
Molecular mechanisms of mTOR regulation
by stress

Alexander Martin Heberle1, Mirja Tamara Prentzell1,2,3, Karen van Eunen1,4, Barbara Marleen Bakker1,
Sushma Nagaraja Grellscheid5, and Kathrin Thedieck1,2,6,7,*

1Department of Pediatrics and Centre for Systems Biology of Energy Metabolism and Ageing; University of Groningen; University Medical Center Groningen (UMCG); Groningen,

The Netherlands; 2Faculty of Biology; Institute for Biology 3; Albert-Ludwigs-University Freiburg; Freiburg, Germany; 3Spemann Graduate School of Biology and Medicine (SGBM);

University of Freiburg; Freiburg, Germany; 4Top Institute Food and Nutrition; Wageningen, The Netherlands; 5School of Biological and Biomedical Sciences; Durham University;

Durham, UK; 6School of Medicine and Health Sciences; Carl von Ossietzky University Oldenburg; Oldenburg, Germany; 7BIOSS Centre for Biological Signaling Studies;

Albert-Ludwigs-University Freiburg; Freiburg, Germany

Keywords: apoptosis, balance, cancer, cell death, ER stress, hypoxia, hyperactivation, mammalian target of rapamycin, mTORC1,
mTORC2, oxidative stress, RNA granules, stress granules, survival

Abbreviations: 4E-BP1, 4E-binding protein 1; 50TOP, 50 terminal oligopyrimidine; AMPK, AMP-activated protein kinase; ATF4,
activating transcription factor 4; ATF6, activating transcription factor 6; ATG, autophagy regulated protein; ATM, ataxia

telangiectasia mutated; CAD, carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and, dihydroorotase; CaMKKbeta,
calmodulin-dependent protein kinase kinase b; CMA, chaperon-mediated autophagy; DYRK3, dual specificity tyrosine-

phosphorylation-regulated kinase 3; eIF2a, eukaryotic translation initiation factor 2a; eIF4B, eukaryotic translation initiation factor
4B; eIF4E, eukaryotic translation initiation factor 4E; ER, endoplasmic reticulum; FIP200, FAK family kinase-interacting protein of
200 kDa; FLCN, folliculin; FMRP, fragile X mental retardation protein; FoxO1/3A, forkhead box O1/3A; G3BP, Ras-GTPase acti-
vating protein SH-3 domain binding protein; GAP, GTPase-activating protein; GCN2, general control nonderepressible 2; GLUT4,

glucose transporter 4; Grb10, growth factor receptor-bound protein 10; GSK, glycogen synthase kinase; HIF, hypoxia inducible
factor; hnRNP-A1, heterogeneous nuclear ribonucleoprotein A1; HRI, hemin-regulated inhibitor; HSF1, heat shock factor protein 1;
Hsp70, 70 kDa heat shock protein; IR, insulin receptor; Ire1, inositol-requiring protein 1; IRES, internal ribosomal entry sites; IRS,
insulin receptor substrate; JNK, c-Jun NH(2)-terminal kinase; LARP1, La-related protein 1; LDH, lactate dehydrogenase; MAPK,
mitogen activated protein kinase; mSin1, mammalian stress-activated protein kinase interacting protein 1; mtDNA, mitochondrial
DNA; mTOR, mammalian target of rapamycin; mTORC1, mTOR complex 1; mTORC2, mTOR complex 2; NFL, negative

feedback loop; NOX, NADPH oxidase; Nrf2, nuclear factor erythroid 2-like 2; PABP1, polyadenylate-binding protein 1; PDK1,
3-phosphoinositide-dependent kinase-1; PERK, protein kinase RNA-like ER kinase; PI3K, phosphatidylinositol 3-kinases; PIP2,

phosphatidylinositol-3,4-biphosphate; PIP3, phosphatidylinositol-3,4,5-triphosphate; PKR, double-stranded RNA activated protein
kinase; PPP, pentose phosphate pathway; PTEN, phosphatase and tensin homolog; R5P, ribose-5-phosphate; raptor, regulatory asso-

ciated protein of mTOR; RACK1, signaling scaffold protein receptor of activated protein kinase C 1; REDD1, regulated in
development and DNA damage responses 1; rheb, ras-homolog-enriched-in-brain; rictor, rapamycin-insensitive companion of

mTOR; ROS, reactive oxygen species; S6K, S6 kinase; SREBP, sterol regulatory element-binding protein; TCA cycle, tricarboxylic
acid cycle; TIA-1, T cell intracellular antigen 1; TIAR, TIA-1-related protein; TNFa, tumor necrosis factor alpha; TRAF2, TNF
receptor-associated factor 2; TRB3, tribbles homolog 3; TSC1, hamartin (tuberous sclerosis 1 protein); TSC2, tuberin (tuberous

sclerosis 2 protein); ULK1, unc-51-like kinase; uORF, upstream open reading frame; UPR, unfolded protein response;
USP10, ubiquitin-specific protease 10; VEGF, vascular endothelial growth factor.

Tumors are prime examples of cell growth in unfavorable
environments that elicit cellular stress. The high metabolic
demand and insufficient vascularization of tumors cause a
deficiency of oxygen and nutrients. Oncogenic mutations

map to signaling events via mammalian target of rapamycin
(mTOR), metabolic pathways, and mitochondrial function.
These alterations have been linked with cellular stresses, in
particular endoplasmic reticulum (ER) stress, hypoxia, and
oxidative stress. Yet tumors survive these challenges and
acquire highly energy-demanding traits, such as overgrowth
and invasiveness. In this review we focus on stresses that
occur in cancer cells and discuss them in the context of mTOR
signaling. Of note, many tumor traits require mTOR complex
1 (mTORC1) activity, but mTORC1 hyperactivation eventually
sensitizes cells to apoptosis. Thus, mTORC1 activity needs to
be balanced in cancer cells. We provide an overview of the
mechanisms contributing to mTOR regulation by stress and
suggest a model wherein stress granules function as
guardians of mTORC1 signaling, allowing cancer cells to
escape stress-induced cell death.
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Why do Cancer Cells Profit From mTOR Activation?

