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Viruses are useful tools that often
reveal previously unrecognized levels

of control within a cell. By studying the
oncogenic Kaposi’s sarcoma-associated
herpesvirus (KSHV), we discovered a
new signaling axis in endothelial cells
(ECs) that links actin cytoskeleton
dynamics to post-transcriptional control
of gene expression. Translational repres-
sion and rapid decay of mRNAs contain-
ing AU-rich elements (AREs) occurs in
cytoplasmic RNA granules known as
processing bodies (PBs). Rho-GTPase
activity influences PB dynamics but
mechanistic details remain obscure. We
have previously shown that the KSHV
Kaposin B protein blocks the degradation
of ARE-mRNAs that encode potent cyto-
kines and angiogenic factors, at least in
part by preventing PB formation. More-
over, Kaposin B is sufficient to cause
marked alterations in endothelial cell
physiology including the formation of
long parallel actin stress fibers and accel-
erated migration and angiogenic pheno-
types. All of these phenotypes depend on
Kaposin B-mediated activation of a non-
canonical signaling pathway comprising
the stress-inducible kinase MK2, hsp27,
p115RhoGEF and RhoA. Accelerated
endothelial cell migration and angiogene-
sis depends on the subsequent activation
of the RhoA-dependent kinase ROCK, but
PB disruption is ROCK-independent. In
this Commentary, we discuss implications
of the activation of this signaling axis, and
propose mechanistic links between RhoA
activation and PB dynamics.

Introduction

Kaposi’s sarcoma-associated herpesvi-
rus (KSHV), also known as human

herpesvirus-8, is the infectious cause of
the AIDS-related malignancy Kaposi’s sar-
coma (KS).1 KS lesions are predominantly
comprised of KSHV-infected proliferating
endothelial cells (ECs) that display a hall-
mark elongated or ’spindled’ morphology
(Fig. 1A). KS lesions have a strong inflam-
matory character, with elevated levels of
pro-inflammatory cytokines and angio-
genic factors, and marked lymphocyte
infiltration.

KSHV establishes persistent, life-long
infection of its human host, and displays 2
modes of infection; a relatively quiescent
’latent’ phase, and a ’lytic’ phase marked
by viral replication and release of infec-
tious progeny. KSHV research has been
greatly aided by primary EC infection
models that support both latent and lytic
phases of viral replication, while faithfully
recapitulating many of the features of KS
tumors. In the majority of KS spindle
cells, or in vitro-infected primary ECs, the
virus remains latent and gene expression is
limited to 6 consensus protein products
(LANA, v-cyclin, v-FLIP, Kaposins A, B,
and C) and 12 pre-miRNAs that are proc-
essed into as many as 25 mature miR-
NAs.2-4 Several latent gene products have
been shown to contribute to dramatic
alterations in EC physiology.5-8 Mean-
while, KSHV lytic replication is thought
to contribute to KS by promoting viral
dissemination and the secretion of patho-
genetically-important cytokines and
growth factors9,10 (Fig. 1A).

Both latent and lytic KSHV gene prod-
ucts have been shown to modulate RhoA
activity, cytoskeleton dynamics and cell
morphology. RhoA is activated in the ear-
liest stages of infection, and is required for
viral entry and capsid trafficking to the
nucleus.11-14 Upon establishment of

Keywords: cytoskeleton, Kaposi’s sarcoma-
associated herpesvirus, MK2, p-body,
Rho-GTPase

*Correspondence to: Jennifer A Corcoran; Email:
jcorcora@dal.ca

Submitted: 08/13/2015

Revised: 09/07/2015

Accepted: 09/08/2015

http://dx.doi.org/10.1080/21541248.2015.1093068

Commentary to: Corcoran JA, Johnston BP,
McCormick C. Viral Activation of MK2-hsp27-
p115RhoGEF-RhoA Signaling Axis Causes Cyto-
skeletal Rearrangements, P-body Disruption and
ARE-mRNA Stabilization. PLoS Pathog 2015;
e1004597; PMID:25569678; http://dx.doi.org/
10.1371/journal.ppat.1004597

178 Volume 6 Issue 4Small GTPases

Small GTPases 6:4, 178--185; October/November/December 2015; © 2015 Taylor & Francis Group, LLC

