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A novel way to detect correlations 
on multi-time scales, with temporal 
evolution and for multi-variables
Naiming Yuan1,2, Elena Xoplaki1, Congwen Zhu2 & Juerg Luterbacher1,3

In this paper, two new methods, Temporal evolution of Detrended Cross-Correlation Analysis (TDCCA) 
and Temporal evolution of Detrended Partial-Cross-Correlation Analysis (TDPCCA), are proposed 
by generalizing DCCA and DPCCA. Applying TDCCA/TDPCCA, it is possible to study correlations on 
multi-time scales and over different periods. To illustrate their properties, we used two climatological 
examples: i) Global Sea Level (GSL) versus North Atlantic Oscillation (NAO); and ii) Summer Rainfall 
over Yangtze River (SRYR) versus previous winter Pacific Decadal Oscillation (PDO). We find significant 
correlations between GSL and NAO on time scales of 60 to 140 years, but the correlations are non-
significant between 1865–1875. As for SRYR and PDO, significant correlations are found on time 
scales of 30 to 35 years, but the correlations are more pronounced during the recent 30 years. By 
combining TDCCA/TDPCCA and DCCA/DPCCA, we proposed a new correlation-detection system, 
which compared to traditional methods, can objectively show how two time series are related (on 
which time scale, during which time period). These are important not only for diagnosis of complex 
system, but also for better designs of prediction models. Therefore, the new methods offer new 
opportunities for applications in natural sciences, such as ecology, economy, sociology and other 
research fields.

Detecting cross-correlations between two signals is the most usual way to diagnose and understand a complex 
system. The simplest method is the traditional Pearson Cross-Correlation Analysis, which has been widely 
used in both natural systems such as climate system, ecosystem, etc.1–4, and social systems such as economy or 
finance5,6. In statistics, Pearson Correlation Coefficient (PCC) is one of the most popular statistical measure, and 
is frequently discussed in almost all fields. For example, in climatology, PCC is widely used for dynamical diag-
nosing and climate forecasting7–9. In economics, PCC is applied to establish economical models10,11. However, 
signals obtained in nature are usually affected by many nonlinear processes, and sometimes external forcings12–15. 
Duo to the nonlinearity and nonstationarity, traditional PCC is not in all cases appropriate and it can provide 
erroneous results. Therefore, to better describe the relations between two signals, besides the simple PCC value, 
more detailed information are needed.

In this study, we aim to propose a new way to describe correlations. In order to exclude the effects of 
nonlinear process and external forcing (such as anthropogenic influence on global warming), the way we 
detect correlations should be able to i) provide cross-correlations on different time scales; ii) extract “intrinsic” 
relationships between two considered time series with possible influences of other common-coupled signals 
removed; and iii) show the time evolution of cross-correlations. For the first point i), as discussed in previous 
studies16–19, Detrended Cross-Correlation Analysis (DCCA) may be a solution. By calculating the DCCA coef-
ficient ρDCCA, one receives the cross-correlation levels between two variables on different time scales. This is 
important, especially for variables with typical periods. For instance, when the relations between the Summer 
Rainfall over the Yangtze River (SRYR, see Fig. 1a) and the previous winter sea surface temperature anomalies 
over the Nino3 region (Nino3-SSTA, see Fig. 1b) are studied, non-significant correlations are found between 
them over the period 1951–2012 (PCC =​ 0.19, see Fig. 1b). However, low PCC does not necessarily mean there 
are no relations, as it is well known that the SRYR is teleconnected with the previous winter central-eastern 
sea surface temperature. The reason why non-significant correlations between SRYR and Nino3-SSTA are 
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found may be due to the interference of relationships among different time scales. In other words, when stud-
ying the potential effects of Nino3-SSTA on the SRYR, we may need to focus on the typical time scales of 
Nino3-SSTA, where the potential influences from other time scales may be minimized. In20, by using DCCA, 
the authors studied the relations between SRYR and winter Nino3-SSTA. Significant correlations between 
SRYR and Nino3-SSTA are found on the time scale of about 4–7 years, thus, the winter central-eastern SSTA 
has the main contribution to the variation of SRYR. Therefore, DCCA provides more detailed and reasonable 
information than the PCC-value. Although this consideration is limited to the analysis of only two time series, 
this method still can help to address an improved way for correlation detecting, that is, to discuss correlations 
on multi-time scales.