The mTOR signaling network (Fig. 1) is hyperactivated in
many tumors (reviewed by Yecies et al.1). mTOR kinase is pres-
ent in 2 multiprotein complexes, mTORC1 and mTORC2.2

mTORC1 contains the essential specific scaffold protein regula-
tory associated protein of mTOR (raptor) and functions as a
master regulator of cell growth and metabolism by favoring ana-
bolic processes in the presence of nutrients and energy.3,4

mTORC2 contains the specific proteins rapamycin-insensitive
companion of mTOR (rictor) and mammalian stress-activated
protein kinase interacting protein 1 (mSin1) (reviewed by Shi-
mobayashi et al.2). mTORC2 senses nutrients and growth factors
and modulates lipid and glucose metabolism5 and cytoskeleton
reorganization (reviewed by Oh et al.6). The cancer drug rapa-
mycin directly binds and inhibits mTORC1, but can also have
indirect long-term effects on mTORC2.7,8

Amino acids activate mTORC1 via the rag GTPases,9,10

which function in conjunction with the guanine nucleotide

exchange factor (GEF) ragulator complex11 and the GTPase acti-
vating protein (GAP) folliculin (FLCN)12 to modulate the trans-
location of mTORC1 to the lysosomal membrane in a
glutaminolysis-dependent manner13 (reviewed by Bar-Peled
et al.14). At the lysosome, mTORC1 encounters the small
GTPase ras-homolog-enriched-in-brain (rheb), which activates
mTORC1 in response to growth factors (e.g., insulin).15 Amino
acid deprivation leads to recruitment of the hamartin (TSC1)–
tuberin (TSC2) heterocomplex (TSC1–TSC2) to the lysosomal
membrane in a rag GTPase-dependent manner.16 The tumor
suppressor TSC1–TSC2 functions as a GAP for the GTPase
rheb and thereby inhibits mTORC1.17

Acting through insulin receptor substrate (IRS), the insulin
receptor (IR) activates class I phosphatidylinositol 3-kinases
(PI3K), whose subunits are often mutated in tumors. PI3K phos-
phorylates phosphatidylinositol-3,4-biphosphate (PIP2) to gen-
erate phosphatidylinositol-3,4,5-triphosphate (PIP3). Binding of
PIP3 to the oncogenic kinase Akt (also termed protein kinase B,
PKB) and 3-phosphoinositide-dependent kinase-1 (PDK1)

Figure 1.mTORC1 and stress. mTORC1 is regulated by amino acids, growth factors (i.e., insulin), and energy status (AMP:ATP). Amino acids are sensed by
the ragulator complex and the rag GTPases, mediating re-localization of mTORC1 to lysosomes where it encounters rheb. Insulin activates the IR, which
then activates the IRS. Active IRS induces PI3K, which converts PIP2 to PIP3. PIP3 accumulation results in the recruitment of PDK1 and Akt to the plasma
membrane where Akt is activated by PDK1. Akt phosphorylates and inhibits the TSC1–TSC2 complex, which inhibits rheb. Akt also inhibits the FoxO1/3A
transcription factors, which positively regulate apoptosis. AMPK is activated by a high AMP:ATP ratio and inhibits mTORC1 by activating TSC1–TSC2 as
well as by direct phosphorylation of the mTORC1 component raptor. Activation of mTORC1 inhibits IRS and Grb10 (not shown), resulting in negative
feedback regulation of the PI3K–Akt branch. mTORC1 hyperactivation can lead to ER stress, which can activate or inhibit the TSC1–TSC2 complex. In addi-
tion, ER stress induces ATF4 translation, which can induce expression of the negative Akt regulator TRB3. Hypoxia also induces ATF4 translation, and acti-
vates AMPK. Induction of HIFs by hypoxia (via ATM) induces expression of REDD1, which activates the TSC1–TSC2 complex, inhibiting mTORC1. This
results in a negative feedback loop, as mTORC1 controls REDD1 stability. Oxidative stress inhibits the tumor suppressors PTEN, and inhibits or activates
TSC1–TSC2. Furthermore, oxidative stress can activate ATM and AMPK, both of which inhibit mTORC1. Tumor suppressors are framed in green. Stress
inputs are shown in red.
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enables their translocation to the plasma membrane, where
PDK1 phosphorylates and activates Akt. Akt acts as an inhibitor
of the TSC1–TSC2 complex by phosphorylating TSC2; phos-
phorylation of TSC2 by Akt leads to dissociation of the TSC1–
TSC2 complex from lysosomes18 and enables mTORC1 activa-
tion. The PI3K antagonist phosphatase and tensin homolog
(PTEN) is a tumor suppressor that counteracts growth factor-
dependent mTORC1 activation by dephosphorylating PIP3 to
generate PIP2 (reviewed by Laplante et al.19).

mTORC1 responds to cellular energy status via the heterotri-
meric AMP-activated protein kinase (AMPK). AMPK is acti-
vated by 2 mechanisms. On the one hand, kinases such as the
tumor suppressor kinase LKB1 and calmodulin-dependent pro-
tein kinase kinase b (CaMKKb) phosphorylate AMPK in its acti-
vation loop. Furthermore, when the cellular ATP:AMP ratio is
low, AMP directly binds to AMPK and allosterically activates it
(reviewed by Hardie et al20). AMPK inhibits mTORC1 by phos-
phorylating raptor21 and by an activating phosphorylation on
TSC2.22 Furthermore, the ATP-sensitive Tel2–Tti1–Tti2
(TTT)–RUVBL1/2 complex activates mTORC1 by favoring
mTORC1 assembly and its lysosomal localization in a rag
GTPase-dependent manner.23

Cancer cell growth depends on ATP-demanding anabolic
processes including protein, lipid, and nucleotide biosynthesis.
mTORC1 controls ATP supply by inducing mitochondrial bio-
genesis, the tricarboxylic acid (TCA) cycle, and aerobic respira-
tion.24-26 Furthermore, mTORC1 promotes the delivery of
substrates to the TCA cycle by inducing glucose uptake27 and
glutamine catabolism.28 A major anabolic function of
mTORC1 in cancer is its stimulating role in translation29

