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Abstract

Graph matching—aligning a pair of graphs to minimize their edge disagreements—has received 

wide-spread attention from both theoretical and applied communities over the past several 

decades, including combinatorics, computer vision, and connectomics. Its attention can be 

partially attributed to its computational difficulty. Although many heuristics have previously been 

proposed in the literature to approximately solve graph matching, very few have any theoretical 

support for their performance. A common technique is to relax the discrete problem to a 

continuous problem, therefore enabling practitioners to bring gradient-descent-type algorithms to 

bear. We prove that an indefinite relaxation (when solved exactly) almost always discovers the 

optimal permutation, while a common convex relaxation almost always fails to discover the 

optimal permutation. These theoretical results suggest that initializing the indefinite algorithm 

with the convex optimum might yield improved practical performance. Indeed, experimental 

results illuminate and corroborate these theoretical findings, demonstrating that excellent results 

are achieved in both benchmark and real data problems by amalgamating the two approaches.

1 Introduction

Several problems related to the isomorphism and matching of graphs have been an important 

and enjoyable challenge for the scientific community for a long time, with applications in 

pattern recognition (see, for example, [1], [2]), computer vision (see, for example, [3], [4], 

[5]), and machine learning (see, for example, [6], [7]), to name a few. Given two graphs, the 

graph isomorphism problem consists of determining whether these graphs are isomorphic or 

not, that is, if there exists a bijection between the vertex sets of the graphs which exactly 

preserves the vertex adjacency. The graph isomorphism problem is very challenging from a 

computational complexity point of view. Indeed, its complexity is still unresolved: it is not 

currently classified as NP-complete or P [8]. The graph isomorphism problem is contained 

in the (harder) graph matching problem. The graph matching problem consists of finding the 

exact isomorphism between two graphs if it exists, or, in general, finding the bijection 

between the vertex sets that minimizes the number of adjacency disagreements. Graph 

matching is a very challenging and well-studied problem in the literature with applications 

in such diverse fields as pattern recognition, computer vision, neuroscience, etc. (see [9]). 
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Although polynomial-time algorithms for solving the graph matching problem are known 

for certain classes of graphs (e.g., trees [10], [11]; planar graphs [12]; and graphs with some 

spectral properties [13], [14]), there are no known polynomial-time algorithms for solving 

the general case. Indeed, in its most general form, the graph matching problem is equivalent 

to the NP-hard quadratic assignment problem.

Formally, for any two graphs on n vertices with respective n × n adjacency matrices A and 

B, the graph matching problem is to minimize ‖A − PBPT‖F over all P ∈ Π, where Π denotes 

the set of n × n permutation matrices, and ‖·‖F is the Froebenius matrix norm (other graph 

matching objectives have been proposed in the literature as well, this being a common one). 

Note that for any permutation matrix P,  counts the 

number of adjacency disagreements induced by the vertex bijection corresponding to P.

An equivalent formulation of the graph matching problem is to minimize −〈AP, PB〉 over all 

P ∈ Π, where 〈·, ·〉 is the Euclidean inner product, i.e., for all C, D ∈ ℝn × n, 〈C, D〉 ≔ 

trace(CT D). This can be seen by expanding, for any P ∈ Π,

and noting that  and  are constants for the optimization problem over P ∈ Π.

Let  denote the set of n × n doubly stochastic matrices, i.e., nonnegative matrices with row 

and column sums each equal to 1. We define the convex relaxed graph matching problem to 

be minimizing  over all D ∈ , and we define the indefinite relaxed graph 
matching problem to be minimizing −〈AD, DB〉 over all D ∈ . Unlike the graph matching 

problem, which is an integer programming problem, these relaxed graph matching problems 

are each continuous optimization problems with a quadratic objective function subject to 

affine constraints. Since the quadratic objective  is also convex in the variables 

D (it is a composition of a convex function and a linear function), there is a polynomial-time 

algorithm for exactly solving the convex relaxed graph matching problem (see [15]). 

However, −〈AD, DB〉 is not convex (in fact, the Hessian has trace zero and is therefore 

indefinite), and nonconvex quadratic programming is (in general) NP-hard. Nonetheless the 

indefinite relaxation can be efficiently approximately solved with Frank-Wolfe (F-W) 

methodology [16], [17].

It is natural to ask how the (possibly different) solutions to these relaxed formulations relate 

to the solution of the original graph matching problem. Our main theoretical result, Theorem 

1, proves, under mild conditions, that convex relaxed graph matching (which is tractable) 

almost always yields the wrong matching, and indefinite relaxed graph matching (which is 

intractable) almost always yields the correct matching. We then illustrate via illuminating 

simulations that this asymptotic result about the trade-off between tractability and 

correctness is amply felt even in moderately sized instances.

Lyzinski et al. Page 2

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In light of graph matching complexity results (see for example [14], [18], [19]), it is 

unsurprising that the convex relaxation can fail to recover the true permutation. In our main 

theorem, we take this a step further and provide an answer from a probabilistic point of 

view, showing almost sure failure of the convex relaxation for a very rich and general family 

of graphs when convexly relaxing the graph matching problem. This paints a sharp contrast 

to the (surprising) almost sure correctness of the solution of the indefinite relaxation. We 

further illustrate that our theory gives rise to a new state-of-the-art matching strategy.

1.1 Correlated random Bernoulli graphs

Our theoretical results will be set in the context of correlated random (simple) Bernoulli 

graphs,1 which can be used to model many real-data scenarios. Random Bernoulli graphs 

are the most general edge independent random graphs, and contain many important random 

graph families including Erdős-Rényi and the widely used stochastic block model of [21] (in 

the stochastic block model, Λ is a block constant matrix, with the number of diagonal blocks 

representing the number of communities in the network). Stochastic block models, in 

particular, have been extensively used to model networks with inherent community structure 

(see, for example, [22], [23], [24], [25]). As this model is a submodel of the random 

Bernoulli graph model here used, our main theorem (Theorem 1) extends to stochastic block 

models immediately, making it of highly practical relevance.

