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Themonitoring of the activation state
of Rho GTPases has emerged as a

potent innate immune mechanism for
detecting pathogens. In the March issue
of PLOS Pathogens, we show that the
activation of Rho GTPases by the CNF1
toxin during E. coli-triggered bacteremia
leads to a GR1Ccell-mediated efficient
bacterial clearing and improves host sur-
vival. Host alarm requires the Caspase-1/
IL-1beta signaling axis. Furthermore, we
discover that pathogenic bacteria have
the capacity to block immune responses
via the expression of the a-hemolysin
pore-forming toxin. In this commentary,
we will comment on these findings and
highlight the questions raised by this
example of attack-defense mechanisms
used alternatively by the pathogen and
the host during blood infection.

Introduction

The high incidence of human infec-
tions by Escherichia coli and the ensuing
deadly sepsis are critical public health
issues for developed countries. E. coli is a
versatile bacteria that exists as either a
commensal or a pathogen responsible for
both intra- and extra-intestinal infections.
The pathotypes of E. coli have been
defined by their capacity to express various
combinations of virulence factors encoded
by genes found on plasmids and/or large
genomic pathogenicity islands.1 Among
them, uropathogenic E. coli (UPEC) are
responsible for urinary tract infections
(UTI), including pyelonephritis, which is
a frequent cause of bacteremia.2 The pres-
ence of bacteria in the blood of patients is

a medical emergency associated with high
mortality rates.3

The virulence potential of UPEC has
been characterized. This virulence poten-
tial encompassed specific factors to colo-
nize the urinary tract and to promote
bacterial survival and inflammatory-based
damages to urinary tract epithelia. Several
types of virulence factors have been found
to be associated with UPEC, including
adhesins, flagellin, polysaccharide capsule,
iron uptake systems, and secreted toxins.1

Among these virulence determinants, the
2 highly prevalent toxins a-Hemolysin
(HlyA) and the Cytotoxic Necrotizing
Factor 1 (CNF1) have been characterized.
CNF1 is a Rho GTPases-targeting toxin
that deamidates the glutamine in position
61 of Rac and Cdc42, as well as the equiv-
alent glutamine 63 of RhoA, destroying
the GTPase activity and thereby locking
them into an active form.4-6 CNF1 shows
structural and functional homologies with
factors found in other pathogenic bacterial
species. This includes CNF2 from E. coli,
CNFy from Yersinia pseudotuberculosis
and DNT from Bordetella spp.4. More
recently, the effector VopC from Vibrio
parahaemolyticus that is injected through a
TTS3 secretion system was found to dea-
midate Rac1 and Cdc42.7

In vivo, CNF1 promotes the persis-
tence of UPEC and exacerbates the
inflammatory reaction during urinary
tract infection (UTI).8,9 Additionally,
cnf1 is found with high prevalence in uro-
septic strains of UPEC, raising the ques-
tion of its function during bacteremia.10

CNF1 and HlyA are found within the
same pathogenicity island (PAI) and are
co-transcribed under control of the same
master regulator RfaH.11 This genetic link
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between HlyA and CNF1 raises the ques-
tion of a possible concerted action of both
factors.

Rho GTPases are not only master regu-
lators of the actin cytoskeleton but also
central elements of the host responses
against pathogens.12 CNF1 has been
shown to induce NF-kB activation and to
promote cytokine secretion from uroepi-
thelial and endothelial cells.13-15 A series
of recent studies points to the capacity of
host cells to perceive the activity of toxin-
targeting Rho GTPase, leading to inflam-
matory responses that are likely detrimen-
tal to the persistence of bacteria.16-19 This
system of recognition of the activity of
toxins targeting Rho GTPase is related to
Effector–Triggered Immunity (ETI).19-21

Major innate immune signaling hubs
comprising NOD and RIP proteins are
essential in relaying Rho GTPase signaling
to NF-kB. As discussed below, our recent
data answer major questions raised by all
these findings.

Host Responses to Effector-
Triggered Rho GTPases

Modification During Bacteremia:
Anti-virulence Immunity

We established the anti-virulence effect
of the activity of a toxin-activating Rho
GTPase in the context of bacteremia and
the major consequences on resistance of
the host to infection.22 Several studies
indicate that the activation of Rho
GTPases engages effective innate immune
responses.19 To address the relevance of
ETI during infection, we chose the proto-
typic uropathogenic strain of E. coli
UTI89 in which we deleted the HlyA
gene to study the role of CNF1 without
the interference of HlyA. We then estab-
lished the kinetics of bacterial persistence
in the blood. Our initial observation was
that the CNF1-expressing strain of E. coli
is cleared from the blood faster than the
isogenic cnf1-deleted mutant. Comple-
mentation of the CNF1-deleted strain
with a plasmid encoding either CNF1 or
the catalytic inactive mutant allowed us to
link the bacterial clearing effect to the
activity of the CNF1 toxin. Importantly,
we measured that this rapid clearing of E.
coli-expressing CNF1 was associated with

a dramatic increase of the survival of mice
during bacteremia. Because CNF1 is a vir-
ulence factor, we named this phenomenon
Anti-Virulence Immunity (AVI). We
moved on to search for host factors that
mediate the anti-bacterial clearing upon
the detection of CNF1 activity.