(reviewed by Ma et al.30). mTORC1 phosphorylates and inhib-
its eukaryotic translation initiation factor 4E-binding protein 1
(4E‑BP1), an inhibitor of 5´cap-dependent translation. Phos-
phorylation of 4E-BP1 decreases its binding to the eIF4F com-
plex component eukaryotic translation initiation factor 4E
(eIF4E), which upon release from 4E-BP1 assembles into the
eIF4F complex. The eIF4F complex mediates the scanning pro-
cess by which ribosomes reach the start codon. Furthermore,
mTORC1 enhances the cellular protein biosynthesis capacity by
activating ribosomal RNA (rRNA) transcription and process-
ing31 (reviewed by Iadevaia et al.32) and the biosynthesis of
ribosomal proteins and elongation factors; these proteins are
often encoded by transcripts that contain 5´ terminal oligopyri-
midine (5´TOP) tracts,33 whose translation depends on 4E-BP1
inactivation.26,34 In addition, the raptor interacting protein La-
related protein 1 (LARP1) binds to the mRNA 5´cap in an
mTORC1-dependent manner, which seems to particularly
affect translation of RNAs containing 5´TOP motifs.35 Further-
more, 5´TOP regulation by mTOR has been reported to also
occur in a 4E-BP1- and mTORC1-independent manner,36,37 in
particular under hypoxic conditions.37 S6 kinase (S6K), another
mTORC1 substrate, phosphorylates S638 and the eIF4F com-
ponent eukaryotic translation initiation factor 4B (eIF4B),39,40

which may contribute to translational control by mTORC1 but
not by translational regulation of 5´TOP mRNAs.41 In addi-
tion, S6K promotes mRNA expression of ribosome biogenesis

genes, thereby probably increasing overall translation capacity.42

The PI3K–Akt–mTORC1 pathway upregulates the synthesis of
lipids via the sterol regulatory element-binding protein (SREBP)
transcription factors,5,43-46 which regulate genes involved in
lipid and sterol synthesis.47 mTORC1 stimulates nucleotide
biosynthesis via direct phosphorylation of the trifunctional
enzyme carbamoyl-phosphate synthetase 2-aspartate transcarba-
mylase-dihydroorotase (CAD), which catalyzes the first 3 steps
of de novo pyrimidine synthesis.48,49 In addition, mTORC1
promotes the expression of genes encoding enzymes of the oxi-
dative branch of the pentose phosphate pathway (PPP),45 which
generates ribose-5-phosphate (R5P) and NADPH for biosynthe-
sis. R5P and ATP are needed for the synthesis of 5-phosphori-
bosyl-1-phosphate, which is required for the synthesis of
purines and pyrimidines. Hence, cancer cells likely profit from
mTORC1 activation, as this promotes building block biosyn-
thesis and thereby contributes to abnormal proliferation. It
should, however, be noted that mTORC1 inhibits the oncogene
Akt via negative feedback loops (NFLs) dependent on IRS50–52

and growth factor receptor-bound protein 10 (Grb10)53,54. Akt
inhibits apoptosis by inhibiting the transcription factor forkhead
box O1/3A (FoxO1/3A).55 Furthermore, Mounir et al.56 have
shown that Akt directly phosphorylates and inhibits the ER
stress sensor protein kinase RNA-like ER kinase (PERK),
thereby preventing its hyperactivation and subsequent cell
death. Thus, chronic mTORC1 activation via NFLs results in
Akt inhibition and thereby facilitates apoptosis (reviewed by
Apenzeller-Herzog et al.57). Consequently, cancer cells need to
balance mTORC1 activity to keep biosynthetic processes and
Akt active at the same time.

mTOR Regulation by Stresses in Cancer Cells

The capacity for uncontrolled cellular growth and prolifera-
tion brings about challenges, such as certain stresses, that a tumor
cell has to cope with in order to survive. Nutrient and oxygen
depletion in conjunction with a hyperactive metabolism, mito-
chondrial dysfunction, and oncogenic mTOR signaling are com-
mon conditions in cancer cells58–62 and often correlate with
cellular stresses. We focus here on ER stress, hypoxia, and oxida-
tive stress and their interaction with mTOR and cancer cell
metabolism (Fig. 1).

mTORC1 under ER stress
Numerous studies report an accelerated unfolded protein

response (UPR) in cancer cells. ER stress results from imbalances
between protein synthesis and protein folding capacity that lead
to accumulation of unfolded proteins in the ER lumen (reviewed
by Clarke et al.63 and Fels et al.64). Several factors can contribute
to the phenomenon of ER stress (Fig. 2). When tumors outgrow
the vascular system they eventually face a shortage in oxygen and
nutrients.64,65 Decreased glucose supply restricts ATP synthesis,
which is required for chaperone activity in the ER (reviewed by
Braakman et al.66). Thus, decreased ATP levels can result in
impaired protein folding and ER stress. Glucose is not only used
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for ATP synthesis but is also a major source of carbon molecules
for the synthesis of cellular building blocks (lipids, nucleotides,
and amino acids). Proliferating cells require lipids for membrane
formation and ER expansion. A lipid shortage, and hence
reduced membrane synthesis, can induce ER stress67–69 and apo-
ptosis.70,71 These observations suggest that glucose limitation is a
trigger for ER stress. However, studies on cancer metabolism
have reported the Warburg effect, namely aerobic glycolysis and
accumulation of lactate.72,73 The Warburg effect is defined by an
enhanced glycolytic rate under normoxic conditions. Cells that
exhibit the Warburg effect consume glucose relatively rapidly
and therefore require a sufficient supply of glucose.74 These 2
seemingly contradictory views on glucose levels in cancer cells
may be relevant at different stages of tumor progression. In the
initial stages, increased levels of glucose transporters75,76 allow
the cell to take up as many nutrients as the environment allows.

Enhanced glucose uptake, in conjunction with hyperactivation of
the mTOR pathway, is prone to induce ER stress as increased
protein synthesis can overwhelm the protein folding capacity of
the ER.63,77 In contrast, at advanced tumor stages the outgrowth
from the vascular system results in nutrient shortage, which also
leads to ER stress as discussed earlier.

