunolabeling of β-III-tubulin-positive cells occurs, affecting the ability of 

the CPA tool to accurately count cells. An ImageJ-based quality control was established to 

filter high-quality images for quantification. It is important to note that, while performing 

the ImageJ-based quality control improved the correlation between manual and automated 

counts, foregoing the use of ImageJ prior to quantifying images using CellProfiler and CPA 

would not corrupt results obtained, as automated quantifications of cells using poor quality 

images remained more reliable than those from manual counting. Moreover, the number of 
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training sets within CPA may be increased to refine the “RGC recognition rule” for image 

sets that present with higher numbers of lower quality images.

In the validation cohort (Fig. 4), absolute RGC numbers were higher when counted using 

CellProfiler and CPA than when counted manually. This discrepancy may be the result of a 

combination of subjectivity in manual counts throughout images and definition of inclusion 

and exclusion criteria in the CPA training phase. Previous studies reported RGC counts 

similar to the average of 3019 RGC/mm2 we obtained using the automated method, with 

various staining methods in various strains of mice (Table 1). Our data, together with 

published data, suggest that our manual count may have underestimated the number of 

RGCs present. In general, it remains challenging to determine absolute numbers of RGCs: 

manual quantifications are affected by inter-observer variability due to subjective observer 

error. Importantly, the reproducibility of the automated method was validated in an 

established model of glaucoma, in which relative differences in RGC counts (a primary 

endpoint in several studies (Chen et al., 2011; Huihui et al., 2011; Yang et al., 2012)) 

between microbead-injected and uninjected eyes were comparable using the presented 

automated and the manual methods. Taken together, our data suggest that automated 

counting is at least as reliable as, but much less time consuming and prone to inter-observer 

variability, than manual counting.

Finally, while the presented automated counting platform was designed for β-III-tubulin 

immunolabeled RGC recognition, the CellProfiler template features may recognize and 

process additional cell sizes and shapes or be modified to do so as necessary. The use of the 

machine-learning tool in CPA may then be taught to implement the new cell features. For 

instance, staining with Brn3a, an RGC-specific protein and alternative to β-III-tubulin 

staining, has been highlighted as a dependable identification method of RGC somata alone 

(Leahy et al., 2004; Schlamp et al., 2013). The current pipeline set up in CellProfiler was 

altered to recognize Brn3a-stained RGCs and cells were successfully recognized and 

quantified by CellProfiler (Supplementary Fig. 3), with RGC numbers averaging 2546 ± 425 

RGC/mm2 (172.1 ± 27.9 RGC/image) and 2586 ± 413 RGC/mm2 (174.8 ± 28.7 RGC/

image) for manual and automated quantifications, respectively, which are similar to previous 

reports of Brn3a-stained RGC counts (2889 RGC/mm2) (Nadal-Nicolas et al., 2015).

In summary, a reliable investigator-supervised counting tool was developed for 

automatically quantifying immunolabeled RGC somata in a highly time-efficient manner. 

This freely available protocol enabled rigorous quantification of β-III-tubulin-stained RGCs 

for unbiased assessments of relative changes in RGC numbers in pathological conditions 

(e.g. between control animals and animals treated with an experimental therapy). This 

approach may also serve to and reconcile intra- and inter-observer variability.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Automated scoring of cell morphologies using the CellProfiler Analyst machine 
learning and iterative feedback system
(A) The software system presents the researcher with individual cells to classify from 

segments of images, sampled randomly from the set of images. After classification of a few 

cells, the researcher begins the iterative machine-learning phase (“Train Classifier”), in 

which the software generates a tentative rule based on the classified cells and presents the 

researcher with cells classified according to that rule. (B) The accuracy of the CPA classifier 

rule may be checked after each training set (“Check Progress”) and accuracy above 80% is 

considered suitable. (C) Following 4 training iterations, all cells from the experiment of 

interest are classified in order to calculate the number of positive (RGC) and negative (non-

RGC) cells. “Positive Cell Count” denotes the cells recognized as RGCs. “Negative Cell 

Count” refers to image regions, in which the cells’ morphological features were not 

Dordea et al. Page 11

Exp Eye Res. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



recognized as RGCs. “Total Cell Count” refers to the total number of cells recognized per 

image. “Image Number” represents the number of the image associated with the cell counts.
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Figure 2. 
(A) Correlation between manual and automated quantifications of 72 murine retinas. Each 

count represents the averages of 20–25 images per retina. Counts are presented as number of 

RGC/mm2. Green square symbols: 9 retinas with highest quartiles of correlation dispersion 

(well-correlated manual and automated counts). Red round symbols: 9 retinas with lowest 

quartiles of correlation dispersion (poorly-correlated manual and automated counts). (B) 

“High-quality” image with clean RGC body delineations. (C) Image with discordant/low 

staining or underexposure to highlight the RGCs. (D) Image of a fiber-rich uneven exposure, 

possibly due to the retinal structure not being fully flattened onto the imaging slide.
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Figure 3. 
(A–D) Examples of an included image (Figs. 3A and 3B) and an excluded image (Figs. 3C 
and 3D, based on ImageJ exclusion criteria described in ‘Materials and Methods’). Cells 

were counted either manually (Figs. 3A and 3C) or automatically with CellProfiler followed 

by training with CellProfiler Analyst (Figs. 3B and 3D). Green dots represent RGCs 

identified by the observer. The number 3 refers to the Cell Counter type chosen, an arbitrary 

label from the software. Blue dots represent RGCs recognized by the software. Orange dots 

represent structures identified by a step in the image-processing pipeline but not counted as 

RGCs by the software. (E) Correlation between the two quantification methods of included 
images (n = 272). Counts are presented as raw number of cells per image. (F) Correlation 

between the two quantification methods of excluded images (n = 106). Counts are presented 

as raw number of cells per image. Markedly greater correlations were observed for included 
(Fig. 3E) than excluded (Fig. 3F) images (Fisher r-to-z transformation with Z factor = 4.62). 

(G–J) Correlations of manual (Figs. 3H and 3J) and automated (Figs. 3G and 3I) 

quantification methods of RGC images carried out by two independent observers. Counts are 

presented as raw number of cells per image. Image groups are presented as included (Figs. 

3G and 3H) and excluded (Figs. 3I and 3J) images, as defined by the pre-selection of image 

quality carried out using ImageJ.
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Figure 4. Automated quantification method successfully captures microbead-induced optic 
neuropathy
(A) Number of RGCs/mm2 counted using the CellProfiler automated quantification method 

in retinas isolated from non-injected (1616 ± 333 RGC/mm2, n = 6) and microbead-injected 

(1144 ± 452 RGC/mm2, n = 6) eyes. Values are presented as mean ± s.d. *P<0.05 vs. 

uninjected contralateral eye. (B) Number of RGCs/mm2 counted manually in retinas isolated 

from non-injected (3019 ± 643 RGC/mm2, n = 6) and microbead-injected (2404 ± 438 

RGC/mm2, n = 6) eyes. (C) Results are correlated between manual and automated 

quantification methods of images (n = 162) from 12 murine retinas.
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