These graphs are defined as follows. Given n ∈ ℤ+, a real number ρ ∈ [0, 1], and a 

symmetric, hollow matrix Λ ∈ [0, 1]n × n, define ℰ ≔ {{i, j} : i ∈ [n], j ∈ [n], i ≠ j}, where 

[n] ≔ {1, 2, …, n}. Two random graphs with respective n × n adjacency matrices A and B 
are ρ- correlated Bernoulli(Λ) distributed if, for all {i, j} ∈ ℰ, the random variables (matrix 

entries) Ai,j, Bi,j are Bernoulli(Λi,j) distributed, and all of these random variables are 

collectively independent except that, for each {i, j} ∈ ℰ, the Pearson product-moment 

correlation coefficient for Ai,j, Bi,j is ρ. It is straightforward to show that the parameters n, ρ, 

and Λ completely specify the random graph pair distribution, and the distribution may be 

achieved by first, for all {i, j} ∈ ℰ, having Bij ~ Bernoulli(Λi,j) independently drawn and 

then, conditioning on B, have Ai,j ~ Bernoulli ((1 − ρ)Λi,j + ρBi,j) independently drawn. 

While ρ = 1 would imply the graphs are isomorphic, this model allows for a natural vertex 

alignment (namely the identity function) for ρ < 1, i.e. when the graphs are not necessarily 

isomorphic.

1.2 The main result

We will consider a sequence of correlated random Bernoulli graphs for n = 1, 2, 3, …, where 

Λ is a function of n. When we say that a sequence of events, , holds almost always 
we mean that almost surely it happens that the events in the sequence occur for all but 

finitely many m.

Theorem 1—Suppose A and B are adjacency matrices for ρ-correlated Bernoulli(Λ) 

graphs, and there is an α ∈ (0, 1/2) such that Λi,j ∈ [α, 1 − α] for all i ≠ j. Let P* ∈ Π, and 
denote A′ ≔ P*AP*T.

1Also known as inhomogeneous random graphs in [20].
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a. If (1 − α)(1 − ρ) < 1/2, then it almost always holds that

b. If the between graph correlation ρ < 1, then it almost always holds that P* ∉ arg 

minD∈  ‖A′D − DB‖F.

This theorem states that: (part a) the unique solution of the indefinite relaxation almost 

always is the correct permutation matrix, while (part b) the correct permutation is almost 

always not a solution of the commonly used convex relation. Moreover, as we will show in 

the experiments section, the convex relaxation can lead to a doubly stochastic matrix that is 

not even in the Voronoi cell of the true permutation. In this case, the convex optimum is 

closest to an incorrect permutation, hence the correct permutation will not be recovered by 

projecting the doubly stochastic solution back onto Π.

In the above, ρ and α are fixed. However, the proofs follow mutatis mutandis if ρ and α are 

allowed to vary in n. If there exist constants c1, c2 > 0 such that  and 

, then Theorem 1, part a will hold. Note that 

 also guarantees the corresponding graphs are almost always connected. 

For the analogous result for part b, let us first define . If there 

exists an i ∈ [n] such that , then the results of Theorem 1, part b 
hold as proven below.

1.3 Isomorphic versus ρ-correlated graphs

There are numerous algorithms available in the literature for (approximately) solving the 

graph isomorphism problem (see, for example, [26], [27]), as well as for (approximately) 

solving the subgraph isomorphism problem (see, for example, [28]). All of the graph 

matching algorithms we explore herein can be used for the graph isomorphism problem as 

well.

We emphasize that the ρ-correlated random graph model extends our random graphs beyond 

isomorphic graph pairs; indeed ρ-correlated graphs G1 and G2 will almost surely have on the 

order of [α, 1 − α]ρn2 edgewise disagreements. As such, these graphs are a.s. not 
isomorphic. In this setting, the goal of graph matching is to align the vertices across graphs 

whilst simultaneously preserving the adjacency structure as best possible across graphs. 

However, this model does preserve a very important feature of isomorphic graphs: namely 

the presence of a latent alignment function (the identity function in the ρ-correlated model).

We note here that in the ρ-correlated Bernoulli(Λ) model, both G1 and G2 are marginally 

Bernoulli(Λ) random graphs, which is amenable to theoretical analysis. We note here that 

real data experiments across a large variety of data sets (see Section 4.3) and simulated 

experiments across a variety of robust random graph settings (see Section 4.4) also both 
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support the result of Theorem 1. Indeed, we suspect that an analogue of Theorem 1 holds 

over a much broader class of random graphs, and we are presently investigating this 

extension.

2 Proof of Theorem 1, Part a

Without loss of generality, let P* = I. We will first sketch the main argument of the proof, 

and then we will spend the remainder of the section filling in all necessary details of the 

proof. The proof will proceed as follows. Almost always, −〈A, B〉 < − 〈AQ, PB〉 for any P, Q 
∈ Π such that either P ≠ I or Q ≠ I. To accomplish this, we count the entrywise 

disagreements between AQ and PB in two steps (of course, this is the same as the number of 

entrywise disagreements between A and PBQT). We first count the entrywise disagreements 

between B and PBQT (Lemma 4), and then count the additional disagreements induced by 

realizing A conditioning on B. Almost always, this two step realization will result in more 

errors than simply realizing A directly from B without permuting the vertex labels (Lemma 

5). This establishes −〈A, B〉 < − 〈AQ, PB〉, and Theorem 1, part a is a consequence of the 

Birkhoff-von Neumann theorem.

We begin with two lemmas used to prove Theorem 1. First, Lemma 2 is adapted from [29], 

presented here as a variation of the form found in [30, Prop. 3.2]. This lemma lets us tightly 

estimate the number of disagreements between B and PBQT, which we do in Lemma 4.

Lemma 2

For any integer N > 0 and constant , suppose that the random variable X is a 
function of at most N independent Bernoulli random variables, each with Bernoulli 
parameter in the interval [α, 1 − α]. Suppose that changing the value of any one of the 
Bernoulli random variables (and keeping all of the others fixed) changes the value of X by at 

most γ. Then for any t such that , it holds that ℙ [|X − X| > t] ≤ 2 · 

exp{−t2/(γ2N)}.

The next result, Lemma 3, is a special case of the classical Hoeffding inequality (see, for 

example, [31]), which we use to tightly bound the number of additional entrywise 

disagreements between AQ and PB when we realize A conditioning on B.