The ER has its own sensors for the detection of unfolded pro-
teins and to restore ER homeostasis via the UPR (reviewed by
Hetz et al.78). The 3 sensors inositol-requiring protein 1 (Ire1),
activating transcription factor 6 (ATF6), and PERK are mem-
brane embedded proteins that synergistically re-establish ER
homeostasis. For example, they induce chaperone synthesis79,80

to increase protein folding capacity, and inhibit translation81,82

to relieve protein overload. In addition, autophagy (see below)
has emerged as the major mechanism for the clearance of mis-
folded proteins in the ER,83,84 as ER stress suppresses

Figure 2. Stresses in tumors. Hyperactive metabolic signaling (e.g., induced by oncogenes) can result in increased synthesis of proteins, RNA, DNA, and
membranes. Lipid synthesis is required for ER homeostasis, whereas hyperactive protein synthesis can induce ER stress. Tumors eventually outgrow the
vascular system, leading to a shortage in glucose, oxygen, and building blocks (amino acids, nucleotides, lipids). Glucose is required for ATP synthesis
and is a carbon source for building block synthesis. Lack of ATP and building blocks inhibits lipid biosynthesis and chaperone activity. Therefore, ATP
depletion enhances ER stress. Oxygen is required for ATP synthesis, and oxygen depletion results in hypoxia. ROS induce oxidative stress and originate
from dysfunctions in mitochondria, for example triggered by oncogenic signaling and mtDNA damage, respiratory chain imbalances, and lipid and pro-
tein biosynthesis. ER stress, hypoxia, and oxidative stress induce stress responses to restore cellular homeostasis, and eventually trigger apoptosis. Cancer
cells have protective mechanisms to prevent the induction of apoptosis by chronic stresses. Examples of such mechanisms are metabolic transformation
(the Warburg effect), glucose uptake, chaperone and antioxidant protein synthesis, autophagy, angiogenesis, and stress granule formation.
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proteasome-mediated degradation.85,86 If cells are unable to
restore homeostasis persistent ER stress leads to apoptosis, which
needs to be circumvented by cancer cells.

The regulatory interaction between mTORC1 and ER stress
can be understood as a bidirectional cross talk (reviewed by
Appenzeller-Herzog et al.57) (Fig. 1). Mutations or knock out of
the TSC1 and TSC2 genes that lead to mTORC1 hyperactiva-
tion sensitize cells to ER stress and apoptosis. This depends on
mTORC1 as it can be reversed by raptor inhibition,77,87 further
supporting the notion that TSC1–TSC2 and mTORC1 jointly
modulate ER stress. Conversely, ER stress may also modulate the
activity of mTORC1 via the TSC1–TSC2 complex. In neuronal
cells, short-term periods of ER stress result in TSC1–TSC2 inac-
tivation and subsequent mTORC1 activation, whereas prolonged
stress activates the TSC1–TSC2 complex.88 Whether this also
occurs in cells other than neurons remains to be explored. Akt is
another important mediator of ER stress-dependent mTORC1
regulation. ER stress induces translation of activating transcrip-
tion factor 4 (ATF4); this induces apoptosis by transcriptional
activation of stress-related proteins, including tribbles homolog 3
(TRB3),89 which inhibits Akt. In addition, ER stress inhibits
mTORC2 and its substrate Akt in a glycogen synthase kinase
(GSK) 3-b–dependent manner.90 Furthermore, activation of
mTORC1 by ER stress inhibits Akt via the mTORC1-depen-
dent NFLs, followed by activation of the Ire1–c-Jun NH(2)-ter-
minal kinase (JNK) pathway, which in turn induces apoptosis.91

This suggests that cancer cells under chronic ER stress must cope
with Akt inactivation by multiple mechanisms.89–91 As active
mTORC188 contributes to Akt inhibition and apoptosis suscep-
tibility,77,87,88,91 cancer cells need to prevent mTORC1 hyperac-
tivation to maintain sufficient Akt activity and ensure their
survival under ER stress.

mTORC1 under hypoxia
The outgrowth of the tumor from the vascular system

entails a shortage not only in glucose supply but also in oxy-
gen (Fig. 2). This phenomenon is termed “hypoxia” and
induces a stress response that can be monitored by upregula-
tion of the hypoxia inducible factors (HIFs).58 Oxygen short-
age restricts the cellular capacity for ATP production because
the respiratory chain requires aerobic conditions. Conse-
quently, pyruvate is not entirely consumed by the TCA cycle
but is, at least partially, converted into lactate to maintain
the cellular redox balance.58

The hypoxia stress response adapts cells to low levels of oxida-
tive respiration. Thus, hypoxia reduces energy consumption, acti-
vates glycolysis, and improves oxygen supply (reviewed by
Majmundar et al.92). The HIF transcription factors are key to
the hypoxia-induced stress response. HIF1a induces gene prod-
ucts such as the vascular endothelial growth factors (VEGFs),93

which activate growth of the vascular network (angiogenesis)94 to
restore oxygen availability. In addition, HIFs induce glycolysis
and autophagy (see below). Of note, in cancer cells HIF upregu-
lation often occurs without hypoxic conditions and thereby con-
tributes to the Warburg effect (see below). In this case, HIFs can
be induced by oncogenic signaling via mTORC195,96 and

promote cell growth, proliferation, and survival. In addition to
the HIFs, histone modifications have been reported to contribute
to HIF-independent transcriptional regulation under hypoxia,97

but the underlying mechanisms and their potential interaction
with mTOR signaling remain to be explored.

Hypoxia inactivates mTORC1 by different mechanisms
(Fig. 1). First, hypoxia increases the AMP:ATP ratio, which acti-
vates AMPK.98,99 Second, hypoxia activates the DNA damage
response protein ataxia telangiectasia mutated (ATM) in the
cytosol in a DNA damage-independent manner.100 ATM phos-
phorylates HIF1a, resulting in induction of regulated in develop-
ment and DNA damage responses 1 (REDD1).100 REDD1 and
mTORC1 are connected via a NFL: REDD1 inhibits mTORC1
via TSC1–TSC2 activation,101–103 whereas mTORC1 is neces-
sary to stabilize the REDD1 protein.104,105 Furthermore,
mTORC1 activity is also required for HIF1a expression.95,106

Thus, hypoxic cells require mTORC1 to re-establish homeostasis
through the HIF1a- and REDD1-dependent stress response. On
the other hand, mTORC1 needs to be restricted, because other-
wise the mTORC1-dependent NFLs inhibit Akt, leading to apo-
ptosis sensitization. This is particularly relevant under hypoxia as
Akt may be further inhibited by ATF4 induction.107 Thus, hyp-
oxia inhibitory and stimulatory inputs contribute to net
mTORC1 activity.