There are traditional methods such as filter methods (low-pass, high-pass, and band-pass, etc.)21,22, the 
Cross-Spectrum Analysis (CSA)4,23, as well as the Cross Wavelet Transformation method (CWT)24, that are used 
to study correlations on multi-time scales. However, for the filter methods it is necessary to determine the time 
scales of interest first from spectrum analysis, then low-pass, high-pass, or band-pass filtering can be performed. 
For CSA, it requires the data to be stationary with no external trends, which are rare in nature. As for the CWT, 
it works similar as DCCA, but limited to the analysis of only two time series. Regarding the second point ii) 
mentioned in the last paragraph, when two time series are influenced by common external influences, the real 
relationships between them may not be revealed by CWT. Although DCCA is not able to remove the potential 
influences of common-coupled external factors either, as discussed in20, it can be easily extended by combin-
ing partial-correlation technique, as Detrended Partial-Cross-Correlation Analysis (DPCCA). Because of the 
partial-correlation technique, DPCCA is applicable in multi-coupled time series, and the so-called “intrinsic” 
relations between two considered time series can be calculated with potential influences of other coupled sig-
nals removed. For example, no significant relations can be found between SRYR and PDO on the PDO-typical 
time scales when DCCA is applied. However, after removing the effects of Nino3-SSTA (El Niño), significant 
relation between SRYR and PDO is found20. Therefore, DPCCA has advantages in dealing with multi-coupled 
time series.

To study cross-correlations on multi-time scales, one can apply DCCA (ρDCCA) for two time series, and 
DPCCA (ρDPCCA) for multi-coupled signals. However, it is important to note that both DCCA and DPCCA are 
not able to provide information on temporal evolution, which is the third point iii) we wish to address here. 
Temporal evolution of cross-correlation is important because normally complex systems are characterized by 
non-stationarity25–27. Instantaneous correlations over specific time intervals can be different from the correla-
tions obtained over the whole time span. Recent work from climate science shows that, the correlations between 
southern China summer rainfall and equatorial center Pacific SST anomalies can be opposite in two time periods 
(1951–1971 and 1978–1998)28, which as a result, the correlations calculated over the whole time span may cannot 
provide useful information. To illustrate this issue more clearly, we applied DCCA to two pairs of artificially gen-
erated time series: {x1, x2} and {x1, x3}. The three time series are designed as following,

Figure 1.  Three time series for illustration. (a) Summer Rainfall anomalies over Yangtze River (SRYR) during 
the period of 1951–2012, (b) previous winter-time Sea Surface Temperature anomalies over the Nino3 region 
(Nino3-SSTA), (c) previous winter-time PDO index from 1951–2012.
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where xA(i), xB(i) are two periodical signals with different periods (xA(i) : 1000; xB(i) : 100), while ε(i) represents 
white noise. All the signals have length of 10000. The three time series we use for DCCA are generated accord-
ing to the different combination shown above. The DCCA coefficients ρDCCA for pair {x1, x2} and pair {x1, x3} are 
shown in Fig. 2a,c, respectively. In Fig. 2a, since both {x1} and {x2} have the component of {xB}, high correlation 
level on time scale of 100 are found, which confirms the ability of DCCA in detecting correlation on multi-time 
scales. However, in Fig. 2c, the high correlation on time scale of 100 disappeared. This is because {x3} has only 
the component of {xB} for i =​ 1 to 5000. For the second half, {x3} is generated by combining negative {xB}. When 
calculating correlations over the whole length, the correlation signal will be offset. In this case, temporal evolution 
of cross-correlation is needed. Figure 2b,d show the detailed correlations (on time scale of 100) over different time 
intervals. For the pair {x1, x3}, there are high positive correlations over the first half (i =​ 1 to 5000), while high neg-
ative correlations over the second half (i =​ 5001 to 10000). Therefore, low correlations over the whole time span 
(Fig. 2c) do not necessarily mean there is no relations between the considered time series (Fig. 2d).