IL-1beta is Critical for The CNF1-
Triggered Bacterial Clearing

During Bacteremia

IL-1beta is a potent pro-inflammatory
cytokine that is produced by innate
immune cells as a precursor that has to be
cleaved by caspase-1 or caspase-11 to form
mature IL-1beta.23 Mature IL-1beta is
involved in a variety of cellular processes,
such as immune cell activation, prolifera-
tion, differentiation and pyroptosis.23 We
observed that Caspase-1/11 impaired
mice have a decreased AVI, resulting in an
increased bacterial load in the blood.
Moreover, the injection of IL-1 Receptor
antagonist (KINERET) was found to
block the clearing of bacteria-expressing
CNF1, pointing to the important role of
IL-1beta. KINERET treatment of rabbits
infected with community-acquired Staph-
ylococcus aureus also increased the bacterial
burden in the lung.24 Together, these
results suggest that KINERET may be
more adaptable to local rather than sys-
temic treatments.

Rho GTPases: Linking TLR and
Inflammasome Signaling?

Rho GTPases are master regulators of
the cell cytoskeleton and key elements of
the host responses against pathogens.
Indeed, they control leukocyte phagocyto-
sis, migration and the production of reac-
tive oxygen species.12,25 They also control
expression of inflammatory cytokine and
chemokine.15 Recent reports have revealed
the crucial role of Rho GTPases and nota-
bly Rac as drivers of the innate immune
signaling pathways.26 Our work previ-
ously established that the activation of
Rho GTPases engages protective immune
responses in Drosophila.16 Now, we show
that the simultaneous activation of Rho
GTPases and TLR signaling pathways

engages protective immune responses dur-
ing bacteremia in mammals.22 We also
show that IL-1beta secretion is synergisti-
cally induced by macrophages when
CNF1 and LPS treatments are combined.
This synergy is also found when CNF1 is
combined with TLR2 agonists such as
PAM3CSK4 or FSL-1. These data suggest
that TLR4 or TLR2 signaling pathways
synergize with the signaling pathways
engaged by CNF1 activity to promote effi-
cient inflammatory responses.22 The
increase of immune responses observed
when the host interacts with strain-
expressing virulence factors activating Rho
GTPases could be an innate immune
mechanism to gauge the effective viru-
lence of bacterial strains and to adapt
commensurate anti-bacterial responses.
Following this idea, we speculate that the
acquisition by the host of multiple
immune detection pathways acting in syn-
ergy is necessary to confer immunity to
the host. In support of this idea, the col-
laboration of TLR and NLR signaling
pathways was found to be critical for the
maturation of haematopoietic cells and T
cell effector function.27,28 The combining
of agonists of immune sensors is likely a
promising strategy for the development of
the next generation of vaccination
adjuvant.29

Neutralizing Rho GTPases
Downstream Effects to Block AVI

and Promote Virulence

More than one third of UPEC are pos-
itive for cnf1. How can one reconcile the
presence of CNF1 in pathogenic strains
with our findings that the toxin triggers
effective anti-bacterial responses? Genetic
studies have also revealed that cnf1 is
always associated with the a-hemolysin
operon and that both toxin-encoding
genes are co-transcribed. We now show
that this genetic link is translated into a
cooperative mode of action between the
toxins favoring the persistence of patho-
genic bacteria during bacteremia. We
demonstrate that the strains that express
HlyA have a reduced expression of IL-
1beta cytokine that is associated with a
lower persistence in the blood. Thus,
HlyA dampens the innate immune
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responses triggered by CNF1 with little
effect on the strain deleted from CNF1.
The details regarding the molecular mech-
anisms that withstand the inhibition of
innate immune responses in this context
have yet to be determined. One possible
explanation is that HlyA disrupts NF-kB
signaling via activation of host serine pro-
teases as described during UTI.30 Such a
hypothesis is consistent with our findings
that HlyA acts downstream from the acti-
vation of Rac and upstream from the
secretion of IL-1beta. This provides fur-
ther evidence of the importance of patho-
gens to target the caspase-1/IL-1beta
signaling axis.31-34 Furthermore, this
ascribes a new virulence function to HlyA
pore forming toxin with dramatic conse-
quences for host survival.
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