mTORC1 under oxidative stress
A third challenge that is commonly encountered in cancer

cells is oxidative stress (Fig. 2). Oxidative stress is induced by the
accumulation of reactive oxygen species (ROS). To comply with
their high proliferation rate, cancer cells exhibit an accelerated
metabolism which entails an increased activity of the respiratory
chain and mitochondrial biogenesis.108 This not only increases
ATP production but may also increase cellular ROS108 as a result
of temporary imbalances between reduction and oxidation at the
level of Complexes I and III of the respiratory chain.109 Also, dys-
function of mitochondria in cancer cells110 may contribute to
increased ROS levels. Mutations in cancer cells tend to accumu-
late in mitochondrial DNA (mtDNA)111,112 and are enriched in
genes coding for subunits of Complexes I, III, and IV of the elec-
tron transport chain,113 which may eventually lead to ROS
release. This also occurs during therapeutic intervention, as che-
motherapies preferentially induce mutations in mtDNA, corre-
lating with increased ROS formation.114,115 Of note, ROS
formation in cancer cells has been often linked with an induction
of oncogenic signaling,116 for example of the mitogen activated
protein kinase (MAPK) and PTEN/Akt pathways.117–120 For
example, H-Ras activates the ROS-producing NADPH oxidase
(NOX)121 enzymes and suppresses the antioxidant molecule Ses-
trin 1.122 Akt increases the activity of several respiratory com-
plexes in a 4E‑BP1-dependent manner, 120 thus increasing the
potential for ROS formation, but the underlying mechanism
remains elusive. Hence, multiple processes contribute to ROS
formation in cancer cells.

How do cancer cells cope with these increased ROS levels?
The response to oxidative stress is partially induced by the ROS
themselves. ROS can oxidize cysteines, leading to disulfide
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bond formation in proteins and thereby altering their activity
(reviewed by Groitl et al.123). Through this mechanism, ROS
activate chaperones to refold damaged proteins. One prominent
example is the 2-Cys peroxiredoxin PrxII, whose chaperone
activity is induced by cysteine oxidation under oxidative stress.124

In addition, oxidative stress induces the key stress transcription fac-
tor nuclear factor erythroid 2-like 2 (Nrf2), which controls the
expression of several hundred genes including chaperones, antioxi-
dant enzymes, or proteins involved in the inflammatory and
immune response (reviewed by Sosa et al.108). For example, cancer
cells show upregulation of the antioxidative proteins glutathione,
superoxide dismutase, catalase, and thioredoxin (reviewed by Wat-
son et al.125), at least in part as a result of Nrf2-induced oncogenic
signaling (reviewed by DeNicola et al.126).

Early evidence for the regulation of mTORC1 complex by
ROS came from UV irradiation experiments. UV radiation acti-
vates mTORC1 during the first 7 hours, with a subsequent
decrease over time,127–129 and mTORC1 activation can be pre-
vented by hydrogen peroxide scavengers.129 Additionally, chem-
ical treatments with hydrogen peroxide or sodium arsenite130

affect mTORC1 in a dosage- and time-dependent manner.
Generally speaking, short treatments and low concentrations
seem to induce mTORC1, whereas prolonged treatments and
high concentrations diminish or abolish mTORC1 activity.131–
134 It should be noted, however, that the dosage- and time-
dependent effects of ROS on mTORC1 are highly context- and
cell type-dependent. The tumor suppressor PTEN135–137 is
redox sensitive and directly inactivated by cysteine oxidation; in
addition, TSC1–TSC2 has been suggested to be directly oxi-
dized by ROS138 (Fig. 1). Thus, in cancer cells ROS possibly
contribute to chronic TSC1–TSC2 and PTEN inactivation and
mTORC1-dependent metabolic induction. In contrast, Zhang
et al.132 reported recently that mTORC1 can also be inactivated
by ROS, and that this depends on peroxisomal localization of
TSC2. Furthermore, ROS activates cytoplasmic ATM139,140

and AMPK, which both inhibit mTORC1 (reviewed by Hardie
et al.99). Thus, ROS have activating and inhibitory effects on
mTORC1, whose net regulation (i.e., activation or inhibition)
depends on the cellular context, persistence, and strength of the
ROS stress.

Regulation of mTORC2 by stresses
Relatively little is known about the response of mTORC2 to

stress, therefore in this review we focus mostly on mTORC1. It
should be noted, however, that increasing evidence additionally
suggests mTORC2 as an important component of stress signal-
ing. There are activating and inhibiting inputs on the mTORC2
network during different stresses. Examples are the inhibition of
mTORC2 by ER stress90 and oxidative stress,141,142 and the acti-
vation of mTORC2 during hypoxia.143 ER stress results in
GSK3b-dependent phosphorylation of rictor, which decreases
the affinity of mTORC2 for its substrates,90 whereas oxidative
stress leads to mTORC2 disruption and inactivation.141,142 The
mechanism by which mTORC2 is activated during hypoxia is
not understood. mTORC2 activation during hypoxia is needed
for the hypoxia stress response as mTORC2 induces transcription

of HIF1a and HIF2a,106 and positively modulates hypoxia-
induced proliferation.143

Interconnection of ER stress, hypoxia, and oxidative stress
Oxidative stress, hypoxia, and ER stress are closely intertwined

and cannot be viewed separately. For example, lack of oxygen
inhibits ATP production by the respiratory chain,73 which at
least in the short term mitigates chaperone-mediated protein
folding and thus induces ER stress. In addition, oxygen is the
preferred terminal electron acceptor for disulphide bond forma-
tion (oxidative protein folding) within the ER.144,145 Thus, hyp-
oxia is able to induce ER stress.146,147 Conversely, severe ER
stress induces oxidative protein folding148 that leads to ROS for-
mation, which in a vicious cycle can lead to protein damage and
reinforce the ER stress.149 Furthermore, glucose starvation150,151

and hypoxia152,153 can induce ROS formation in tumor cells,
but the underlying mechanisms are poorly understood. In con-
clusion, cancer cell traits are prone to induce stress at different
levels; as oxidative stress, hypoxia, and ER stress can induce each
other they often occur in conjunction, and cancer cells thus have
to cope with chronic stress conditions that are prone to induce
apoptosis.154–159 However, cancer cells acquire properties that enable
them to escape programmed cell death131,160,161 (see below).