COMMENTARY



latency, the latent gene product viral
FLICE inhibitory protein (v-FLIP) causes
potent NF-kB activation and contributes
to cytoskeletal remodeling and spindling
of ECs.6,15 Reactivation from latency
causes expression of the full range of viral
gene products, including a potent cell sur-
face localized signaling protein, viral G
protein-coupled receptor (vGPCR), and a
viral tyrosine kinase (TK), that activate
RhoA and remodel the actin cytoskele-
ton.16,17 Meanwhile, EC morphology and
adherens junction integrity is compro-
mised during lytic replication at least in
part through the action of K5, a homolog
of the MARCH family of human E3
ubiquitin ligases, which disrupts adherens
junctions by proteasomal destruction of

vascular endothelial (VE) cadherin18

(Fig. 1A). Thus, viral gene products elicit
dramatic EC morphology changes in both
latent and lytic phases of KSHV infection.

Kaposin B Activates the Stress-
Responsive MK2-RhoA Signaling

Axis

During latent KSHV infection, a
complex translational program involving
initiation at non-canonical start codons
on the kaposin transcript, and decoding
multiple GC-rich repeats, results in the
generation of several kaposin protein
products, including Kaposin B (KapB).
KapB is a highly repetitive, proline-rich

protein comprised largely of 2
sets of reiterated 23-amino acid
direct repeats, known as DR1
and DR219,20 (Fig. 1B). A
genetic screen revealed that KapB
binds the host cell kinase mito-
gen-activated protein kinase
(MAPK)-associated protein kinase
2 (MK2),20 an important down-
stream effector kinase in the
stress-activated p38 MAPK sig-
naling pathway that responds to
extracellular inflammatory signals
or environmental stress. Activated
MK2 phosphorylates a variety of
nuclear and cytoplasmic target pro-
teins, including the small heat
shock protein hsp27. Phosphory-
lated hsp27 participates in actin
remodeling by forming an active
complex with p115RhoGEF and
RhoA.21 By binding and activating
MK2, KapB achieves constitutive
activation of this non-canonical
MK2/hsp27/p115RhoGEF/RhoA
signaling axis.22 Many studies have
linked either p38/MK2 or RhoA
activation to a common set of EC
phenotypes that include actin stress
fibers, changes to cell migration,
angiogenesis and permeability
(Table 1). The emergence of this
new non-canonical signaling path-
way may reconcile some of these
disparate observations into a uni-
fied model of stress-regulated cyto-
skeleton control, especially as it
relates to EC physiology.

We are actively investigating the role
of the MK2-RhoA signaling axis in
KSHV infection. We have shown that
stimulation of this pathway by KapB has
several significant outcomes. MK2 and
RhoA are both major regulatory proteins
of the actin cytoskeletal network; their
activation by KapB has several predictable
outcomes, including changes in cell
shape, polymerization of actin and rear-
rangement of actin filaments (Fig. 1C),
cell migration and angiogenesis. All of
these processes have been previously
linked to RhoA activity. However, by
hijacking this key regulatory signaling
axis, KapB also disperses cellular PBs,
which correlates with stabilization of
labile AU-rich element (ARE)-containing

Figure 1. KSHV infection alters endothelial cell gene expression and physiology. (A) KSHV infection of endo-
thelial cells (ECs) commonly results in the establishment of latency, wherein the viral genome is maintained
as a circular episome in the nucleus, and gene expression is limited to products of the latency locus that
include LANA, v-cyclin, v-FLIP, the Kaposins and 12 pre-miRNAs that can be processed into at least 25
mature miRNAs. In turn, these products modulate signal transduction pathways, altering the actin cytoskel-
eton and cell-cell contacts, which leads to the distinctive spindle shape. Reactivation from latency and
expression of a wider range of viral gene products associated with lytic replication is commonly observed
in KS tumors; lytic gene products include vGPCR, K5 and TK. Increased Kaposin mRNA transcription during
lytic replication causes marked increases in production of Kaposin proteins. Together, KSHV latent and lytic
gene products markedly alter the EC secretome, causing increased release of angiogenic factors and pro-
inflammatory cytokines. (B) The Kaposin mRNA is largely comprised of 2 sets of GC-rich tandem repeats;
the chief product of this transcript is Kaposin B, which comprises proline/arginine-rich repeats (red) fused
to proline/leucine-rich repeats (green). (C) Kaposin B expression in primary ECs (HUVECs) is sufficient to
cause the formation of actin stress fibers.
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mRNAs. Previous studies linked activa-
tion of the p38/MK2 pathway with
enhanced stability of ARE-mRNAs and
increased expression of ARE-mRNA
products including potent pro-inflamma-
tory cytokines, angiogenic molecules, and
EC barrier regulators.23,24 MK2 phos-
phorylates several ARE-binding proteins
(ARE-BPs), thereby enhancing ARE-
mRNA stability.20,25 PBs are a major site
of ARE-mRNA decay;26 our work shows
that KapB mediates PB dispersion in a
RhoA-dependent manner that correlates
with the increased stability of ARE-
mRNAs.22,27,28 Notably, KapB is not
alone in activating MK2 and RhoA; we
and others have shown that the lytic gene
product vGPCR, a constitutively active
homolog of the human CXCR2 chemo-
kine receptor, activates MK2 via Rac1-
dependent MAPK activation, and inde-
pendently activates RhoA by assembly of
canonical cell surface G-protein-contain-
ing signaling complexes.28 Thus, vGPCR
also affects PB dynamics, ARE-mRNA
stability and actin polymerization, but by
distinct means. The functional relevance
of the convergence of KapB and vGPCR
on these common phenotypes remains
unclear, but suggests that manipulation
of these central nodes of stress signaling
may support efficient viral replication.

