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Although target of rapamycin (TOR) kinase and Ras are central regulators of cell growth in yeast and mammals, the
molecular mechanisms underlying their regulation by nutrients are still poorly understood. Interestingly, recent studies
identified cytosolic pH as a critical regulatory signal for both pathways, which might have widespread implications for
tumor cell biology

Nutrients are a major cell growth deter-
minant and regulate highly conserved signal-
ing pathways to adjust cellular physiology to
environmental conditions.1 Although it is
widely appreciated that metabolic function
impacts health and disease, and multiple
regulators of nutrient sensitive signaling
pathways have been identified, little is
known about the molecular mechanisms of
nutrient sensing.1,2

Importantly, nutrient sensing mecha-
nisms need to integrate signals from struc-
turally diverse nutrients, such as various
sugars or amino acids. Thus, several sensors
may exist that sense individual nutrients
and redundantly activate downstream sig-
naling pathways. Alternatively, a common
metabolite might mediate sensing of differ-
ent nutrients, triggering a single sensor to
regulate cellular signaling. Although the lat-
ter model offers an elegant and intuitive
explanation for this problem, and is also
supported by available evidence, the meta-
bolic signals regulating the key growth pro-
moting pathways, including target of
rapamycin complex 1 (TORC1) and
cAMP-dependent protein kinase A (PKA),
remain largely elusive.1-3

Interestingly, several studies have recently
identified cytosolic pH as a signal that regu-
lates cell growth in response to different sug-
ars in yeast.4–6 Cytosolic pH is sensitive to
the quality and quantity of the available car-
bon source (C-source), and correlates with
growth rates under these conditions.4,5

Genetic analysis revealed that high cytosolic
pH is both sufficient and required to activate
TORC1 andRas activity upstream of PKA,4

thereby readily explaining cell growth regu-
lation through cytosolic pH (Fig. 1).

In yeast, cytosolic pH regulation is
mostly mediated by plasma membrane
ATPase (P-ATPase), an ATP-dependent
proton pump located in the plasma mem-
brane that links cellular metabolism to cyto-
solic pH regulation through a currently
unknown mechanism. Since establishing
high cytosolic pH consumes a large fraction
of cellular ATP,1 it seems plausible that P-
ATPase activity is tightly linked to the
energy status (e.g., the ATP/ADP ratio) of
the cell. Alternatively, direct coupling of P-
ATPase activity to glycolytic fluxmight offer
an attractive hypothesis for this regulation,
yet evidence for flux sensing mechanisms
remains largely circumstantial.7

Nevertheless, cytosolic pH possesses
some unique features that make it ideally
suited to act as a signal regulating cell
growth. As C-sources fuel central carbon
metabolism to produce ATP and cellular
building blocks with different efficiencies,
the resulting differences in cytosolic pH
may directly link growth to cellular metabo-
lism and explain how growth is regulated by
these signals. In addition, cytosolic pH can
also easily integrate other environmental sig-
nals and stresses via multiple mechanisms.
For example, our unpublished data demon-
strate that oxidative stress induced by addi-
tion of H2O2 rapidly reduces cytosolic pH,
a response that might contribute to cellular
adaptation and growth arrest.

We have previously demonstrated that
cytosolic pH is sensed by vacuolar ATPase
(V-ATPase), a proton pump required for
intraluminal acidification of the endo-
membrane system, most notably the vacu-
ole. High cytosolic pH promotes assembly
and activation of V-ATPase,6 which is
required for full Ras and TORC1 activ-
ity.4 Interestingly, V-ATPase activates
TORC1 and Ras activity by recruitment
and activation of distinct small GTPases,
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which link V-ATPase to downstream sig-
naling cascades. Specifically, V-ATPase
activates Arf1 and its partially redundant
homolog Arf2 to trigger Ras activity.
While the mechanism of Ras activation
remains to be established, Arf1 might pro-
mote Ras localization at the plasma mem-
brane and thus enhance its interaction
with activators and downstream targets.

Similarly, genetic and biochemical evi-
dence suggests that V-ATPase also interacts
with Gtr1 and Gtr2,4 the yeast homologues
of Rag GTPases, which activate TORC1 in
response to amino acids in yeast and mam-
mals.2,3 These data suggest a model in which
glucose and amino acids converge on a sin-
gle activator to trigger TORC1 activity. As
C-source availability is required for V-
ATPase, and consequently for Gtr1 and

Gtr2 activity, the presence of a C-source is a
prerequisite for TORC1 activation by
amino acids. Similarly, recent evidence dem-
onstrates that glucose and amino acid signal-
ing in mammalian cells also converges on
Rag GTPases to promote mTORC1 activ-
ity, possibly in a V-ATPase dependent man-
ner.2,8 Although direct evidence for the
regulation of mTORC1 or Ras activity by
cytosolic pH in mammalian cells is lacking,
it is tempting to speculate that cytosolic pH
might be a conserved cellular signal mediat-
ing nutrient sensing. Indeed, available evi-
dence suggests that cytosolic pH might also
promote cell growth in this system. Most
notably, increased cytosolic pH has been
associated with cellular transformation and
is considered one of the hallmarks of cancer
cells.9

Regulation of cytosolic pH in mamma-
lian cells mostly relies on the NaC/HC

exchanger 1 (NHE1). Interestingly, NHE1
is phosphorylated in a growth factor-
dependent manner and functional studies
support a role of NHE1 activation and
increased cytosolic pH in cell growth regu-
lation.9 For example, pharmacological inhi-
bition of NHE1 by amiloride blocks an
increase in cytosolic pH and cell cycle pro-
gression triggered by injection of a domi-
nant active Ras protein into arrested cells.10

Nonetheless, how cytosolic pH might
promote mammalian cell growth is
unclear. Increased cytosolic pH might
simply thermodynamically favor certain
biochemical reactions supporting cell
growth, for example by enhancing glyco-
lytic flux.9 Similarly, altered regulation of
cytosolic pH could also indirectly affect
the growth of cancer cells by increased
extracellular acidification to generate a
microenvironment that is more favorable
for growth. However, our yeast data dem-
onstrating that cytosolic pH regulates
growth by modulating TORC1 and Ras
activity offer the exciting possibility that
cytosolic pH has evolved as a conserved,
specific signal that regulates nutrient sensi-
tive signaling pathways to promote
growth. Therefore, further studies directed
to understanding the potential signaling
function of cytosolic pH in mammalian
cells should not only lead to a better
understanding of cellular physiology in
normal and cancer cells, but might also
open new possibilities for therapeutic
interventions for this disease.
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Figure 1. Cytosolic pH links glucose metabolism to the regulation of cell growth. In yeast, carbon
source availability regulates cytosolic pH through modulation of plasma membrane ATPase (P-
ATPase) activity. Cytosolic pH acts as a signal to trigger phosphorylation of Sch9 by target of rapa-
mycin complex 1 (TORC1) and Ras activity upstream of cAMP-dependent protein kinase A (PKA) via
vacuolar ATPase (V-ATPase). Note that V-ATPase interacts with different GTPases at different cellular
compartments (golgi and vacuole) to regulate Ras and TORC1 activity. See text for details.
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