In this study, we aim to further generalize DCCA and DPCCA to time dimension, as Temporal evolution of 
DCCA (TDCCA) and Temporal evolution of DPCCA (TDPCCA), and finally establish a new system for corre-
lation analysis. Two climatological examples are used to illustrate the ability of the new methods in providing 
temporal evolution of cross-correlation. One example is for the analysis of only two time series, we apply DCCA 
with information of temporal evolution included (TDCCA). The other one is for the analysis of multi-coupled 
time series, where the ability of TDPCCA are shown. With these methods, correlations on different time scales 
and over different time periods can be calculated, which are useful information for further studies of complex 
systems. In the end of this paper, detailed introduction of the new methods is made (see the “Method” section).

Results
Temporal evolution of DCCA (TDCCA).  To illustrate the ability of TDCCA, we will discuss the relation-
ships between the annual Global Sea Level record (GSL, 1700–2001)29 and a Reconstruction of the winter North 
Atlantic Oscillation (RNAO, 1700–2001)30,31. Both records have been studied in32 by Multi-Scale Dynamical 
Analysis (MSDA). In MSDA, one can calculate the oscillation patterns of different records through their accelera-
tions on different time scales over different time periods. In32, it is found that the GSL and RNAO have negatively 
correlated oscillation patterns on time scales of 30~110 years, which indicates the global sea level may decrease 
when winter NAO is positive. However, the Pearson cross-correlation coefficient over the full period is around 
0 (PCC =​ −​0.003). Therefore, it is necessary to check how the two time series are connected on different time 

Figure 2.  An illustration of the importance in studying temporal evolution of correlation. Three artificial 
time series are generated according to equation (1). (a,c) are the DCCA results for pair {x1, x2} and pair {x1, x3}, 
respectively. As expected, for pair {x1, x2}, significant correlations are found on time scale of 100, while for pair 
{x1, x3}, no correlations are found over all time scales. (b,d) show the temporal evolution of the correlation on 
time scale of 100, for pair {x1, x2} and pair {x1, x3}, respectively. One can see the reason why no correlations are 
found in (c) is, that there are opposite correlations over time for the pair {x1, x3} on time scale of 100.
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scales. Calculating the DCCA cross-correlation coefficients ρDCCA between GSL and RNAO over the 1700 to 2001 
period shows significantly negative cross-correlations on time scales between 60 and 140 years (Fig. 3a). To con-
firm this result, we also applied the same analysis to GSL and white noise (Fig. 3b), as well as to RNAO and white 
noise (Fig. 3c). The Pearson Correlation Coefficients are around zero for both cases, and there are no typical time 
scales where significant correlations can be found. Therefore, we have confidence that there are indeed connec-
tions between GSL and RNAO on time scales of 60 to 140 years. This finding is in agreement with the previous 
study32. However, compared with MSDA which calculates “accelerations” for each record seperately, DCCA is 
able to calculate the cross-correlation levels of two records directly on different time scales (see equation (7) in 
the “Method” section, also refer to the explanations in19), therefore, it is more straightforward for the detection 
of correlations.

However, we would like to stress that the results shown in Fig. 3 are basically “averaged” correlations over 
the whole time span (1700–2001). Considering the non-stationarity of the climate system, instantaneous 

Figure 3.  DCCA cross-correlation coefficients between Global Sea Level (GSL) and Reconstructed North 
Atlantic Oscillation (RNAO). The black curves are the DCCA results, the red dashed line are the threshold of 
95% confidence intervals calculated from Monte-Carlo tests, while the blue dashed line represents the Pearson’s 
correlation coefficient. (a) shows the results for GSL and winter RNAO covering the period 1700–2001. For 
comparison, (b) shows the results for GSL and White Noise (WN), and (c) the results for RNAO and WN.