Regulation of Glucose and Protein Homeostasis by
mTORC1 During Stress

Hyperactive biosynthesis in proliferating cells creates a high
demand for ATP and building blocks, but oxidative phosphory-
lation is also a source of cellular ROS, as discussed earlier. How
do cancer cells cope with this challenge? During glycolysis one
glucose molecule is converted into 2 ATP molecules and pyru-
vate. Under normoxic conditions, pyruvate is introduced into
the TCA cycle, which theoretically generates 36 ATP molecules
via aerobic respiration. However, under hypoxic conditions pyru-
vate is converted by lactate dehydrogenase (LDH) to lactate in
the cytosol, without further generation of ATP. Cancer cells
“ferment” glucose into lactate even under normoxic conditions
(aerobic glycolysis).72 Although the ATP yield is low, aerobic
conversion of glucose to lactate is fast, generates less ROS, and
delivers carbon backbones for building block synthesis (reviewed
by Hsu et al.162). This metabolic transformation, which was dis-
covered by Otto Warburg nearly 100 years ago, is named the
“Warburg effect."72 Another shift of glucose metabolism in can-
cer cells is induction of the PPP (reviewed by Sosa et al.108).
Diverting carbon from glycolysis into the PPP supplies increases
levels of (1) R5P for nucleotide synthesis, which is needed for
DNA replication and transcription (reviewed by DeBerardinis
et al.163); and (2) NADPH, which supplies electrons for biosyn-
thesis and eliminates ROS, thereby providing protection from
oxidative stress. Diversion of glucose into the PPP and thus into
lactate is modulated by several mTOR network components that
positively regulate glucose uptake and glycolysis: Akt promotes
glucose uptake, for example, by stimulating translocation of glu-
cose transporter 4 (GLUT4)164,165 to the plasma membrane.
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Furthermore, AMPK inactivation is tumorigenic as AMPK
inhibits the Warburg effect in a HIF1a-dependent manner.166

This may in fact be mediated by mTORC1, which is activated
upon AMPK inhibition. mTORC1 increases HIF1a levels,95,96

which in turn can activate the expression of almost all glycolytic
enzymes.167

mTORC1 and stresses also impinge on autophagy, a cell
autonomous process that maintains protein homeostasis (Fig. 3).
During autophagy, proteins and cell organelles are targeted to
the lysosomes for degradation. In cancer cells, autophagy has an
ambiguous function. On the one hand, autophagy has been sug-
gested to prevent tumorigenesis, but on the other hand autoph-
agy seems to promote stress survival in established tumors
(reviewed by Yang et al.168). There are 3 different types of

autophagy (reviewed in Boya et al.169 and Marino et al.170):
macroautophagy, microautophagy, and chaperon-mediated
autophagy (CMA). Macroautophagy, hereafter called autophagy,
is divided into tightly regulated steps. First, a phagophore emu-
lates and elongates to surround a cytoplasmic fraction. The
resulting autophagosome docks and fuses with hydrolase-con-
taining lysosomes, enabling digestion of proteins and organelles.
The resulting autolysosome consists of the inner membrane of
the previous autophagosome and enables digestion of the pro-
teins and organelles within the surrounded cytoplasmic fraction.
The building blocks that are released by this process can be
reused by the cell. Autophagy initiation (emulation and elonga-
tion of the phagophore) is positively controlled by the unc-51–
like kinase 1 (ULK1) complex, comprising the proteins ULK1,

Figure 3. Autophagy regulation by stress. The ULK1 complex (ULK1, ATG13, ATG101, and FIP200) and the Bcl-2–Beclin 1 complex are major autophagy
regulators. Autophagy can be divided into 3 different steps: (1) phagophore formation and enlargement (autophagosome); (2) lysosomal docking and
fusion with the autophagosome (autolysosome); (3) degradation of proteins and organelles in the autolysosome. The ULK1 complex is needed for
autophagy initiation, whereas assemble of the Bcl-2–Beclin 1 complex prevents Beclin 1 from triggering autophagy. The ULK1 complex is inhibited by
mTORC1 and activated by AMPK. AMPK also directly inhibits mTORC1. ER stress induces ATF4, which controls transcription of stress factors such as TRB3,
which is a negative effector upstream of mTORC1 (Akt inhibition). In addition, ATF4 has a positive effect on the ULK1 complex. ER stress activates Ire1
kinase, which induces JNK1, leading to disassembly of the Bcl-2–Beclin 1 complex. Hypoxia also induces ATF4 expression and activates AMPK. In addition,
hypoxia induces autophagy by BNIP3/BNIP3L-dependent disassembly of the Bcl-2–Beclin 1 complex. Oxidative stress induces autophagy in an AMPK-
dependent manner.
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autophagy regulated proteins 13 and 110 (ATG13, ATG110),
and FAK family kinase-interacting protein of 200 kDa
(FIP200).171,172 mTORC1 and AMPK phosphorylate ULK1 on
different sites and thereby respectively inhibit or activate autoph-
agy.173 mTORC1 phosphorylates ULK1173 and ATG13,172

reducing ULK1 complex stability and ULK1 kinase activ-
ity.174,175 In contrast, AMPK binds to the mTORC1-bound
ULK1 complex and phosphorylates raptor176 and ULK1173 to
activate autophagy. Another modulator of autophagy initiation is
the Bcl‑2/Beclin 1 complex, which inhibits phagophore matura-
tion.177 ER stress, hypoxia, and oxidative stress affect autophagy
via mTORC1, AMPK, and Bcl‑2/Beclin 1. The ER stress-
induced UPR results in Ire1 and JNK activation. JNK phosphor-
ylates Bcl-2,178,179 disrupting its binding to Beclin 1 and induc-
ing autophagy. ER stress also induces autophagy when inhibiting
the PI3K–Akt pathway180 and mTORC1.181 Both ER stress and
hypoxia induce ATF4, which directly upregulates ULK1 tran-
scription and ULK1 complex activity.182,183 In addition, ATF4
induces TRB3 expression89,184 resulting in inhibition of Akt,
which may potentially induce autophagy via mTORC1 inhibi-
tion. Furthermore, hypoxia induces autophagy by activating
AMPK185 and BNIP3/BNIP3L,186–188 negative modulators of
the Bcl-2/Beclin 1 complex. Little is known about autophagy reg-
ulation by oxidative stress. Oxidative stress induces AMPK, cor-
relating with induction of autophagy.189 In addition, oxidative
stress also activates CMA,190 a process in which proteins are
unfolded and directly trans-localized through the lysosomal
membrane.

