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Senescence is defined as a stable cell growth arrest.
Oncogene-induced senescence (OIS) occurs in normal primary
human cells after activation of an oncogene in the absence of
other cooperating oncogenic stimuli. OIS is therefore
considered a bona fide tumor suppression mechanism in vivo.
Indeed, overcoming OIS-associated stable cell growth arrest
can lead to tumorigenesis. Although cells that have undergone
OIS do not replicate their DNA, they remain metabolically
active. A number of recent studies report significant changes in
cellular metabolism during OIS, including alterations in
nucleotide, glucose, and mitochondrial metabolism and
autophagy. These alterations may be necessary for stable
senescence-associated cell growth arrest, and overcoming
these shifts in metabolism may lead to tumorigenesis. This
review highlights what is currently known about alterations in
cellular metabolism during OIS and the implication of OIS-
associated metabolic changes in cellular transformation and
the development of cancer therapeutic strategies.

Introduction

Senescence
Senescence was first described in 1961 by Leonard Hayflick

and Paul Moorhead while working at The Wistar Institute in

Philadelphia.1 Specifically, these scientists found that normal
cells in culture could only double a limited number of times, after
which the cells would exit the cell cycle (termed “senescence”). In
the decades since this discovery, a number of other stimuli have
been shown to induce senescence, including oncogene activation,
DNA damage, oxidative damage, and certain chemotherapeutic
agents.2 Although the cells do not continue to replicate their
DNA, it is well appreciated that senescent cells remain metaboli-
cally active, and that these metabolic changes play a role in both
senescence-associated cell growth arrest and human disease.

Oncogene-induced senescence
Oncogene-induced senescence (OIS) occurs when an oncogene

(such as RAS, BRAF, MYC, etc.) becomes activated in a normal
diploid cell.3 This leads to a paradoxical stable cell cycle exit,
which arrests cell growth.4 Therefore, OIS is considered a bona
fide tumor suppressor mechanism in vivo.4,5 For instance, benign
nevi, which are often characterized by mutations in BRAF and
NRAS, have been shown to be senescent lesions.4

OIS is characterized by a number of phenotypic and molecu-
lar alterations. Phenotypically, cells that have undergone OIS
exhibit a large, flat morphology and are positive for increased
b-galactosidase activity (termed senescence-associated b-galacto-
sidase [SA-b-Gal]).6 Additionally, OIS is often accompanied by
accumulation of DNA damage, in particular DNA double strand
breaks, and a robust DNA damage response.7-10 This damage is
largely due to the aberrant DNA replication observed during
OIS.9,11 Further, OIS is characterized by upregulation of the
p53/p21 and pRb/p16 pathways,12 which both play a role in
inhibition of cell cycle progression. Many recent reports demon-
strate that cells undergoing OIS secrete a number of inflamma-
tory mediators, including cytokines and chemokines, termed the
senescence-associated secretory phenotype (SASP).13 The SASP
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is thought to play a role in both the establishment and mainte-
nance of the senescence-associated cell growth arrest.14 Taken
together, cells undergoing OIS activate a number of cellular sig-
naling pathways to ensure a stable cell growth arrest.

Although senescent cells do not replicate their DNA, they remain
metabolically active.2,15 It is now known that a number of changes
in cellular metabolism occur during OIS.16 This review will focus
on the changes in cellular metabolism that accompany OIS, includ-
ing changes in nucleotide, glucose, mitochondrial, and lipidmetabo-
lism and autophagy.Wewill also discuss how these pathwaysmay be
circumvented during transformation and tumorigenesis.

Metabolic Changes During OIS

Nucleotide metabolism is decreased during OIS
Deoxyribonucleotide triphosphates (dNTPs) are necessary for

both nuclear and mitochondrial DNA replication and repair.17,18

Alterations in dNTP levels are known to play a pathogenic role in
a number of human diseases, including cancer.9,11 dNTPs can be
synthesized through the de novo pathway or the salvage pathway.19

The rate-limiting step in the synthesis of dNTPs during the de
novo pathway is reduction of ribonucleoside di- or tri- phosphates
(NDPs/NTPs) to deoxyribonucleotide di- or tri- phosphates
(dNDPs/dNTPS) by ribonucleotide reductase (RNR).17,18 RNR
is a tetrameric complex comprised of 2 large catalytic subunits
(R1: ribonucleotide reductase M1 [RRM1]) and 2 small regula-
tory subunits (R2: ribonucleotide reductase M2 [RRM2] or
RRM2B/p53R2). Although RRM1 is expressed during all phases
of the cell cycle, RRM2 and p53R2 are cell-cycle regulated.20

RRM2 is expressed during S phase, when dNTPs are needed for
DNA replication,20 whereas p53R2 is expressed during G0/G1
and is important for DNA repair and mitochondrial DNA syn-
thesis.21 Changes in the expression or activity of RNR can there-
fore lead to altered DNA synthesis and repair.