Figure 4.  Temporal evolution of correlations between GSL and RNAO, on different time scales. Left hand 
side (LHS) is the TDCCA result for GSL and RNAO. Right hand side (RHS) is the DCCA results (the same as 
Fig. 3a). On time scales of 60 to 140 years, significant correlations are found. But over time, a “halfway” break off 
is visible between the years from 1865 to 1875, indicating unstable negative correlations over time.
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correlations over specific time intervals may vary over time. In this study, we generalized DCCA to time dimen-
sion, as TDCCA, and the results are shown in Fig. 4a. As expected, on time scale of 60–140 years, there is a 
negative-correlation band. However, the correlations are not stationary over time. A dividing zone around the 
year from 1865 to 1875 can be found, when very low (or no) correlations are found. The true reason for the “half-
way” break off of the negative-coorelation band is not clear. It may be due to many reasons such as the changes 
of data quality, or a change of variability in the GSL records before and after the grey dividing line (1875), see 
Fig. 5a. Meanwhile, we may also attribute the “halfway” break off to the modulatory effects of some unknown 
background factors, which may have large cycles and the “halfway” break off we found in Fig. 4 may simply be a 
part of the cycle. From this example, we emphasize the importance of determining the temporal evolution when 
studying cross-correlations, and further illustrate the ability of TDCCA here. With the information provided by 
TDCCA, a more detailed diagnosis on the system will be achieved, which is important to better understand the 
whole system.

Temporal evolution of DPCCA (TDPCCA).  To address the potential reasons for the “halfway” break off 
of the negative correlations between GSL and winter NAO, we mentioned that it may be due to a third unknown 

Figure 5.  Global Sea Level (GSL) records and the Reconstructed winter North Atlantic Oscillation (RNAO) 
index. (a) GSL, (b) RNAO. The grey line indicates the year of 1875.

Figure 6.  Temporal evolution of the correlations between SRYR and winter PDO, on different time scales. 
On the left hand side (LHS) is the TDPCCA result for SRYR and PDO, where the possible effects of Nino3-SSTA 
have been removed. Same as Fig. 5, on the right hand side (RHS) is the DPCCA results. One can see that after 
the end of 1970s, there are more significant correlations between the summer rainfall over the middle-lower 
reaches of Yangtze River and previous winter-time PDO index.
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factor which plays a role as the background and modulates the correlation pattern. To address this issue, we can 
combine DCCA with partial cross-correlation analysis, proposed as DPCCA20. Here in this study, we further 
generalize DPCCA to time dimension, as TDPCCA, and provide not only “intrinsic” correlations of different 
time scales, but also correlation evolutions over time. To illustrate the ability of TDPCCA, we revisit the rela-
tionship between the Summer Rainfall over Yangtze River (SRYR) and the previous winter-time Pacific Decadal 
Oscillation index (PDO) covering the period 1951–2012. As discussed in20, after the influence of Nino3-SSTA 
removed, the DCCA coefficient ρDCCA will be modified into DPCCA coefficient ρDPCCA (see Fig. 6, right hand 
side, RHS), and significant correlations can be found on time scales of 30–35 years. However, the relationships 
between SRYR and PDO may be not stationary. Thus, the “intrinsic” correlations obtained from DPCCA may 
not be able to reflect the true relations between them over the full time period. In fact, there are many studies 
showing that the climate regime has been changed around the end of 1970s33,34. Also the summer rainfall over 
the Yangtze River was relatively low before 1979 followed by higher precipitation sums afterwards35. This regime 
shift appeared accompanying the global scale interdecadal shift, therefore it has been attributed to several possi-
ble sources, including the weakening of east Asian summer monsoon34,36, the enlarged, intensified and extended 
southwestward Subtropical Northwestern Pacific High (SNPH)35, the changes of sea surface temperatures (SSTs) 
in the Indian Ocean and Atlantic Ocean37–39, and even the changes of snow cover over Tibetan Plateau40. Among 
all the possible sources, the Pacific Decadal Oscillation (PDO)41,42, is considered as a major contributor of the 
regime shift in the 1970s. From 1976–1977, PDO changed to a “warm” phase. The concurrent changes in sea 
surface temperature, sea level pressure, and land precipitation, etc., may thus be related to the changes of PDO. 
By using TDPCCA we revealed how the cross-correlations between SRYR and PDO vary over time. Although on 
time scales of 30–35 years there are correlations with the same sign, a clear division still can be found at the end of 
1970s (Fig. 6, left panel). Before the late 1970s, there are negative cross-correlations between the two considered 
time series, but not as strong as after 1980. Thus, there are significant correlations between SRYR and PDO on 
time scale of 30–35 years, and the correlations are higher during the past 30 years. The change in correlations 
between SRYR and PDO might be related to the regime shift discussed above, which shows the complexity of 
the climate system, and further emphasized the necessity of detecting correlations on multi-time scales, with 
temporal evolution, and for multi-variables. With all these information, better diagnose of the mechanisms and 
even prediction models may become possible. For instance, when establishing a model to predict the SRYR, the 
previous winter-time PDO index can act as an predictor. From our results, it is better to only use PDO index from 
the past 30 years, when the correlations are more significant.