Lemma 3

Let N1 and N2 be positive integers, and q1 and q2 be real numbers in [0, 1]. If X1 ~ 

Binomial(N1, q1) and X2 ~ Binomial(N2, q2) are independent, then for any t ≥ 0 it holds that

Setting notation for the next lemmas, let n be given. Let Π denote the set of n × n 
permutation matrices. Just for now, fix any P, Q ∈ Π such that they are not both the identify 

matrix, and let τ, ω be their respective associated permutations on [n]; i.e. for all i, j ∈ [n] it 

Lyzinski et al. Page 5

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



holds that τ (i) = j precisely when Pi,j = 1 and, for all i, j ∈ [n], it holds that ω(i) = j precisely 

when Qi,j = 1. It will be useful to define the following sets:

If we define m to be the maximum of |{i ∈ [n] : τ (i) ≠ i}| and |{j ∈ [n] : ω(j) ≠ j}|, then it 

follows that mn ≤ |Δ | ≤ 2mn. This is clear from noting that Δω, Δτ ⊆ Δ ⊆ Δτ ∪ Δω. Also, |Δt| 

≤ m, since for (i, j) ∈ Δt it is necessary that τ (i) ≠ i and ω(j) ≠ j. Lastly, |Δd| ≤ 4m, since

and |{(i, i) ∈ Δ }| ≤ 2m, and |{(i, j) ∈ Δ : i ≠ j, τ (i) = ω(j)}| ≤ 2m.

We make the following assumption in all that follows:

Assumption 1

Suppose that Λ ∈ [0, 1] n × n is a symmetric, hollow matrix, there is a real number ρ ∈ [0, 1], 
and there is a constant α ∈ (0, 1/2) such that Λi,j ∈ [α, 1 − α] for all i ≠ j, and (1 − α)(1 − ρ) 

< 1/2. Further, let A, B be the adjacency matrices of two random ρ-correlated Bernoulli(Λ) 

graphs.

Define the (random) set

Note that |Θ′| counts the entrywise disagreements induced within the off-diagonal part of B 
by τ and ω.

Lemma 4

Under Assumption 1, if n is sufficiently large then
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Proof of Lemma 4

For any (i, j) ∈ Δ, note that (Bi,j − Bτ(i),ω(j))2 has a Bernoulli distribution; if (i, j) ∈ Δt ∪ Δd, 

then the Bernoulli parameter is either 0 or is in the interval [α, 1 − α], and if (i, j) ∈ Δ\(Δt ∪ 

Δd), then the Bernoulli parameter is Λi,j(1 − Λτ(i),ω(j)) + (1− Λi,j)Λτ(i),ω(j), and this Bernoulli 

parameter is in the interval [α, 1 − α] since it is a convex combination of values in this 

interval. Now, |Θ′| = ∑(i,j)∈Δ,i≠j(Bi,j − Bτ (i),ω(j))2, so we obtain that α (|Δ| − |Δt| − |Δd|) ≤ |Θ

′|) ≤ (1 − α)|Δ|, and thus

(1)

Next we apply Lemma 2, since |Θ′| is a function of the at-most N ≔ 2mn Bernoulli random 

variables {Bi,j}(i,j)∈Δ:i≔j, which as a set (noting that Bi,j = Bj,i is counted at most once for 

each {i, j}) are independent, each with Bernoulli parameter in [α, 1 − α]. Furthermore, 

changing the value of any one of these random variable would change |Θ′| by at most γ ≔ 4, 

thus Lemma 2 can be applied and, for the choice of , we obtain that

(2)

Lemma 4 follows from (1) and (2), since

and 5αmn/6 ≤ αm(n − 5) when n is sufficiently large (e.g. n ≥ 30).

With the above bound on the number of (non-diagonal) entrywise disagreements between B 
and PBQT, we next count the number of additional disagreements introduced by realizing A 
conditioning on B. In Lemma 5, we prove that this two step realization will almost always 

result in more entrywise errors than simply realizing A from B without permuting the vertex 

labels.

Lemma 5

Under Assumption 1, it almost always holds that, for all P, Q ∈ Π such that either P ≠ I or Q 
≠ I, ‖A − PBQT‖F > ‖A − B‖F.
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Proof of Lemma 5

Just for now, let us fix any P, Q ∈ Π such that either P ≠ I or Q ≠ I, and say τ and ω are their 

respective associated permutations on [n]. Let Δ and Θ′ be defined as before. For every (i, j) 
∈ Δ, a combinatorial argument, combined with A and B being binary valued, yields (where 

for an event C, 𝟙C is the indicator random variable for the event C)

(3)

Note that

Summing Eq. (3) over the relevant indices then yields that

(4)

where the sets Θ and Γ are defined as

Now, partition Θ into sets Θ1, Θ2, Θd, and partition Γ into sets Γ1, Γ2 where
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Note that all (i, j) such that i = j are not in Γ. Also note that Θ′ ⊆ Θ can be partitioned into 

the disjoint union Θ′ = Θ1 ∪ Θ2.

Equation (4) implies

In particular,

(5)

Now, conditioning on B (hence, conditioning on Θ′), we have, for all i ≠ j, that (see Section 

1.1), Ai,j ~ Bernoulli ((1 − ρ)Λi,j + ρBi,j). Thus 𝟙Ai,j ≠ Bi,j has a Bernoulli distribution with 

parameter bounded above by (1 − α)(1 − ρ). Thus, |Γ1| is stochastically dominated by a 

Binomial(|Θ1|, (1 − α)(1 − ρ)) random variable, and the independent random variable |Γ2| is 

stochastically dominated by a Binomial(|Θ2|, (1 − α)(1 − ρ)) random variable. An 

application of Lemma 3 with N1 ≔ |Θ1|, N2 ≔ |Θ2|, q1 = q2 ≔ (1 − α)(1 − ρ), and 

, yields (recall that we are conditioning on B here)

(6)

No longer conditioning (broadly) on B, Lemma 4, equations (5) and (6), and 

, imply that

(7)

Until this point, P and Q—and their associated permutations τ and ω—have been fixed. 

Now, for each m ∈ [n], define ℋm to be the event that ‖A − PBQT‖F ≤ ‖A − B‖F for any P, Q 
∈ Π with the property that their associated permutations τ,ω are such that the maximum of |
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{i ∈ [n] : τ (i) ≠ i}| and |{j ∈ [n] : ω(j) ≠ j}| is exactly m. There are at most 

 such permutation pairs.

By (7), for every m ∈ [n], setting

we have ℙ(ℋm) ≤ n2m · 4 exp {−c1mn} ≤ exp{−c2n}, for some positive constant c2 (the last 

inequality holding when n is large enough). Thus, for sufficiently large n, 

 decays exponentially in n, and is thus finitely summable 

over n = 1, 2, 3, …. Lemma 5 follows from the Borel-Cantelli Lemma.

Proof of Theorem 1, part a

By Lemma 5, it almost always follows that for every P, Q ∈ Π not both the identity, 〈AQ, 
PB〉 < 〈A, B〉. By the Birkhoff-von Neuman Theorem,  is the convex hull of Π, i.e., for 

every D ∈ , there exists constants {aD,P}P∈Π such that D = ∑P∈Π aD,P P and ∑ P∈Π aD,P = 

1. Thus, if D is not the identity matrix, then almost always

and almost always argminD∈  − 〈AD, DB〉 = {I}.