Our group and others have shown that the levels of all 4 dNTPs
are significantly decreased during OIS.9,11,22 We found that this is
specifically due to a decrease in expression of RRM2 (Fig. 1), but
not RRM1 or p53R2.9 Interestingly, the decrease in dNTP levels
via suppression of RRM2 is a driver, not a consequence, of the cell
cycle exit.9 Increasing dNTP levels by ectopic expression of RRM2
or addition of exogenous nucleosides in oncogene-expressing normal
diploid cells is able to overcome the aberrant DNA replication,
DNA damage accumulation, and senescence-associated stable cell
growth arrest induced by oncogenic RAS or BRAF.9,22 Additionally,
decreasing nucleotide metabolism using short hairpin RNA-medi-
ated specific knockdown of RRM2 expression can induce the senes-
cence-associated stable cell growth arrest via aberrant DNA
replication and DNA damage accumulation.9 These results demon-
strate that nucleotide metabolism is decreased during OIS and is a
key driver of the OIS phenotype.

We recently reported that RRM2, and therefore nucleotide
metabolism, is decreased in human benign nevi with mutations
in BRAF or NRAS.9 Decreased RRM2 expression was signifi-
cantly correlated with increased p16 expression, suggesting that
these cells have undergone OIS. Additionally, melanoma cell

lines and primary melanoma samples with mutations in BRAF or
NRAS display a marked increase in RRM2 expression. This sug-
gests that overcoming the suppression of nucleotide metabolism
that occurs during OIS may allow cells to re-enter the cell cycle,
gain additional mutagenic hits, and become transformed. Indeed
addition of exogenous nucleosides or ectopic RRM2 could over-
come full senescence induced by RAS.9 Additionally, supraphy-
siological levels of RRM2 or dNTPs can lead to DNA damage
and genomic instability,9,23 which is a hallmark of cancer
cells.24,25 RRM2 is transcriptionally regulated by E2F1
(Fig. 1).9,26,27 E2F1 is negatively regulated by pRb (Fig. 1),28,29

which is an important effector of the senescence phenotype.12 In
some contexts, loss of pRb can suppress the OIS phenotype.12

When pRb is lost, E2F1 is no longer repressed and can induce
transcription of a number of genes that regulate metabolism,
including RRM2.30 Additionally, loss of p53 can suppress OIS
and can overcome OIS in cells with low p16 expression.10,31,32

Interestingly, a repressive E2F, E2F7, is a p53 target gene.33

E2F7 cooperates with pRb to promote senescence, thus coupling
the p53 and pRb pathways. We have previously shown that
E2F7 replaces E2F1 on the RRM2 promoter during OIS to sup-
press RRM2 transcription (Fig. 1).9 This suggests that p53 and
pRb act in concert to suppress nucleotide metabolism during
OIS, and loss of these tumor suppressors may overcome OIS due
to an increase in nucleotide metabolism, thereby leading to can-
cer formation.

Glucose metabolism is altered during OIS
Glucose is one of the main cellular nutrients and is used in a

variety of cellular metabolic processes such as the pentose phos-
phate pathway (PPP) and the tricarboxylic acid (TCA) cycle.34,35

Glucose metabolites are necessary for nucleotide, amino acid,
and lipid biogenesis. Under normal conditions, cells take up glu-
cose through glucose transporters. Intracellular glucose is then
metabolized during a process called glycolysis, which has an end
product of pyruvate and produces 2 ATP molecules. The pyru-
vate can then be further metabolized. In normal cells under
anaerobic conditions, pyruvate is generally metabolized into lac-
tate (fermentation), during which reduced nicotinamide adenine
dinucleotide (NADC) is produced. This NADC is important
for cells to continue glycolysis. Under aerobic conditions,
pyruvate dehydrogenase (PDH) metabolizes pyruvate into Acetyl
Co-A to be further used in the TCA cycle and oxidative phos-
phorylation to produce 36 ATP molecules.