Discussion
The use of TDCCA and TDPCCA can help to detect correlations i) among multi-time series, ii) on different time 
scales, and iii) further over different time period. However, open issues include the linear assumptions of partial 
cross-correlation analysis20, as well as testing for significance, should also be paid special attention. In this section, 
we will discuss how to test the significance and finally summarize the steps of how to use the new methods to 
detect correlations.

In DCCA and DPCCA, we determine the threshold of 95% significance by applying Monte-Carlo test. As 
shown in Figs 5 and 6 (red dashed lines, RHS), by shuffling the data and repeating DCCA/DPCCA for 10,000 
times, the threshold of 95% significance on each time scale can be calculated. As for TDCCA and TDPCCA, it is 
challenging, especially when estimating significance on small time scales. For instance, we apply TDCCA to study 
the relationships between RNAO and randomly forced ARFIMA data (ARFIMA, autoregressive fractionally 

Figure 7.  Temporal evolution of the correlations between winter RNAO and ARFIMA data, on different 
time scales. On the left hand side (LHS) is the TDCCA result for RNAO and ARFIMA data, while on the right 
hand side (RHS) is the DCCA results. As one can see, although there should be no correlations between RNAO 
and ARFIMA data, there are still some moments (especially on small time scales) when very big correlations by 
chance can be found in the TDCCA.



www.nature.com/scientificreports/

7Scientific Reports | 6:27707 | DOI: 10.1038/srep27707

integrated moving average, which is used to model the temporal persistence of GSL43). Since the ARFIMA data 
is generated from random series (see “Method” section), unlike the TDCCA result between RNAO and GSL (see 
Fig. 4), there should be no correlations between RNAO and the ARFIMA data. However, as shown in Fig. 7, on 
small time scales (e.g., time scale smaller than 20 years), positive (negative) cross-correlations can be very high 
(low) during specific times. We believe the high (low) positive (negative) correlations are originated by chance, as 
the shorter time series we analyze, the higher uncertainties the calculated correlations have. In our methods, since 
we aim to study correlations among multi-time scales, the time series of interest will inevitably be divided into 
sliding windows of different size (time scale s, see the “Method” section). As a result, there is a risk of increased 
uncertainty in time window of small size. When applying TDCCA/TDPCCA, one may easily ask whether the 
cross-correlations found on small time scales indeed come from dynamical relations, or only from statistical 
uncertainties. To answer this question, we emphasize that although there may be “strong correlations” calculated 
from random noises, their signs normally alter from positive (negative) to negative (positive) frequently and 
abruptly, as shown in Fig. 7. However, in the cases with physical meanings, the real correlations should be able to 
maintain the sign unchanged for a period at least longer than the corresponding time scale s, as shown in Figs 4 
and 6. Therefore, to perform significance test in TDCCA and TDPCCA, we need to implement another criterion. 
That is, the period when the correlation coefficients have the same sign must be longer than the corresponding 
time scale s. Below, we summarize the necessary steps to apply the new methods for detecting correlations:

1.	 Apply TDCCA/TDPCCA to the two time series of interest, to check the temporal evolution of correlation on 
different time scales. For a given time scale s, if there is a period when the sign of correlations is unchanged 
longer than s, a further detailed DCCA/DPCCA analysis specially on this time period is suggested.

2.	 Apply DCCA/DPCCA to the time period as suggested in i). If Monte-Carlo testing returns significant 
cross-correlation, the two time series are considered as significantly correlated on this typical time scale and 
over this specific time period.

3.	 Finally we determine on which time scales and during which time period the two time series are significantly 
correlated.

Conclusion
In this work, we generalized DCCA and DPCCA to time dimension, and proposed two new methods, TDCCA 
and TDPCCA, for correlation detecting. When the correlation of only two time series needs to be studied, we 
can apply TDCCA (see the first example). While when there are multi-coupled time series (more than two time 
series) being studied, TDPCCA is needed (see the second example). With these two methods, we can not only 
study the correlations of two time series on multi-time scales, but also check the changes of the correlations over 
time. Therefore, the new methods are useful and can provide more detailed correlation information.

Regarding the significance of the results from TDCCA and TDPCCA, we find besides using Monte-Carlo 
simulation, it is necessary to check whether the period when the correlation coefficients have the same sign is 
longer than the corresponding time scale s, or not. Following this criterion, we finally combined DCCA/DPCCA, 
TDCCA/TDPCCA together as a new correlation detection system, and summarized the steps of how to use the 
new methods to detect correlation.

The obvious advancements and improvements of the proposed methods compared to other methods such as 
the filter methods, the Cross-Spectrum Analysis (CSA), and the Cross Wavelet Transformation method (CWT) 
is, that they are able to i) study the cross-correlations of two time series on different time scales objectively; ii) 
identify the temporal evolution (non-staionarity) of the cross-correlations; and iii) remove the potential com-
mon influences from other factors. Therefore, the new correlation-detection system can be used to objectively 
determine on which time scale, during which time period, two time series of interest are significantly correlated. 
This ability is especially important in the research of complex systems, as the effects of nonstationarity and non-
linearity can to some extent be removed. Based on the information provided by the new methods, we can make 
more detailed diagnosis on the unknown dynamics of complex system, and also design better models, such as the 
hierarchical model, where factors of different time scales can be better organized.

In this study, we used two climatological examples to illustrate the advantages of the new correlation detection 
system. We suggest, that those methods offer new opportunities and possibilities for applications in other natural 
sciences with long data series, ecology, economy, sociology and other research fields where nonlinear interactions 
of multi-factors exist. By studying how the factors are correlated with each other (on which time scale, during 
which time period), we may have better chance to interpret the outputs of the complex system, and provide more 
accurate estimations for future conditions. Therefore, the new methods proposed in this study provide new per-
spectives in the detection of correlations in many scientific fields.

Data and Methods
Data.  In this study, we performed two case studies. In the first case, the Reconstructed North Atlantic 
Oscillation (RNAO) index are downloaded from the National Oceanic & Atmospheric Administration (NOAA, 
http://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/RNAO/), and the Global sea level (GSL) data are down-
loaded from Permanent Service for Mean Sea Level (PSMSL, http://www.psmsl.org/products/reconstructions/
jevrejevaetal2008.php). In the second case, to compare with the results reported in20, the Nino3 Sea Surface 
Temperature Anomaly (Nino3-SSTA) and the Pacific Decadal Oscillation (PDO) index are downloaded from the 
National Oceanic & Atmospheric Administration (NOAA, http://www.esrl.noaa.gov/psd/data/climateindices/), 
and the Summer Rainfall over the middle-lower reaches of the Yangtze River (SRYR) are calculated based on 
the monthly observations of 17 stations. The locations of the 17 stations are available in20. The data ranges from 