3 Proof of Theorem 1, part b

The proof will proceed as follows: we will use Lemma 6 to prove that the identity is almost 

always not a KKT (Karush-Kuhn-Tucker) point of the relaxed graph matching problem. 

Since the relaxed graph matching problem is a constrained optimization problem with 

convex feasible region and affine constraints, this is sufficient for the proof of Theorem 1, 

part b.

First, we state Lemma 6, a variant of Hoeffding’s inequality, which we use to prove 

Theorem 1, part b.

Lemma 6

Let N be a positive integer. Suppose that the random variable X is the sum of N independent 
random variables, each with mean 0 and each taking values in the real interval [−1, 1]. Then 
for any t ≥ 0, it holds that

Again, without loss of generality, we may assume P* = I. We first note that the convex 

relaxed graph matching problem can be written as
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(8)

(9)

(10)

(11)

where (8) is a convex function (of D) subject to affine constraints (9)–(11) (i.e., D ∈ ). It 

follows that if I is the global (or local) optimizer of the convex relaxed graph matching 

problem, then I must be a KKT (Karush-Kuhn-Tucker) point (see, for example, [32, Chapter 

4]).

The gradient of  (as a function of D) is

Hence, a D̂ satisfying (9)–(11) (i.e., D̂ is primal feasible) is a KKT point if it satisfies

(12)

where μ, μ′, and ν are as follows:

noting that the dual variables μ1, μ2, …, μn are not restricted. They correspond to the 

equality primal constraints (9) that the row-sums of a primal feasible D are all one;
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noting that the dual variables  are not restricted. They correspond to the 

equality primal constraints (10) that the column-sums of a primal feasible D are all one;

noting that the dual variables νi,j are restricted to be nonnegative. They correspond to the 

inequality primal constraints (11) that the entries of a primal feasible D be nonnegative. 

Complementary slackness further constrains the νi,j, requiring that D̂
i,jνi,j = 0 for all i, j.

At the identity matrix I, the gradient ∇ (I), denoted ∇, simplifies to ∇ = [∇i,j] = 2A2 + 2B2 

− 4AB ∈ ℝn × n; and I being a KKT point is equivalent to:

(13)

where μ, μ′, and ν are as specified above. At the identity matrix, complimentary slackness 

translates to having ν1,1 = ν2,2 = ⋯ = νn,n = 0.

Now, for Equation (13) to hold, it is necessary that there exist μ1, μ2,  such that

(14)

(15)

(16)

(17)

Adding equations (16), (17) and subtracting equations (14), (15), we obtain

(18)

Note that , hence Equation (18) is equivalent to (where X ≔ 

(A − B)T (A − B))
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(19)

Next, referring back to the joint distribution of A and B (see Section 1.1), we have, for all i ≠ 

j,

Now, since

is the sum of (n − 1) + (n − 1) Bernoulli random variables which are collectively 

independent—besides the two of them which are equal, namely (A12 − B12)2 and (A21 − 

B21)2—we have that [X]1,1+[X]2,2 is stochastically greater than or equal to a Binomial (2n 
− 3, 2(1 − ρ)α(1− α)) random variable. Also note that

is the sum of n − 2 independent random variables (namely, the (Ai,1 − Bi,1)(Ai,2 − Bi,2)’s) 

each with mean 0 and each taking on values in {−1, 0, 1}. Applying Lemma 3 and Lemma 

6, respectively, to X11 + X22 and to X12, with t ≔ (2n − 3)2(1 − ρ)α(1 − α)/4, yields

for some positive constant c (the last inequality holds when n is large enough). Hence the 

probability that Equation (19) holds is seen to decay exponentially in n, and is finitely 

summable over n = 1, 2, 3, …. Therefore, by the Borel-Cantelli Lemma we have that almost 

always Equation (19) does not hold. Theorem 1, part b is now shown, since Equation (19) is 

a necessary condition for I ∈ arg minD∈  .

4 Experimental results

In the preceding section, we presented a theoretical result exploring the trade-off between 

tractability and correctness when relaxing the graph matching problem. On one hand, we 

have an optimistic result (Theorem 1, part a) about an indefinite relaxation of the graph 

matching problem. However, since the objective function is nonconvex, there is no efficient 

algorithm known to exactly solve this relaxation. On the other hand, Theorem 1, part b, is a 

pessimistic result about a commonly used efficiently solvable convex relaxation, which 

almost always provides an incorrect/non-permutation solution.
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After solving (approximately or exactly) the relaxed problem, the solution is commonly 

projected to the nearest permutation matrix. We have not theoretically addressed this 

projection step yet. It might be that, even though the solution in  is not the correct 

permutation, it is very close to it, and the projection step fixes this. We will numerically 

illustrate this not being the case.

We next present simulations that corroborate and illuminate the presented theoretical results, 

address the projection step, and provide intuition and practical considerations for solving the 

graph matching problem. Our simulated graphs have n = 150 vertices and follow the 

Bernoulli model described above, where the entries of the matrix Λ are i.i.d. uniformly 

distributed in [α, 1 − α] with α = 0.1. In each simulation, we run 100 Monte Carlo replicates 

for each value of ρ. Note that given this α value, the threshold ρ in order to fulfill the 

hypothesis of the first part of Theorem 1 (namely that (1 − α)(1 − ρ) < 1/2) is ρ = 0.44. As in 

Theorem 1, for a fixed P* ∈ Π, we let A′ ≔ P*AP*T, so that the correct vertex alignment 

between A′ and B is provided by the permutation matrix P*.

We then highlight the applicability of our theory and simulations in a series of real data 

examples. In the first set of experiments, we match three pairs of graphs with known latent 

alignment functions. We then explore the applicability of our theory in matching graphs 

without a pre-specified latent alignment. Specifically, we match 16 benchmark problems 

(those used in [17], [33]) from the QAPLIB library of [34]. See Section 4.3 for more detail. 

As expected by the theory, in all of our examples a smartly initialized local minimum of the 

indefinite relaxation achieves best performance.