Cancer cells preferentially use glycolysis and subsequent fer-
mentation to produce ATP even under aerobic conditions.24,34,36

First observed by Otto Warburg in 1924,37 this is now known as
the Warburg effect. Although glycolysis is a much less efficient
way of producing ATP, cancer cells have a high demand for bio-
mass to continue proliferation.36 To keep up with both the bio-
energetic and biomass needs of a highly proliferative state, tumor
cells increase their glucose uptake and metabolism through a vari-
ety of mechanisms, including increased expression of glucose
transporters and glycolytic enzymes.34,35 This allows for the high
rate of growth and proliferation that is a hallmark of cancer
cells.24
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A number of recent studies have indicated that glucose
metabolism is altered during OIS but with conflicting find-
ings. Some studies have indicated an increase in glucose
uptake during OIS.38-40 However, a number of other studies
have observed either no change or a significant decrease in
glucose uptake.41-43 The basis for the discrepancy among
these studies remains to be determined, although it may be
due to differences in cell type, oncogenes, or timing. Regard-
less, all of these studies have shown changes in glucose
metabolism when cells undergo OIS.

Two reports have demonstrated that cells undergoing OIS
have increased pyruvate levels,40,42 demonstrating an increase in

glycolysis. This is most likely due to increased expression of a
number of enzymes involved in pyruvate synthesis, such as pyru-
vate kinase (PKM2),40 and pyruvate metabolism, including the
gatekeeper enzyme pyruvate dehydrogenase (PDH) (Fig. 1).42,43

Because PDH expression is increased, the pyruvate that is pro-
duced during glycolysis is shunted into the TCA cycle, thereby
decreasing shunting into the fermentation arm that leads to lac-
tate production. Taken together, these studies reveal an overall
shift in glucose metabolism in cells undergoing OIS toward the
mitochondrial TCA cycle and away from fermentation and the
Warburg effect. This is consistent with the fact that OIS is a
tumor suppression mechanism.

Figure 1. Alterations in metabolic pathways during oncogene-induced senescence. Glucose enters the cell through glucose transporters. p53 inhibits
glucose uptake via negative regulation of glucose transporters.45 During glycolysis, glucose is metabolized into pyruvate. One glycolytic enzyme, PKM2,
is significantly upregulated during OIS.40 Additionally, pyruvate levels are higher in cells that have undergone OIS.40 The pyruvate produced by metabo-
lism of glucose can be shunted into multiple pathways including fermentation, which leads to lactate production, or into the TCA cycle after further proc-
essing by PDH. PDH and its positive regulator PDP2 are upregulated during OIS, whereas the negative regulator of PDH (PDK1) is downregulated,42,43

possibly in part through inhibition mediated by p53.53 This suggests that pyruvate is preferentially shunted into the TCA cycle and away from fermenta-
tion. Levels of TCA cycle metabolites are increased during OIS, as are a number of TCA cycle enzymes, including SDHA and MDH1/2.43 Oxidative phos-
phorylation is also increased during OIS through increased expression of all complexes in the electron transport chain.43 p53 and pRb also positively
regulate oxidative phosphorylation.30,53,54 Nucleotide metabolism is decreased in cells that have undergone OIS as a result of suppression of E2F1-medi-
ated transcription of RRM2 and increased repression by the p53 target E2F7.9 Free fatty acid levels are increased in cells undergoing OIS, most likely due
to an increase in fatty acid oxidation.52 Finally, both autophagy and lysosomal activity are increased during OIS,68,75,76 which may be in part occur via
positive regulation through pRb.79
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It is thought that the Warburg effect is a consequence of
increased cellular proliferation during tumorigenesis, and not
necessarily a cause of transformation itself.44 However, a number
of important senescence effectors are known to play an important
role in metabolism. For instance, loss of p53 can suppress OIS in
some contexts.10,31,32 p53 is known to transcriptionally repress
glucose transporters (GLUT-1, GLUT-3, GLUT-4) and a num-
ber of glycolytic enzymes.45 Additionally, p53 positively regulates
oxidative phosphorylation (Fig. 1),46 thus loss of p53 can lead to
a switch from oxidative phosphorylation to increased aerobic gly-
colysis.46 Therefore, suppressing OIS could lead to a change in
glucose metabolism that primes cells to become cancerous.