http://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/RNAO/
http://www.psmsl.org/products/reconstructions/jevrejevaetal2008.php
http://www.psmsl.org/products/reconstructions/jevrejevaetal2008.php
http://www.esrl.noaa.gov/psd/data/climateindices/
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1951 to 2012, but for Nino3-SSTA and PDO, we only consider the previous winter-time values (averaged over 
December, January, and February).

Methods
Introduction of DCCA/DPCCA.  In this section, we will first introduce the methods DCCA/DPCCA.

Suppose we have m time series x{ }t
1 , x{ }t

2 , x{ }t
3 , ···, x{ }t

m , where t =​ 1, 2, 3, ···, N, represents the time points in 
each series. Each time series can be considered as a random walk, and we can define the so called profile as:
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For climatic records, normally the polynomial fit of second order (n =​ 2) is enough. Accordingly, the mini-
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be n +​ 2 <​ s <​ N, where n is the order of the polynomial fit. To study the correlations on different time scales 
without getting a temporal evolution information, we can splice the detrended residual series from each boxes 
into one time series,

= −
∼

− + + − +⁎Y P P , (4)i s k i
j

k
j

k i
j

( 1)( 1) 1 ,

therefore, for each time series x{ }t
j , we have one detrended residual series, Yl

j, l =​ 1, 2, 3, ···, (N −​ s)(s +​ 1). By cal-
culating the covariance between any two residuals,

≡
∑
− +

=
− +

⁎ ⁎

⁎ ⁎

F s
Y Y

N s s
( )

( )( 1)
,

(5)j j
l
N s s

l
j

l
j

,
2 1

( ) ( 1)

1 2

1 2

where j1, j2 =​ 1, 2, 3, ···, m, we can obtain a covariance matrix,

=







…

…

…




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.
  

F

F s F s F s

F s F s F s
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m
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1,1
2

1,2
2

1,
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2,1
2

2,2
2

2,
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,1
2
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2

,
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Obviously, according to17, the cross-correlation levels between any two time series, x{ }t
j1  and x{ }t

j2 , can be 
estimated as,

ρ ≡
⋅

s
F s

F s F s
( )

( )

( ) ( )
,

(7)
j j

j j

j j j j
,

,
2

, ,1 2

1 2

1 1 2 2

and a coefficients matrix can further be obtained as,

ρ

ρ ρ

ρ ρ

ρ ρ

=
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…

…

…


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s s
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s s
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1 ( ) ( )
( ) 1 ( )

( ) ( ) 1 (8)

m

m

m m

1,2 1,

2,1 2,
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Where ρ s( )j j,1 2
 (j1 ≠​ j2) ranges from −​1 to +​1, and represents the level of cross-correlation on time scales of s. 

This is the so called DCCA cross-correlation coefficients ρDCCA.
Since ρ s( )j j,1 2

 only shows the relations between time series x{ }t
j1  and x{ }t

j2 . It may provide spurious correlation 
information if the two time series are both correlated with other signals. Therefore, to exclude the possible influ-
ence of other time series, one need to further combine the partial-correlation technique with the calculations 
above, as following,
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ρ= =


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one first calculate the inverse matrix of ρ(s). For any two time series x{ }t
j1  and x{ }t

j2 , the partial-cross-correlation 
level can thus be determined as,

ρ =
−

⋅
.j j s

C s

C s C s
( , ; )

( )

( ) ( ) (10)
DPCCA

j j

j j j j
1 2

,

, ,

1 2

1 1 2 2

where the coefficients ρDPCCA(j1, j2; s) can be used to characterize the “intrinsic” relations between the two time 
series, with possible influences of other time series removed. By changing s, similar to the DCCA cross-correlation 
coefficient ρDCCA, we can further estimate the partial cross-correlation levels on different time scales. This, is the so 
called DPCCA cross-correlation coefficient ρDPCCA.