In cancer cells, autophagy is necessary to maintain the build-
ing block supply, especially under starvation conditions. In addi-
tion, autophagy is able to counteract stresses like ER stress and
oxidative stress by degrading damaged proteins and cell organ-
elles. In keeping with this, inactivation of the negative AMPK
regulator FLCN leads to stress resistance via autophagy induc-
tion.191 Furthermore, autophagy inhibition correlates with
induction of apoptosis during cancer-related hypoxia and thus
seems to have an important function in tumor cell survival under
endogenous stress.192 In addition, autophagy induction often
correlates with cancer resistance to chemotherapeutics.193,194 In
contrast, prolonged autophagy induction has been suggested to
result in cell death (reviewed by Loos et al.195 and Marino
et al.170). Given that mTORC1 is a potent inhibitor of autoph-
agy, it seems paradoxical that both mTORC1 and autophagy are
required for cancer cell survival. This suggests that cancer cells
need to maintain a delicate balance between mTORC1 activity
and autophagy in order to benefit from both.

Balancing mTORC1 Under Stress: Stress Granules as
Guardians of Cancer Cells?

mTORC1 activity contributes to many aspects of cancer cell
survival. However, chronic mTORC1 hyperactivation eventually
inhibits autophagy and induces cell death, and therefore needs to
be counterbalanced. Several inputs into the mTOR network,
mainly those impinging on TSC1–TSC2, Akt, and AMPK,

restrict mTORC1 activity under stress and thereby not only limit
cellular growth, but also potentially enable autophagy and sup-
press cell death. Stress granules (SGs) represent an additional
buffer system in stressed cells. SGs form under a variety of stresses
including hypoxia, ER, oxidative, heat, nutrient, osmotic, and
cold stress.196–198 Protein synthesis is inhibited during stress, and
polysome disassembly can be induced by many different stress
sensors. The most prominent examples are eukaryotic translation
initiation factor 2a (eIF2a) kinases (reviewed by Donnelly
et al.199), which phosphorylate eIF2a at serine 51. eIF2a is a
subunit of eIF2, which together with t-RNAfMet and GTP forms
a ternary complex that is required for formation of the 48S trans-
lation preinitiation complex. Phosphorylation of eIF2a prevents
ternary complex formation, leading to polysome disassembly and
producing a non-canonical 48S* complex that is unable to recruit
the 60S ribosomal subunit. In mammals, 4 eIF2a kinases have
been described: hemin-regulated inhibitor (HRI), double-
stranded RNA activated protein kinase (PKR), general control
nonderepressible 2 (GCN2), and PERK. These kinases allow the
cell to respond to a broad spectrum of stresses including oxidative
stress,200 ER stress,201 and amino acid starvation.202 Polysome
disassembly changes the fate of many proteins involved in
mRNA processing, leading to accumulation of mRNAs that dis-
assemble from polysomes. The morphological consequence of
this process is the formation of cytoplasmic SGs, which are pro-
tein–RNA assemblies.203 SGs have an antiapoptotic function
under stress,131,204 and their formation after chemotherapy or
radiotherapy in cancer correlates with therapy resistance.205,206

Thus, SGs could help the tumor to balance stress signaling and
prevent apoptosis under stresses elicited by the tumor environ-
ment or therapeutic interventions.

The first phases in SG aggregation or nucleation depend on
SG nucleating proteins, which bind to the disrupted 48S*-
mRNA complex. Overexpression of nucleators is often sufficient
to induce SGs in vitro.207,208 Thus, overexpression of nucleators
in vivo has the potential to promote SG formation in cancer
cells. Examples of nucleators are Ras-GTPase activating protein
SH-3 domain binding protein 1 and 2 (G3BP),207,209 T cell
intracellular antigen (TIA-1) and TIA-1–related protein
(TIAR),210,211 polyadenylate-binding protein 1 (PABP1),208

and fragile X mental retardation protein (FMRP).212 Protein
levels of SG nucleation factors are induced in several tumor
entities.213–215 For example, French et al.213 analyzed 22 breast
cancer samples, all of which showed elevated G3BP1. After the
nucleation and aggregation phases, further proteins that have
intrinsic mRNA binding capacity or that bind to SG proteins
by piggy back recruitment, are assembled into SGs.216 Upon
stress relief, SGs dissolve and SG proteins relocate to their previ-
ous compartments.197,208,217 SGs are thought of as sites of RNA
storage and triage during stress.218 In addition, there is increasing
evidence that SGs interfere with stress signaling pathways (reviewed
by Kedersha et al.216). Proteins involved in apoptosis can be
recruited to SGs, which thereby promote survival. For example,
SG recruitment of signaling scaffold protein receptor of activated
protein kinase C 1 (RACK1) prevents induction of apoptosis by
the genotoxic stress-activated p38 and JNK–MAPK pathways204,
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and ubiquitin-specific protease 10 (USP10) has been reported to
exert an antioxidant apoptosis-preventing activity that depends on
recruitment of USP10 to SGs.219 Recruitment of TNF receptor-
associated factor 2 (TRAF2) to SGs inhibits proinflammatory
tumor necrosis factor a (TNFa)–NF-kB signaling.220

SG assembly in both yeast and human cells can inhibit
TORC1/mTORC1 signaling (Fig. 4) by sequestering mTOR
complex components or the mTORC1 upstream modulator
dual specificity tyrosine-phosphorylation-regulated kinase 3
(DYRK3).131,208,217 In cancer cells, DYRK3 integrates
mTORC1 activity with SG formation via a dual mecha-
nism.217 During prolonged stress, DYRK3 is sequestered into
SGs where it prevents SG dissolution and mTORC1 release.
After stress release, DYRK3 phosphorylates and inhibits the
mTORC1-inhibitor PRAS40,221–227 thus contributing to

mTORC1 reactivation. Furthermore, the adaptor protein
astrin disassembles mTORC1 by sequestering raptor into
SGs.131 Through this recruitment SGs restrict mTORC1
assembly and prevent its hyperactivation and mTORC1-
dependent oxidative stress-induced apoptosis. Thus, inhibi-
tion of astrin induces mTORC1-triggered apoptosis in cancer
cells.131 Like other SG proteins, astrin is frequently overex-
pressed in tumors, and has been correlated with an unfavor-
able prognosis in human breast cancers and non-small cell
lung (NSCL) cancers.228, 229 This suggests that high astrin
levels render cancer cells apoptosis resistant by counteracting
mTORC1 hyperactivation. Also in yeast, SG induction by
heat shock or PABP1 overexpression leads to TOR inhibition
by sequestration into SGs, and TORC1 reactivation after
stress correlates with its release from SGs.208 Thus, SG