Processing Bodies Control
Inflammatory Mediator Release

by ECs

The precise coordination of mRNA
(mRNA) turnover and translation is a
central feature of eukaryotic gene

expression. Processing bodies (PBs) are
small ribonucleoprotein (RNP)-contain-
ing cytoplasmic granules that promote
the decay or translational arrest of cyto-
plasmic mRNA molecules. PBs regulate
the constitutive decay of ARE-
mRNAs,26,29-32 a class of constitutively
labile mRNAs that encode potent regu-
latory molecules such as growth factors,
pro-inflammatory cytokines, and angio-
genic factors. ARE-mRNA turnover can
be prevented by specific signaling
events, thereby providing a mechanism
for the cell to rapidly increase pools of
a specific class of ’early response’
mRNAs and their protein products.
Thus, precise control of PB assembly
and disassembly can significantly impact
the expression of potent regulatory
molecules.

PBs form visible cytoplasmic foci that
are constitutively present in most cells
and contain the requisite enzymes for
rapid mRNA deadenylation, decapping
and 50-30 exonucleolytic degrada-
tion.29,30,32-35 PBs are extremely
dynamic, changing in size and number
in response to cell cycle stage, nutrient
availability, and stresses such as ultravio-
let light (UV), osmotic shock and other
inhibitors of global translation.27,33,35,36

PBs can also transiently associate and
exchange cargo with stress granules
(SGs), cytoplasmic foci that triage stalled
translationally-competent mRNPs.34 PB
assembly and disassembly is influenced
by changes in the degradative capacity of
the cell; for example, when 50-30 exonu-
cleolytic decay is prevented, the resulting
accumulation of cytoplasmic mRNA
awaiting destruction causes PB size and

number to increase, whereas inhibiting
de novo transcription or halting transla-
tion by trapping mRNA in polysomes
has the opposite effect.37,38 PBs also
maintain a dynamic relationship with
the cytoskeleton; stationary PBs associate
with actin bundles whereas mobile PBs
connect to the microtubule net-
work.36,39,40 Though PB formation was
recently shown to be modified by the
cytoskeletal regulator RhoA,22,27,28 the
precise mechanism of action remains to
be elucidated.

RhoA as a Regulator of Gene
Expression

The Rho family of small GTPases are
molecular switches that cycle between
inactive GDP- and active GTP-bound
forms and thereby control several funda-
mental cellular processes. RhoA regulates
actin cytoskeleton dynamics to facilitate
normal cell attachment, the formation
of actin stress fibers, cell migration and
angiogenesis (summarized in41-46 and
Table 1 and references therein). RhoA
activation also couples changes to the
actin cytoskeleton with increased tran-
scription and translation under certain
circumstances (described below). Addi-
tional mechanisms for RhoA-mediated
control of gene expression have recently
emerged in the literature, including
intriguing new cytoskeleton-independent
modes of control. Considering the
wealth of literature on RhoA and cyto-
skeletal dynamics, we are actively explor-
ing several potential models for MK2/
RhoA-dependent PB dissolution.