Introduction of TDCCA/TDPCCA.  If the temporal evolution of the correlation is of interest, we need to 
study the detrended residual series Yi k

j
,  on different time windows (boxes). For a given time scale s, the detrended 

residual series can point to time points as following,


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Then for different time series x{ }t
j , we can get a new matrix, where the horizontal direction represents the 

temporal evolution, and the vertical direction shows the different time series,
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According to equations (5) and (7), one can calculate the cross-correlation coefficients between each pair of 
time series ( x{ }t

j1  and x{ }t
j2 ) for different time points, as shown below,

ρ ρ ρ ρ= … … .j j s t s s s, ; ;( ) [ ( ), ( ), , ( ), ] (13)t
j j

t
j j

t
j j

1 2
, , ,

i1
1 2

2
1 2 1 2

By varying the time scale s, one can obtain the cross-correlation information between x{ }t
j1  and x{ }t

j2  on dif-
ferent time scales and for different time points (Fig. 4). This, is the so called TDCCA, which is generalized from 
DCCA.

As for TDPCCA, we need to combine the partial-correlation technique with TDCCA by using equations (9) 
and (10). To do this, we can simply focusing on each time point, for example, ti. From TDCCA, one can eas-
ily obtain a correlation matrix on time point ti, which is quite similar to the matrix obtained from DCCA, see 
equation (8),

ρ

ρ ρ

ρ ρ

ρ ρ
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According to equation (9), it will be easy to calculate the inverse matrix of ρ(s; ti) at time point ti, as shown 
below,
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For any two time series x{ }t
j1  and x{ }t

j2 , the partial-cross-correlation level at time point ti then can be deter-
mined as,

ρ =
−

⋅
.j j s t

C s

C s C s
( , ; ; )

( )

( ) ( ) (16)
TDPCCA i

t
j j

t
j j

t
j j1 2

,

, ,
i

i i

1 2

1 1 2 2

By changing the time point ti and the time scale s, one can then obtain the so called “intrinsic” 
cross-correlations between two time series on different time scales, and for different time points. As shown in 
Fig. 6, we name this results “temporal evolution of cross-correlations”, the so called TDPCCA.

DCCA/DPCCA, TDCCA/TDPCCA together can be considered as a new system for correlation detecting. 
With this new system, one can tell on which time scale, in which time period, the two considered time series 
are significantly correlated. To apply this system, we suggest to follow the steps given in the “Conclusion and 
Discussion” section, where one needs to first use TDCCA/TDPCCA to check on which time scale s, during which 
time period, the sign of correlations for the two time series of interest can keep unchanged for a long time (longer 
than the time scale s). Then by applying DCCA/DPCCA to the corresponding time period, with the Monte-Carlo 
test, we can confirm whether the two time series are significantly correlated on this typical time scale, and over 
this specific time period. Accordingly, we could finally determine the correlation details.

ARFIMA model.  In this study, we applied the autoregressive fractionaly integrated moving average model 
(ARFIMA) to model long-term persistent data, as following43,

∑ ρ ν ν η= − +
ν=

∞
x t a x t t( ) ( ; ) ( ) ( ),

(17)1

where η(t) denotes an independent and identically distributed (i.i.d) Gaussian noise, a(ρ; ν) is statistical weights 
defined by43

ρ ν ρ ν ρ
ρ ν

≡
Γ −

Γ − Γ +
a( ; ) ( )

(1 ) (1 )
,

(18)

and Γ​(ν) denotes the Gamma function. In this model, ρ is a free parameter ranging from 0 to 0.5, which deter-
mines how strong long-term persistence the simulated time series will have. In this study, we modeled the persis-
tence properties of GSL by setting ρ =​ 0.444, and generated artificial data for the calculation of Fig. 7.
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