We summarize the notation we employ in Table 1. To find D*, we employ the F-W 

algorithm ([16], [33]), run to convergence, to exactly solve the convex relaxation. We also 

use the Hungarian algorithm ([35]) to compute Pc, the projection of D* to Π. To find a local 

minimum of minD∈  −〈A′D, DB〉, we use the FAQ algorithm of [17]. We use FAQ:P*, 

FAQ:D*, and FAQ:J to denote the FAQ algorithm initialized at P*, D*, and J ≔ 1 · 1T /n (the 

barycenter of ). We compare our results to the GLAG and PATH algorithms, implemented 

with off-the-shelf code provided by the algorithms’ authors. We restrict our focus to these 

algorithms (indeed, there are a multitude of graph matching algorithms present in the 

literature) as these are the prominent relaxation algorithms; i.e., they all first relax the graph 

matching problem, solve the relaxation, and then project the solution onto Π.

4.1 On the convex relaxed graph matching problem

Theorem 1, part b, states that we cannot, in general, expect D* = P*. However, D* is often 

projected onto Π, which could potentially recover P*. Unfortunately, this projection step 

suffers from the same problems as rounding steps in many integer programming solvers, 

namely that the distance from the best interior solution to the best feasible solution is not 

well understood.

In Figure 1, we plot  versus the correlation between the random graphs, 

with 100 replicates per value of ρ. Each experiment produces a pair of dots, either a red/blue 

pair or a green/grey pair. The energy levels corresponding to the red/green dots correspond 
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to , while the energies corresponding to the blue/grey dots correspond 

. The colors indicate whether Pc was (green/grey pair) or was not (red/blue 

pair) P*. The black dots correspond to the values of .

Note that, for correlations ρ < 1, D* ≠ P*, as expected from Theorem 1, part b. Also note 

that, even for correlations greater than ρ = 0.44, we note Pc ≠ P* after projecting to the 

closest permutation matrix, even though with high probability P* is the solution to the 

unrelaxed problem.

We note the large gap between the pre/post projection energy levels when the algorithm 

fails/succeeds in recovering P*, the fast decay in this energy (around ρ ≈ 0.8 in Figure 1), 

and the fact that the value for  can be easily predicted from the correlation 

value. These together suggest that  can be used a 
posteriori to assess whether or not graph matching recovered P*. This is especially true if ρ 

is known or can be estimated.

How far is D* from P*? When the graphs are isomorphic (i.e., ρ = 1 in our setting), then for 

a large class of graphs, with certain spectral constraints, then P* is the unique solution of the 

convex relaxed graph matching problem [14]. Indeed, in Figure 1, when ρ = 1 we see that P* 

= D* as expected. On the other hand, we know from Theorem 1, part b that if ρ < 1, it is 

often the case that D* ≠ P*. We may think that, via a continuity argument, if the correlation 

ρ is very close to one, then D* will be very close to P*, and Pc will probably recover P*.

We empirically explore this phenomena in Figure 2. For ρ ∈ [0.1, 1], with 100 MC replicates 

for each ρ, we plot the (Frobenius) distances from D* to Pc (in blue), from D* to P* (in red), 

and from D* to a uniformly random permutation in Π (in black). Note that all three distances 

are very similar for ρ < 0.8, implying that D* is very close to the barycenter and far from the 

boundary of . With this in mind, it is not surprising that the projection fails to recover P* 

for ρ < 0.8 in Figure 1, as at the barycenter, the projection onto Π is uniformly random.

For very high correlation values (ρ > 0.9), the distances to Pc and to P* sharply decrease, and 

the distance to a random permutation sharply increases. This suggests that at these high 

correlation levels D* moves away from the barycenter and towards P*. Indeed, in Figure 1 

we see for ρ > 0.9 that P* is the closest permutation to D*, and is typically recovered by the 

projection step.

4.2 On indefinite relaxed graph matching problem

The continuous problem one would like to solve, minD∈  −〈A′D, DB〉 (since its optimum is 

P* with high probability), is indefinite. One option is to look for a local minimum of the 

objective function, as done in the FAQ algorithm of [17]. The FAQ algorithm uses F-W 

methodology ([16]) to find a local minimum of −〈A′D, DB〉. Not surprisingly (as there are 

many local minima), the performance of the algorithm is heavily dependent on the 

initialization. Below we study the effect of initializing the algorithm at the non-informative 

barycenter, at D* (a principled starting point), and at P*. We then compare performance of 
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the different FAQ initializations to the PATH algorithm [33] and to the GLAG algorithm 

[36].

The GLAG algorithm presents an alternate formulation of the graph matching problem. The 

algorithm convexly relaxes the alternate formulation, solves the relaxation and projects it 

onto Π. As demonstrated in [36], the algorithm’s main advantage is in matching weighted 

graphs and multimodal graphs. The PATH algorithm begins by finding D*, and then solves a 

sequence of concave and convex problems in order to improve the solution. The PATH 

algorithm can be viewed as an alternative way of projecting D* onto Π. Together with FAQ, 

these algorithms achieve the current best performance in matching a large variety of graphs 

(see [36], [17], [33]). However, we note that GLAG and PATH often have significantly 

longer running times than FAQ (even if computing D* for FAQ:D*); see [17], [37].

Figure 3 shows the success rate of the graph matching methodologies in recovering P*. The 

vertical dashed red line at ρ = 0.44 corresponds to the threshold in Theorem 1 part a (above 

which P* is optimal whp) for the parameters used in these experiments, and the solid lines 

correspond to the performance of the different methods: from left to right in gray, FAQ:P*, 

FAQ:D*, FAQ:J; in black, the success rate of Pc; the performance of GLAG and PATH are 

plotted in blue and red respectively.

Observe that, when initializing with P*, the fact that FAQ succeeds in recovering P* means 

that P* is a local minimum, and the algorithm did not move from the initial point. From the 

theoretical results, this was expected for ρ > 0.44, and the experimental results show that this 

is also often true for smaller values of ρ. However, this only means that P* is a local 

minimum, and the function could have a different global minimum. On the other hand, for 

very lowly correlated graphs (ρ < 0.3), P* is not even a local minimum.

The difference in the performance illustrated by the gray lines indicates that the resultant 

graph matching solution can be improved by using D* as an initialization to find a local 

minimum of the indefinite relaxed problem. We see in the figure that FAQ:D* achieves best 

performance, while being computationally less intensive than PATH and GLAG, see Figure 

4 for the runtime result. This amalgam of the convex and indefinite methodologies (initialize 

indefinite with the convex solution) is an important tool for obtaining solutions to graph 

matching problems, providing a computationally tractable algorithm with state-of-the-art 

performance.

However, for all the algorithms there is still room for improvement. In these experiments, for 

ρ ∈ [0.44, 0.7 theory guarantees that with high probability the global minimum of the 

indefinite problem is P*, and we cannot find it with the available methods.