Table 1. Functional overlap between the phenotypic consequences of p38/MK2/hsp27 and RhoA/ROCK pathway activation in the literature. Several studies
over the last 2 decades pinpoint the important role of these 2 pathways in the control of actin stress fiber formation, cell morphology, migration and endo-
thelial barrier integrity. These pathways have also been shown to control gene expression via the modulation of mRNA stability and PB dispersion. However,
very few studies have linked MK2 to the downstream activation of RhoA. Our recent work highlights the important connection between these 2 regulatory
pathways.22 Please note that the references within this table are a mere subset of the many excellent studies performed in this field (with a focus on work
performed in endothelial cells) and the table is meant to illustrate the connection between phenotypes that now link these 2 fields. We apologize to the
authors whose work was not cited here due to space limitations

Phenotype p38/MK2/hsp27 RhoA/ROCK

Cell Morphology and Actin Stress Fibers 22,64,65,66,67,68,69,70,71,72,73,74,75,92,99 17,22,65,66,69,76,77,78,79,80,81,82,83,84,85,86,87,88,108

Cell Migration and Invasion 22,65,70,71,72,74,75,89,90,91,92,99 22,41,42,65,79,86,93,94,95,96

Endothelial Barrier Dysfunction 64,69,73,97,98,99,100,101 69,77,80,81,82,84,85,101,102,103,104,105,106,107,108,109,110

Processing Body Dynamics 22,28 22,27,28

Gene Expression (mRNA decay) 22,28,71,72,111,112,113,114,115,116,117,118,119,120,121,122 22,27,28,117,121,123,124
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RhoA Regulates Transcription by
Modifying the Status of the Actin

Cytoskeleton

RhoA controls the transcription of
genes containing serum-response elements
(SREs) because it modifies the balance of
monomeric globular actin (G-actin) and
filamentous actin (F-actin) within the cell.
As a general rule, in cultured cells the ratio
of G-actin to F-actin is approximately
1:1.47 RhoA activation causes increased
actin polymerization and formation of
stress fibers. The subsequent loss of free
G-actin leads to the dissociation of the
transcriptional co-activator megakaryo-
blastic leukemia 1 (MKL1) that normally
binds G-actin monomers in the cyto-
plasm. Free MKL1 translocates to the
nucleus and collaborates with serum
response factor (SRF) to induce transcrip-
tion of SRE-regulated genes, including
many cytoskeletal genes. In this way,
RhoA couples changes in the actin cyto-
skeleton to transcription control.48-50

RhoA has also been linked to transcrip-
tional regulation by the growth-regulating
Hippo pathway. In the canonical Hippo
tumor suppressor pathway the Mst1/2
and Lats1/2 kinases phosphorylate
pro-growth YAP/TAZ transcription fac-
tors causing their nuclear exclusion and
degradation. This pathway is exquisitely
sensitive to changes in RhoA and the
cytoskeleton. RhoA inhibition or F-actin
disruption inhibits YAP/TAZ transcrip-
tion.51-53 Conversely, stabilization of the
actin cytoskeleton with jasplakinolide
causes YAP/TAZ activation.54 Unlike the
RhoA/actin/MKL1 pathway described
above, the Hippo pathway is insensitive to
changes in G-actin:F-actin ratio.51 Rather,

emerging evidence indicates that F-actin
structure and cell morphology regulate
YAP/TAZ localization and activity.51-53,55

G-actin Regulates Translation
Initiation in Times of Stress

Eukaryotic cells have mechanisms to
arrest protein synthesis and promote cell
survival in times of stress through the
action of kinases that phosphorylate
eukaryotic initiation factor-2-a (eIF2a/: -
This is known as the integrated stress
response (ISR).56 When stress is resolved,
the resumption of protein synthesis
requires eIF2a dephosphorylation by a
phosphatase complex comprised of a cata-
lytic domain (protein phosphatase 1
[PP1]) and a regulatory domain
(PPP1R15).57 Two recent papers together
indicate that G-actin associates with this
complex and is required for efficient
dephosphorylation of eIF2a.57,58 Deple-
tion of the G-actin pool with jasplakino-
lide causes PPP1R15A-PP1 complex
destabilization, thereby extending the
period of translation arrest. Thus, proper
orchestration of the ISR requires integra-
tion of signals from the actin cytoskeleton.