Mitochondrial metabolism is altered during OIS
Mitochondria are the cell’s powerhouses. Under normal oxy-

gen conditions, glucose is broken down into pyruvate, which is
then shunted through the TCA cycle. The TCA cycle starts when
pyruvate dehydrogenase metabolizes pyruvate into acetyl-CoA.47

Acetyl-CoA can also be produced from fatty acid oxidation (dis-
cussed below).48 A series of enzymatic reactions then occurs to
produce 3 molecules of NADH, which can then fuel oxidative
phosphorylation (oxphos). Oxphos occurs in the inner mito-
chondrial membrane through 5 enzyme complexes49 and is the
most efficient way for a cell to produce ATP as it generates 36
ATP molecules for each glucose molecule.36

A number of recent studies have indicated a significant shift in
mitochondrial metabolism in OIS cells. Firstly, a number of
studies have demonstrated that cells undergoing OIS display
mitochondrial dysfunction. Studies of RAS- or HER2-induced
senescence reveal that cells undergoing OIS have decreased mito-
chondrial membrane potential,39,50 indicating mitochondrial
dysfunction. Interestingly, these studies report conflicting results
in terms of mitochondrial mass and mitochondrial DNA con-
tent, likely due to differences in cell type and the oncogene used.
Cadenas et al. reported that mitochondrial mass is decreased and
that mitochondria are found in vacuole-rich areas, likely demon-
strating that these dysfunctional mitochondria are targeted for
degradation.50 In contrast, Moiseeva et al. found that mitochon-
drial mass and DNA content is increased in cells undergoing
OIS.39 These authors also observed a marked increase in mito-
chondrial superoxides, indicating a significant change in mito-
chondrial metabolism. Indeed, senescence can be directly
induced by interference with normal mitochondrial metabolism
using specific knockdown of the important mitochondrial pro-
tein Rieske iron sulfur protein (RISP) or the pharmacologic
inhibitors rotenone and oligomycin.39 Although studies have
shown some conflicting results, it is clear that mitochondrial
metabolism is markedly changed during OIS and may regulate
senescence.

In addition to changes in mitochondria themselves, flux
through the mitochondrial TCA cycle is increased in cells under-
going OIS. One study has demonstrated a significant increase in
TCA cycle metabolites in OIS cells (Fig. 1).42 This is likely due
to both an increase in the mitochondrial pyruvate gatekeeper
enzyme PDH42,43 and an increase in enzymes in the TCA cycle
such as malate dehydrogenase (MDH1/2) and succinate

dehydrogenase (SDHA).43 Increased PDH activity results from
decreased expression of the PDH suppressive pyruvate dehydro-
genase kinase 1 (PDK1) and increased expression of the PDH
activating pyruvate dehydrogenase phosphatase 2 (PDP2)
(Fig. 1).42,51

Oxidative phosphorylation is one of the most important bio-
logical processes of the mitochondrion.47 A number of studies
have shown that oxphos is increased during OIS, leading to an
increase in oxygen consumption (Fig. 1).38,42,52 This is likely
due to increased TCA cycle metabolites and enzyme expres-
sion42,43 in addition to increased expression of all complexes of
the electron transport chain.43 Increased oxygen consumption
and oxphos complex enzyme expression should lead to an
increase in ATP levels. However, a number of studies have shown
a decrease in ATP levels in cells undergoing OIS.39-41 This may
be due to an increased usage of ATP by senescent cells for other
highly energetic metabolic processes.

As discussed above, cancer cells show a marked decrease in
TCA cycle and oxidative phosphorylation compared to normal
cells. However, this is not due to mitochondrial defects in tumor
cells,35 but instead is most likely due to an increase in glucose
uptake and glycolytic enzymes in addition to an increase in the
PDH inhibitory PDK enzymes.34,44 This leads to hyperactiva-
tion of aerobic glycolysis and less pyruvate entering the TCA
cycle. As discussed above, loss of p53 can suppress OIS,10,32 and
p53 is known to be important for mitochondrial respiration and
as a negative transcriptional regulator of aerobic glycolysis
(Fig. 1). In part, this occurs through negative regulation of
PDK2 (Fig. 1).53 Loss of p53 thereby leads to an increase in
PDK2, which in turn reduces the amount of pyruvate entering
the mitochondria for the TCA cycle.44 Additionally, loss of pRB,
which can suppress OIS,12 leads to decreased mitochondrial oxi-
dative phosphorylation.30,54 This indicates that suppression of
OIS through loss of p53 and/or pRb can switch metabolism
from the mitochondria to a more Warbug effect type of
phenotype.