When FAQ:D* fails to recover P*, how close is the objective function at the obtained local 

minima to the objective function at P*? Figure 5 shows −〈A′D, DB〉 for the true 

permutation, P*, and for the pre-projection doubly stochastic local minimum found by 

FAQ:D*. For 0.35 < ρ < 0.75, the state-of-the-art algorithm not only fails to recover the 

correct bijection, but also the value of the objective function is relatively far from the 

optimal one. There is a transition (around ρ ≈ 0.75) where the algorithm moves from getting 

a wrong local minimum to obtaining P* (without projection!). For low values of ρ, the 
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objective function values are very close, suggesting that both P* and the pre-projection FAQ 

solution are far from the true global minima. At ρ ≈ 0.3, we see a separation between the 

two objective function values (agreeing with the findings in Figure 3). As ρ > 0.44, we 

expect that P* is the global minima and the pre-projection FAQ solution is far from P* until 

the phase transition at ρ ≈ 0.75.

4.3 Real data experiments

We further demonstrate the applicability of our theory in a series of real data examples. First 

we match three pairs of graphs where a latent alignment is known. We further compare 

different graph matching approaches on a set of 16 benchmark problems (those used in [17], 

[33]) from the QAPLIB QAP library of [34], where no latent alignment is known a priori. 

Across all of our examples, an intelligently initialized local solution of the indefinite 

relaxation achieves best performance.

Our first example is from human connectomics. For 45 healthy patients, we have DT-MRI 

scans from one of two different medical centers: 21 patients scanned (twice) at the Kennedy 

Krieger Institute (KKI), and 24 patients scanned (once) at the Nathan Kline Institute (NKI) 

(all data available at http://openconnecto.me/data/public/MR/MIGRAINE_v1_0/). Each scan 

is identically processed via the MIGRAINE pipeline of [38] yielding a 70 vertex weighted 

symmetric graph. In the graphs, vertices correspond to regions in the Desikan brain atlas, 

which provides the latent alignment of the vertices. Edge weights count the number of 

neural fiber bundles connecting the regions. We first average the graphs within each medical 

center and then match the averaged graphs across centers.

For our second example, the graphs consist of the two-hop neighborhoods of the “Algebraic 

Geometry” page in the French and English Wikipedia graphs. The 1382 vertices correspond 

to Wikipedia pages with (undirected) edges representing hyperlinks between the pages. Page 

subject provides the latent alignment function, and to make the graphs of commensurate size 

we match the intersection graphs.

Lastly, we match the chemical and electrical connectomes of the C. elegans worm. The 

connectomes consist of 253 vertices, each representing a specific neuron (the same neuron in 

each graph). Weighted edges representing the strength of the (electrical or chemical) 

connection between neurons. Additionally, the electrical graph is directed while the 

chemical graph is not.

The results of these experiments are summarized in Table 2. In each example, the 

computationally inexpensive FAQ:D* procedure achieves the best performance compared to 

the more computationally expensive GLAG and PATH procedures. This reinforces the 

theoretical and simulation results presented earlier, and again points to the practical utility of 

our amalgamated approach. While there is a canonical alignment in each example, the 

results point to the potential use of our proposed procedure (FAQ:D*) for measuring the 

strength of this alignment, i.e., measuring the strength of the correlation between the graphs. 

If the graphs are strongly aligned, as in the KKI-NKI example, the performance of FAQ:D* 

will be close to the truth and a large portion of the latent alignment with be recovered. As the 
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alignment is weaker, FAQ:D* will perform even better than the true alignment, and the true 

alignment will be poorly recovered, as we see in the C. elegans example.

What implications do our results have in graph matching problems without a natural latent 

alignment? To test this, we matched 16 particularly difficult examples from the QAPLIB 

library of [34]. We choose these particular examples, because they were previously used in 

[17], [33] to assess and demonstrate the effectiveness of their respective matching 

procedures. Results are summarized in Table 3. We see that in every example, the indefinite 

relaxation (suitably initialized) obtains the best possible result. Although there is no latent 

alignment here, if we view the best possible alignment as the “true” alignment here, then this 

is indeed suggested by our theory and simulations. As the FAQ procedure is computationally 

fast (even initializing FAQ at both J and D* is often comparatively faster than GLAG and 

PATH; see [17] and [37]), these results further point to the applicability of our theory. Once 

again, theory suggests, and experiments confirm, that approximately solving the indefinite 

relaxation yields the best matching results.

4.4 Other random graph models

While the random Bernoulli graph model is the most general edge-independent random 

graph model, in this section we present analogous experiments for a wider variety of edge-

dependent random graph models. For these models, we are unaware of a simple way to 

exploit pairwise edge correlation in the generation of these graphs, as was present in Section 

1.1. Here, to simulate aligned non-isomorphic random graphs, we proceed as follows. We 

generate a graph G1 from the appropriate underlying distribution, and then model G2 as an 

errorful version of G1; i.e., for each edge in G1, we randomly flip the edge (i.e., bit-flip from 

0 ↦ 1 or 1 ↦ 0) independently with probability p ∈ [0, 1]. We then graph match G1 and G2, 

and we plot the performance of the algorithms in recovering the latent alignment function 

across a range of values of p.

We first evaluate the performance of our algorithms on power law random graphs [39]; these 

graphs have a degree distribution that follows a power law, i.e., the proportion of vertices of 

degree d is proportional to d−β for some constant β > 0. These graphs have been used to 

model many real data networks, from the Internet [40], [41], to social and biological 

networks [42], to name a few. In general, these graphs have only a few vertices with high 

degree, and the great majority of the vertices have relatively low degree.

Figure 6 shows the performance comparison for the methods analyzed above: FAQ:P*, 

FAQ:D*, FAQ:J, Pc, PATH, and GLAG. For a range of p ∈ [0, 1], we generated a 150 vertex 

power law graph with β = 2, and subsequently graph matched this graph and its errorful 

version. For each p, we have 100 MC replicates. As with the random Bernoulli graphs, we 

see from Figure 6 that the true permutation is a local minimum of the non-convex 

formulation for a wide range of flipping probabilities (p ≤ 0.3), implying that in this range of 

p, G1 and G2 share significant common structure. Across all values of p < 0.5, FAQ:P* 

outperforms all other algorithms considered (with FAQ:D* being second best across this 

range). This echoes the results of Sections (4.1)–(4.3), and suggests an analogue of Theorem 

1 may hold in the power law setting. We are presently investigating this.
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We next evaluate the performance of our algorithms on graphs with bounded maximum 

degree (also called bounded valence graphs). These graphs have been extensively studied in 

the literature, and for bounded valence graphs, the graph isomorphism problem is in P [43]. 