Figure 4. Stress granules and mTORC1. Under non-stressed conditions DYRK3 phosphorylates and inactivates the mTORC1 inhibitor PRAS40. Active
mTORC1 inhibits 4E‑BP1, allowing for eIF4F–5´cap–mRNA complex formation, ribosomal binding, and translation initiation. Stressed conditions induce
translational arrest, polysome disassembly, and SG formation. mTORC1 is disassembled, and the mTORC1 components mTOR and raptor are recruited to
SGs. Kinase-inactive DYRK3 localizes through its N-terminus to SGs, where it promotes SG stability and prevents mTOR release. Astrin binds to raptor and
recruits it to SGs, thereby mediating SG-dependent mTORC1 disassembly. mTORC1 inactivation results in induction of autophagy, which is required for
SG clearance after stress release and for SG formation. However, inhibition of 4E-BP1 by mTORC1 is required for SG formation, as 5´cap–eIF4F complexes
and binding of the 40S ribosomal subunit are required for SG formation. Thus, SGs restrict mTORC1 activity, but some mTORC1 activity is needed for SG
assembly (indicated by dashed arrows). Black arrows represent active connections, gray arrows represent inactive connections in stressed versus non-
stressed cells.
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formation has a conserved inhibitory effect on TORC1/
mTORC1 in eukaryotic cells. However, mTORC1 activity is
also needed for SG formation in mammalian cells;206 for
example, formation of 5´cap–eIF4F complexes requires phos-
phorylation of 4EBP1 by mTORC1.230 Thus, SGs and
mTORC1 are connected via a NFL in which mTORC1 posi-
tively regulates SGs, whereas SGs inhibit mTORC1 (Fig. 4).

mTORC1 and SGs have both been linked to the regulation of
translation and autophagy and it is interesting to consider how
they may interact to control protein synthesis and autophagy
under stress. During stress, 5´cap-dependent translation is
reduced, and this is linked to mTORC1 inhibition. For example,
the SG components TIA-1 and TIAR inhibit translation of 5´
TOP mRNAs by promoting their assembly into SGs when
mTORC1 is inhibited.231 However, in a background of
mTORC1 inhibition and reduced overall translation levels, stress
response proteins still need to be expressed232 although active
translation requires mTORC1 activity. Thus, there is a seemingly
contradictory requirement for mTORC1 activation/inhibition
during stress. SGs have emerged as excellent candidates for bal-
ancing mTORC1 activity and the dependent translational events.
Both mTORC1 and SGs control translation of stress related fac-
tors,29,34,233–235 and SGs have been suggested as sites of stress-
specific translation initiation.236 Translation under stress depends
on upstream open reading frames (uORFs) and internal ribo-
somal entry sites (IRES).218,237–239 mTORC1 induces both
IRES-mediated240,241 and uORF-dependent translation via
eIF4GI,242 a member of the eIF4F complex. For example, the
stress-related proteins heat shock factor protein 1 (HSF1), het-
erogeneous nuclear ribonucleoprotein A1 (hnRNP-A1), and
70 kDa heat shock protein (Hsp70) require mTORC1 for their
expression under oxidative stress.131 hnRNP-A1 is required for
IRES-mediated translation under stress in tumor cells,243,244

whereas HSF1 mediates transcriptional events under stress,
including Hsp70 expression.233 Additionally, ATF4 protein
expression under stress is regulated by mTORC1.131 The ATF4
mRNA contains 2 uORFs, leading to increased ATF4 translation
in response to stress-related eIF2a phosphorylation.239 ATF4
induces autophagy under ER stress and hypoxia (see above). Of
note, autophagy is required for SG clearance in yeast and mam-
malian cells,245,246 and inhibition of autophagy results in mistar-
geting of proteins to SGs.246 Thus, it seems that, while
mTORC1 must be active to enable expression of stress factors,
mTORC1 activity needs to be restricted to enable autophagy.
mTORC1 and autophagy-mediated SG turnover may therefore
represent a mechanism of feedback regulation that balances
mTORC1 activity under stress.

Therapeutic Implications: mTORC1 in Stress as a
Target in Cancer?

mTORC1 signaling is mostly perceived as a prosurvival and
antiapoptotic process. However, there is ample evidence that dys-
regulated hyperactive signaling via mTORC1, for example in
response to TSC1–TSC2 inactivation, is prone to elicit cell
death. How do cancer cells survive the inactivation of major neg-
ative regulators (i.e., tumor suppressors) of mTORC1 signaling
in conjunction with a hyperactive metabolism and high stress lev-
els? Persistent stresses eventually trigger apoptosis in healthy cells.
However, short-term stresses and their consequences need to be
buffered to prevent the induction of cell death by transient
imbalances in cellular signaling, metabolism, and redox homeo-
stasis. Therefore, signaling, transcription, translation, and meta-
bolic networks are stabilized by multiple feedback loops and
buffer systems. SGs represent one such buffer system. It is likely
that cancer cells hijack this system by overexpressing SG compo-
nents. This may render the tumor cells resistant to hyperactive
signaling induced by oncogenic mutations, hyperactive metabo-
lism, and stresses, as well as therapeutic interventions such as che-
motherapy (genotoxic stress) or irradiation. Signaling and
metabolic networks that are hyperactive in cancer, such as
mTORC1 signaling or glycolysis, often represent vital cellular
functions that cannot be therapeutically targeted without major
side effects on healthy tissues. SGs, in contrast, are likely to be
more essential for cancer cells than for healthy tissues to over-
come a stressed cellular environment. Thus, SG modulation rep-
resents a promising orthogonal approach to complement existing
therapies involving targeted drugs or chemotherapeutics.
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