Lipid metabolism is altered during OIS
Lipids are important for a number of cellular processes,

including energy storage and signaling, and as components of cel-
lular membranes.55 Lipids can be grouped into 8 different cate-
gories including 2 lipids that will be discussed below: fatty acids
and phospholipids. Importantly, fatty acids can be used as a
major source of energy during a process called fatty acid oxida-
tion (or b-oxidation) in which these lipids are catabolized into
acetyl-CoA to be used in the TCA cycle. During b-oxidation,
fatty acids are transported across the outer mitochondrial mem-
brane by carnitine-palmitoyl transferase I (CPT1), which is rate-
limiting for this process.56 Although phospholipids are generally
thought to be most important as a major component of cellular
membranes, they can also be signaling messengers. Phospholipids
are generated from fatty acids and can have different head groups;
in particular, choline is the head group of phosphatidylcholine,
which is the main constituent of cell membranes.57 These phos-
pholipids can be catabolized into free fatty acids to generate ATP
under periods of cell stress.55

e963481-4 Volume 1 Issue 3Molecular & Cellular Oncology



Recent studies have shown a change in lipid metabolism in
cells undergoing OIS. Quijano et al. recently demonstrated that
senescent cells display an elevation in free fatty acid levels
(Fig. 1).52 However, this is not due to an increase in lipid metab-
olism because these authors showed a decrease in acetyl-CoA car-
boxylase (ACC), the rate-limiting enzyme in lipid metabolism,
in cells undergoing OIS. Instead, an increase in fatty acid oxida-
tion was found to be the dominant factor in the increase in oxy-
gen consumption in these cells. This may be another reason why
senescent cells display an increase in oxygen consumption but no
appreciable increase in ATP levels. The mechanism by which
increased fatty acid levels are increased in OIS cells is unclear but
may be due to promyelocytic leukemia (PML) activation of the
fatty acid oxidation pathway through peroxisome proliferator-
activated receptor (PPAR) signaling.58 PML and PML nuclear
bodies are known to play a major role during OIS.59,60 Increased
levels of fatty acids and their subsequent degradation, leading to
increased NADPH levels, may occur because of an increased
need for antioxidants to combat the high levels of reactive oxygen
species (ROS) observed during OIS.39,61 Interestingly, changes
in fatty acid oxidation were shown to play a role in the senes-
cence-associated secretory phenotype (SASP). Knockdown of
CPT1, the rate-limiting enzyme in fatty acid oxidation, decreased
the SASP during OIS.52 This suggests that fatty acid oxidation is
necessary for SASP expression during OIS. Another recent study
also indicates an alteration in lipid metabolism during OIS. Gey
et al. found a specific decrease in phosphocholine (PC) and an
increase in L-a-glycerophosphocholine (GPC), suggesting catab-
olism of phospholipids via phospholipase A1 and/or A2 and lyso-
phospholipase.62 Indeed, another study showed alterations
specifically in mitochondrial phospholipids,50 which may play a
role in the mitochondrial dysfunction observed during OIS.
These studies suggest that the changes in lipid metabolism
observed during OIS may play a specific role in the senescence
phenotype, especially the SASP.

It has become apparent in recent years that lipid biogenesis is
altered in cancer cells.48 In contrast to cells that have undergone
OIS, which display increased fatty acid catabolism, many cancer
cells show a significant increase in de novo fatty acid synthesis.48

This is likely due to increased expression of key enzymes in this
pathway, including ATP-dependent citrate lyase (ACLY), acetyl-
CoA carboxylase (ACC), and fatty acid synthase (FASN).34,48 A
number of the fatty acid pathway enzymes are regulated by
AKT.63 Interestingly, activation of AKT or suppression of PTEN
in cells that have undergone OIS can overcome the cell growth
arrest.64,65 Although AKT/PTEN is involved in a number of dif-
ferent pathways, these data suggest that overcoming OIS through
upregulation of these pathways may be in part due to a change in
lipid biogenesis.