For the experiments in this paper we generate a random graph from the model in [44] with 

maximum degree equal to 4, and vary the graph order from 50 to 350 vertices. Figure 7 

shows the comparison of the different techniques and initializations for these graphs, across 

a range of bit-flipping parameters p ∈ [0, 1].

It can be observed that even for isomorphic graphs (p = 0), all but FAQ:P* fail to perfectly 

recover the true alignment. We did not see this phenomena in the other random graph 

models, and this can be explained as follows. It is a well known fact that convex relaxations 

fail for regular graphs [13], and also that the bounded degree model tends to generate almost 

regular graphs [45]. Therefore, even without flipped edges, the graph matching problem with 

the original graphs is very ill-conditioned for relaxation techniques. Nevertheless, the true 

alignment is a local minimum of the non-convex formulation for a wide range of values of p 
(shown by FAQ:P* performing perfectly over a range of p in Figure 7). We again note that 

FAQ:D* outperforms Pc, PATH and GLAG across all graph sizes and bit-flip parameters p. 

This suggests that a variant of Theorem 1 may also hold for bounded valence graphs as well, 

and we are presently exploring this.

We did not include experiments with any random graph models that are highly regular and 

symmetric (for example, mesh graphs). Symmetry and regularity have two effects on the 

graph matching problem. Firstly, it is well known that Pc ≠ P* for non-isomorphic regular 

graphs (indeed, J is a solution of the convex relaxed graph matching problem). Secondly, the 

symmetry of these graphs means that there are potentially several isomorphisms between a 

graph and its vertex permuted analogue. Hence, any flipped edge could make permutations 

other than P* into the minima of the graph matching problem.

4.5 Directed graphs

All the theory developed above is proven in the undirected graph setting (i.e., A and B are 

assumed symmetric). However, directed graphs are common in numerous applications. 

Figure 8 repeats the analysis of Figure 3 with directed graphs, all other simulation 

parameters being unchanged. The PATH algorithm is not shown in this new figure because it 

is designed for undirected graphs, and its performance for directed graphs is very poor. 

Recall that in Figure 3, i.e., in the undirected setting, FAQ:J performed significantly worse 

than Pc. In Figure 8, i.e., the directed setting, we note that the performance of FAQ:J 
outperforms Pc over a range of ρ ∈ [0.4, 0.7]. As in the undirected case, we again see 

significant performance improvement (over FAQ:J, Pc, and GLAG) when starting FAQ from 

D* (the convex solution). Indeed, we suspect that a directed analogue of Theorem 1 holds, 

which would explain the performance increase achieved by the nonconvex relaxation over 

Pc. Here, we note that the setting for the remainder of the examples considered is the 

undirected graphs setting.
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4.6 Seeded graphs

In some applications it is common to have some a priori information about partial vertex 

correspondences, and seeded graph matching includes these known partial matchings as 

constraints in the optimization (see [46], [47], [14]). However, seeds do more than just 

reducing the number of unknowns in the alignment of the vertices. Even a few seeds can 

dramatically increase performance graph matching performance, and (in the ρ-correlated 

Erdős-Rényi setting) a logarithmic (in n) number of seeds contain enough signal in their 

seed–to–nonseed adjacency structure to a.s. perfectly align two graphs [47]. Also, as shown 

in the deterministic graph setting in [14], very often D* is closer to P*.

In Figure 9, the graphs are generated from the ρ-correlated random Bernoulli model with 

random Λ (entrywise uniform over [0.1, 0.9]). We run the Frank-Wolfe method (modified to 

incorporate the seeds) to solve the convex relaxed graph matching problem, and the method 

in [46], [47] to approximately solve the non-convex relaxation, starting from J, D*, and P*. 

Note that with seeds, perfect matching is achieved even below the theoretical bound on ρ 

provided in Theorem 1 (for ensuring P* is the global minimizer). This provides a potential 

way to improve the theoretical bound on ρ in Theorem 1, and the extension of Theorem 1 for 

graphs with seeds is the subject of future research. With the exception of the nonconvex 

relaxation starting from P*, each of the different FAQ initializations and the convex 

formulation all see significantly improved performance as the number of seeds increases. We 

also observe that the nonconvex relaxation seems to benefit much more from seeds than the 

convex relaxation. Indeed, when comparing the performance with no seeds, the Pc performs 

better than FAQ:J. However, with just five seeds, this behavior is inverted. Also of note, in 

cases when seeding returns the correct permutation, we’ve empirically observed that merely 

initializing the FAQ algorithm with the seeded start, and not enforcing the seeding 

constraint, also yields the correct permutation as its solution (not shown).

Figure 10 shows the running time (to obtain a solution) when starting from D* for the 

nonconvex relaxation, using different numbers of seeds. For a fixed seed level, the running 

time is remarkably stable across ρ when FAQ does not recover the true permutation. On the 

other hand, when FAQ does recover the correct permutation, the algorithm runs significantly 

faster than when it fails to recover the truth. This suggests that, across all seed levels, the 

running time might, by itself, be a good indicator of whether the algorithm succeeded in 

recovering the underlying correspondence or not. Also note that as seeds increase, the 

overall speed of convergence of the algorithm decreases and, unsurprisingly, the correct 

permutation is obtained for lower correlation levels.

4.7 Features

Features are additional information that can be utilized to improve performance in graph 

matching methods, and often these features are manifested as additional vertex 

characteristics besides the connections with other vertices. For instance, in social networks 

we may have have a complete profile of a person in addition to his/her social connections.

We demonstrate the utility of using features with the nonconvex relaxation, the standard 

convex relaxation and the GLAG method, duely modified to include the features into the 
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optimization. Namely, the new objective function to minimize is λF(P) + (1 − λ)trace(CT P), 

where F(P) is the original cost function (−〈AP, PB〉 in the nonconvex setting, 

for the convex relaxation and ∑i,j ‖([AP]i,j, [PB]i,j)‖2 for the GLAG method), the matrix C 
codes the features fitness cost, and the parameter λ balances the trade-off between pure 

graph matching and fit in the features domain. For each of the matching methodologies, the 

optimization is very similar to the original featureless version.