A Novel Mechanism of Post-
transcriptional Control of Gene
Expression: RhoA–Mediated
Dispersion of Cytoplasmic

Processing Bodies

Through our studies of a PB-regulating
virus, we discovered new links between
the non-canonical stress-responsive MK2/
hsp27/p115RhoGEF/RhoA signaling

pathway and the regulation of PB dynam-
ics. Our detailed investigation of the
mechanism of KSHV KapB-mediated
control of this pathway revealed signal
bifurcation downstream of RhoA activa-
tion, leading to 2 mechanistically distinct
outcomes; (i) ROCK1/2-dependent alter-
ations in cell shape, actin polymerization
and stress fiber formation, and enhanced
migratory and angiogenic capacity of pri-
mary ECs, (ii) ROCK1/2-independent
dissolution of PBs that correlated with
increased stability and translation of nor-
mally labile ARE-mRNAs. With so little
currently known about the dynamic regu-
lation of PBs, this represents an excellent
opportunity for further mechanistic stud-
ies. Here, we consider 3 possible models
for RhoA-mediated PB dissolution
(Table 2).

Model 1: PB disruption due to actin-
mediated translation control. Similar to
RhoA-mediated control of SRE transcrip-
tion and the ISR, PB disruption may
depend upon RhoA-induced stress fiber
formation and reduced G-actin:F-actin
ratio. If so, we predict that alteration of
actin dynamics in a RhoA-independent
manner will also affect PB size and num-
ber. These investigations are underway
and employ 2 toxins: jasplakinolide, that
causes aberrant F-actin bundles to form
and thus depletes cytoplasmic G-actin,
and latrunculin B, which depolymerizes
actin to increase G-actin levels.59 In this
model, PBs could be inhibited by ISR
potentiation and extended periods of
translation arrest that may disrupt the
bulk flow of mRNAs to nascent PBs.
Alternatively, PB formation could be
affected by modulation of MKL1 or
Hippo pathway signal transduction

Table 2.Models describing potential interactions between Rho-GTPases, the actin cytoskeleton and p-bodies

Model 1 Model 2 Model 3

PB disruption due to alterations in G-actin:F-actin ratios PB disruption by RhoA effector proteins PB disruption due to interference with linkage
to cytoskeleton

RhoA activation decreases ratio of G-actin:F-actin RhoA activation stimulates specific
downstream effector proteins.

RhoA activation stimulates specific
downstream effector proteins and/or
cytoskeleton alterations.

Decreased G-actin availability affects signal transduction
and/or the ISR.

Disrupts PB Formation by causing post-
translational modification or depletion of
key PB scaffolding proteins

Mechanical disruption interfering with PB
linkages to cytoskeleton, decreasing PB
formation

actin dependent actin independent actin dependent or independent
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(described above) in a previously
unappreciated fashion.

Model 2: PB disruption by
RhoA effector proteins. PB dis-
ruption could depend on down-
stream actions of known RhoA
effector proteins, including Rho-
associated kinases and Dia pro-
teins. Recent studies have pin-
pointed phosphorylation of PB
resident proteins as key to the con-
trol of their assembly.60-62 For
example, the direct phosphoryla-
tion of PB scaffolding protein Pat1
by cAMP-dependent protein
kinase PKA causes PB dissolution
and reduces cell survival in times
of stress.60 Similarly, several viruses
have been shown to accelerate the
decay of PB resident proteins, or
recruit PB resident proteins to viral
replication compartments to
enhance replication.63 We are
actively investigating whether indi-
vidual PB resident proteins are
degraded or modified to alter the
structural scaffolds required for PB
assembly.

Model 3: PB disruption due to
interference with linkage to cyto-
skeleton. Stationary PBs associate
with actin bundles whereas mobile
PBs connect to the microtubule
network,36,39,40 and these contact
sites may be disrupted by active
RhoA signaling and activation of
specific downstream effector pro-
teins. Alternatively, the formation
of particular F-actin structures
such as stress fibers may place a mechani-
cal strain on the linkage between PB
and cytoskeletal structures, mediating
their dissociation. Time-lapse live con-
focal microscopy will permit precise
measurements of PB dynamics in live
cells, tracking the changes that occur to
PBs, the actin cytoskeleton, and micro-
tubules immediately after RhoA
activation.

Viruses are excellent teachers, and the
study of KSHV has shed new light on a
poorly characterized MK2/hsp27/
p115RhoGEF/RhoA signaling pathway,
providing links to important aspects of
EC physiology. The most important ques-
tions now facing us relate to links between

this stress-regulated signaling pathway and
control of PB formation. Elucidating these
mechanistic details will expand our under-
standing of RhoA-mediated control of
gene expression.
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