Autophagy and lysosomal activity is increased during OIS
Autophagy is literally the process by which a cell eats itself.66

Macroautophagy, which is the process discussed in this review,
delivers cytoplasmic materials to an autolysosome via an autopha-
gosome. Therefore, autophagy and the lysosomal compartment
are intimately linked. Under nutrient-rich conditions, the

mTORC1 complex generally inhibits autophagy.67 Under nutri-
ent-poor conditions, mTORC1 is inhibited, leading to upregula-
tion of a number of autophagy-related genes (Atg genes) and
initiation of the phagophore. Autophagy is thought to be a cell
survival mechanism and has been implicated in several human
diseases including cancer.66

A number of studies have indicated that autophagy is upregu-
lated during OIS. LC-III, a marker of autophagy, and the num-
ber of autophagic vesicles are both significantly increased in cells
undergoing OIS (Fig. 1).68 Indeed, long-lived proteins are
degraded at an increased rate in OIS cells compared to proliferat-
ing cells. Autophagy is likely increased during OIS as a result of
repression of the mTORC1 and mTORC2 complexes through a
negative feedback loop.69 Furthermore, induction of autophagy
was found to be necessary for OIS as knockdown of key autopha-
gic proteins such as ATG5 or ATG7 bypassed senescence
induced by RAS, BRAF, or the KSHV v-cyclin A protein.68,70-73

It is known that senescent cells display an increase in protein con-
tent.43,74 Therefore, during senescence, autophagy is probably
activated to increase the amino acid content in order to cope
with the higher rate of protein translation.75

Similar to the increase in autophagy, a number of studies have
observed an increase in lysosomal activity in cells undergoing
OIS. This is likely because autophagy and lysosomes go hand-in-
hand to quickly degrade proteins and other biomolecules within
the cell. Young et al. observed a significant increase in lysosomal
genes in cells undergoing OIS.68 These authors also observed an
increased lysosomal compartment using LysoTracker and elec-
tron microscopy (Fig. 1). The increase in lysosomal gene expres-
sion directly correlates with the timing of the increase in
autophagy genes, indicating coordinated upregulation of both
cellular processes during OIS. A more recent study further identi-
fied the mechanism of upregulation of lysosomal genes. Urbanelli
et al. demonstrated a significant increase in the transcription fac-
tor TFEB that leads to upregulation of HEXA and HEXB, which
encode lysosomal glycohydrolase b-hexosaminidase.76 Taken
together, these studies indicate an increase in both autophagy
and lysosomal activity in cells undergoing OIS.

Subversion of the autophagic process can overcome OIS68 and
potentially lead to transformation of cells. Indeed, autophagy is
thought to be a tumor suppressive mechanism.66 Autophagy is
negatively regulated by mTOR,77 which is induced during AKT
signaling.78 As discussed above, increased AKT signaling through
activated AKT or inactivated PTEN can overcome the OIS-asso-
ciated cell growth arrest.64,65 In addition to the role of this path-
way in other metabolic processes, this may also be due to
inhibition of autophagy. Autophagy is also positively regulated
by pRb (Fig. 1),79 and loss of pRb can suppress OIS,68 which
may in part be due to a decrease in autophagy. Together, these
studies suggest that overcoming OIS through suppression of
autophagy could lead to transformation and tumorigenesis.

Targeting the metabolome as a pro-senescence cancer
therapeutic strategy

Senescence is now thought to be a viable outcome for cancer
therapy.80 Additionally, targeting the altered metabolome in
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cancer cells has attracted great interest in recent years.47,81,82

Numerous compounds that have been developed to target differ-
ent metabolic pathways are reviewed elsewhere.47,81,82 Here, we
will review recent studies that have shown that shifting metabo-
lism toward that seen during OIS could be a viable strategy to
induce cancer cell senescence and/or regression of tumors.