For the experiments, we generate ρ-correlated Bernoulli graphs as before, and in addition we 

generate a Gaussian random vector (zero mean, unit variance) of 5 features for each node of 

one graph, forming a 5 × n matrix of features; we permute that matrix according to P* to 

align new features vectors with the nodes of the second graph. Lastly, additive zero-mean 

Gaussian noise with a range of variance values is added to each feature matrix 

independently. If for each vertex υ ∈ [n] the resulting noisy feature for Gi, i = 1, 2, is , 

then the entries of C are defined to be , for υ, w ∈ [n]. Lastly, we set λ = 

0.5.

Figure 11 shows the behavior of the methods when using features for different levels of 

noise in the feature matrix. Even for highly noisy features (recalling that both feature 

matrices are contaminated with noise), this external information still helps in the graph 

matching problem. For all noise levels, all three methods improve their performance with the 

addition of features, and of course, the improvement is greater when the noise level 

decreases. Note that, as before, FAQ outperforms both Pc and GLAG across all noise levels. 

It is also worth noting that for low noise, FAQ:D* performs comparably to FAQ:P*, which 

we did not observe in the seeded (or unseeded) setting.

Even for modestly errorful features, including these features improves downstream matching 

performance versus the setting without features. This points to the utility of high fidelity 

features in the matching task. Indeed, given that the state-of-the-art graph matching 

algorithms may not achieve the optimal matching for even modestly correlated graphs, the 

use of external information like seeds and features can be critical.

5 Conclusions

In this work we presented theoretical results showing the surprising fact that the indefinite 

relaxation (if solved exactly) obtains the optimal solution to the graph matching problem 

with high probability, under mild conditions. Conversely, we also present the novel result 

that the popular convex relaxation of graph matching almost always fails to find the correct 

(and optimal) permutation. In spite of the apparently negative statements presented here, 

these results have an immediate practical implication: the utility of intelligently initializing 

the indefinite matching algorithm to obtain a good approximate solution of the indefinite 

problem.

The experimental results further emphasize the trade-off between tractability and correctness 

in relaxing the graph matching problem, with real data experiments and simulations in non 

edge-independent random graph models suggesting that our theory could be extended to 

more general random graph settings. Indeed, all of our experiments corroborate that best 
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results are obtained via approximately solving the intractable indefinite problem. 

Additionally, both theory and examples point to the utility of combining the convex and 

indefinite approaches, using the convex to initialize the indefinite.
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Fig. 1. 

For ρ ∈ [0.1, 1], we plot  (red/green) and  (blue/gray). Red/

blue dots correspond to simulations where Pc ≠ P*, and grey/green dots to Pc = P*. Black 

dots correspond to . For each ρ, we ran 100 MC replicates.

Lyzinski et al. Page 27

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Distance from D* to Pc (in blue), to P* (in red), and to a random permutation (in black). For 

each value of ρ, we ran 100 MC replicates.
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Fig. 3. 
Success rate in recovering P*. In gray, FAQ starting at, from left to right, P*, D*, and J; in 

black, Pc; in red, PATH; in blue, GLAG. For each ρ, we ran 100 MC replicates.
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Fig. 4. 
Average run times. In solid gray, FAQ:D* (note that this does not include the time to find 

D*) and FAQ:J; finding Pc (first finding D*) in black; PATH in red; and GLAG in blue. In 

dashed gray, the total time for FAQ:D* (including the time to find D*). Note that the runtime 

of PATH drops precipitously at ρ = 0.6, which corresponds to the performance increase in 

Figure 3
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Fig. 5. 
Value of −〈A′D, DB〉 for D = P* (black) and for the output of FAQ:D* (red/blue indicating 

failure/success in recovering the true permutation). For each ρ, we ran 100 MC replicates.
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Fig. 6. 
Success rate in recovering P* for 150 vertex power law graphs with β = 2 for: In gray, from 

right to left, FAQ:P*, FAQ:D*, and FAQ:J; in black, Pc; in red, PATH; in blue, GLAG. For 

each value of the bit-flip parameter p, we ran 100 MC replicates.

Lyzinski et al. Page 32

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7. 
Success rate in recovering P* for bounded degree graphs (max degree 4). In gray, from right 

to left, FAQ:P*, FAQ:D*, and FAQ:J; in black, Pc; in red, PATH; in blue, GLAG. For each 

probability we ran 100 MC replicates.
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Fig. 8. 
Success rate for directed graphs. We plot Pc (black), the GLAG method (blue), and the 

nonconvex relaxation starting from different points in green, from right to left: FAQ:J, 

FAQ:D*, FAQ:P*.
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Fig. 9. 
Success rate of different methods using seeds. We plot Pc (top left), FAQ:J (top right), 

FAQ:D* (bottom left), and FAQ:P* (bottom right). For each method, the number of seeds 

increases from right to left: 0 (black), 5 (green), 10 (blue) and 15 (red) seeds. Note that more 

seeds increases the success rate across the board.
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Fig. 10. 
Running time for the nonconvex relaxation when starting from D*, for different number of 

seeds. A red “x” indicates the algorithm failed to recover P*, and a black “o” indicates it 

succeeded. In each, the algorithm was run to termination at discovery of a local min.
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Fig. 11. 
Success rate of different methods using features: Pc (in black), GLAG (in blue), FAQ:D* (in 

red), and FAQ:P* (in green). For each method, the noise level (variance of the Gaussian 

random noise) increases from left to right: 0.3, 0.5, and 0.7. In dashed lines, we show the 

success of the same methods without features.
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TABLE 1

Notation

Notation Algorithm used Ref.

F-W algorithm run to convergence [16], [33]

Pc = projecting D* to Π Hungarian algorithm [35]

FAQ:P* FAQ init. at P* [17]

FAQ:D* FAQ init. at D* [17]

FAQ:J FAQ init. at J [17]
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TABLE 2

‖A′P − PB‖F for the P given by each algorithm together with the number of vertices correctly matched (ncorr.) 

in real data experiments

Algorithm KKI-NKI Wiki. C. elegans

Truth ‖A′ P − PB‖F 82892.87 189.35 155.00

ncorr. 70 1381 253

Convex relax. ‖A′ P − PB‖F 104941.16 225.27 153.38

ncorr. 41 97 2

GLAG ‖A′ P − PB‖F 104721.97 219.98 145.53

ncorr. 36 181 4

PATH ‖A′ P − PB‖F 165626.63 252.55 158.60

ncorr. 1 1 1

FAQ:J ‖A′ P − PB‖F 93895.21 205.28 127.55

ncorr. 38 30 1

FAQ:D* ‖A′ P − PB‖F 83642.64 192.11 127.50

ncorr. 63 477 5
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