Targeting nucleotide metabolism as a pro-senescence cancer
therapy

Cells that have undergone OIS show a marked decrease in
dNTP levels and the rate-limiting enzyme RRM2.9,22 Overcom-
ing the decrease in nucleotide metabolism can lead to re-entry of
fully senescent cells into the cell cycle.9 To sustain a high level of
proliferation, cancer cells require elevated levels of dNTPs.24 It is
possible to exploit this need by targeting this pathway to induce
cancer cell senescence. A number of inhibitors of the nucleotide
metabolic pathway are currently being used in the clinic.11,81

Studies from our laboratory have shown that inhibition of nucle-
otide metabolism through specific knockdown or inhibition of
RRM2 using 3-aminopyridine-2-carboxaldehyde thiosemicarba-
zone (3-AP)83 can induce senescence in multiple cancer cell mod-
els with oncogenic signaling activation.9,84 Notably, senescence
induced by RRM2 inhibition is independent of p53 and p16 and
correlates with the DNA damage response.9,84 This supports the
premise that inhibition of this pathway in cancer cells is a viable
pro-senescence therapeutic strategy. The dNTP metabolic path-
way has been exploited for cancer treatment for decades. New
insights suggest that it remains an important target for the devel-
opment of novel cancer therapeutic strategies using senescence as
a primary tumor suppression mechanism.

Targeting glucose metabolism as a pro-senescence cancer
therapy

During OIS, cells display a significant shift in glucose metabo-
lism toward the mitochondrial TCA and oxidative phosphoryla-
tion pathways and away from the Warburg effect and
fermentation (discussed above). Increased aerobic glycolysis and
fermentation are hallmarks of cancer cells.24 Therefore, suppres-
sion of OIS may alter glucose metabolism to a more Warburg
effect-like phenotype. Because aerobic glycolysis is not observed
in normal cells, targeting this pathway has been of major interest
in recent years; indeed, a number of agents are being developed
to target this pathway for cancer therapy.81,82 For example, a
small molecule of the GLUT1 transporter (WZB117) induces
senescence and inhibits tumor growth in vivo.85 Although a num-
ber of other inhibitors of glycolysis have been developed, most
have not moved past Phase I/II clinical trials and their develop-
ment has been discontinued.82 This is most often due to unac-
ceptable toxicities.81 Future inhibitors will need to be more
specific to limit off-target effects. Nevertheless, these data support
the hypothesis that shifting metabolism away from the Warburg
effect is a viable pro-senescence cancer therapeutic strategy.

Targeting mitochondrial metabolism
OIS cells display a significant increase in TCA cycle inter-

mediates and oxidative phosphorylation (discussed above).

Although cancer cells have functional mitochondria,35 most of
their ATP is produced through glycolysis.36 Therefore, drugs
that shift metabolism toward the mitochondria may induce
senescence of cancer cells. For instance, upregulation of PDH by
knockdown of PDK1, which would shunt pyruvate into the
TCA cycle,44 can cause regression of melanoma tumors with
oncogenic BRAF mutations.42 In addition, knockdown of malic
enzymes (ME1/2) can induce senescence of tumor cells.86 ME1/
2 metabolize malate into pyruvate, thereby producing NADPH,
which is necessary for a number of metabolic processes including
nucleic acid synthesis.44 Thus, targeting the mitochondrial path-
ways can exert an effect on other metabolic pathways known to
play a role in senescence.

Concluding Remarks

In recent years, it has becoming increasingly clear that OIS is
accompanied by a significant alteration in cellular metabolism.
Given that OIS is a tumor suppressor mechanism,4,5 the changes
in cellular metabolism are mostly opposite to those observed dur-
ing tumorigenesis. For example, during OIS glucose metabolites
are mainly shunted toward the TCA cycle and oxidative phos-
phorylation. This is in contrast to tumor metabolism, which
shunts glucose either to fermentation to produce lactate or the
PPP, thereby increasing the level of nucleotides and other neces-
sary biomolecules for proliferation. This indicates that these
pathways play a role in the tumor suppressive phenotype of OIS.
Understanding these alterations in the metabolome may give
researchers further insight into how cells are able to circumvent
the OIS phenotype to become cancerous. Indeed, a number of
key senescence effectors such as p53 and pRb also play major
roles in metabolism.30,34,44,46,53,54,79 This underscores the
importance of further understanding these pathways to poten-
tially prevent the bypass of OIS. Additionally, this knowledge
may allow us to exploit cancer cells’ metabolic weaknesses as a
therapeutic strategy. Interestingly, a recent study found that
exploiting metabolic changes during therapy-induced senescence
of cancer cells could induce a synthetic lethality.38 This suggests
that these changes can be targeted in cancer patients to improve
cancer therapy. Further studies are therefore warranted to fully
understand the metabolic alterations accompanying OIS and
how these are changed when cells overcome the OIS-associated
cell cycle exit.
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