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ABSTRACT
VE-cadherin-based cell-cell junctions form the major restrictive barrier of the endothelium to plasma
proteins and blood cells. The function of VE-cadherin and the actin cytoskeleton are intimately
linked. Vascular permeability factors and adherent leukocytes signal through small Rho GTPases to
tightly regulate actin cytoskeletal rearrangements in order to open and re-assemble endothelial
cell-cell junctions in a rapid and controlled manner. The Rho GTPases are activated by guanine
nucleotide exchange factors (GEFs), conferring specificity and context-dependent control of cell-cell
junctions. Although the molecular mechanisms that couple cadherins to actin filaments are
beginning to be elucidated, specific stimulus-dependent regulation of the actin cytoskeleton at VE-
cadherin-based junctions remains unexplained. Accumulating evidence has suggested that
depending on the vascular permeability factor and on the subcellular localization of GEFs, cell-cell
junction dynamics and organization are differentially regulated by one specific Rho GTPase. In this
Commentary, we focus on new insights how the junctional actin cytoskeleton is specifically and
locally regulated by Rho GTPases and GEFs in the endothelium.
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Introduction

The endothelium covers the internal surface of blood ves-
sels and controls the exchange of solutes, macromolecules
and cells from blood to the underlying tissue. The adhe-
rens junction component vascular endothelial cadherin
(VE-cadherin) is crucial to preserve endothelial barrier
function. VE-cadherin regulates several aspects of endo-
thelial biology, including permeability, leukocyte extrava-
sation and blood vessel morphogenesis.1 The extracellular
domain of VE-cadherin forms adhesive contacts between
neighboring endothelial cells.2 VE-cadherin-based junc-
tions are strengthened by the actin cytoskeleton, which
interacts with cadherins through proteins of the catenin
family.3 p120-Catenin binds directly to the membrane-
proximal region of the cytoplasmic domain of VE-cad-
herin. b-Catenin and g-catenin also associate directly
with the cadherin cytoplasmic tail and serve as a scaffold
to anchor a-catenin, which is a key mediator between
cadherin and the actin cytoskeleton.4

Although the cadherin-catenin complex is commonly
described as the ‘core’ VE-cadherin complex, many other

proteins can associate, such as scaffolding proteins and
cytoskeletal regulators.3,5 Some of these proteins, includ-
ing vinculin,6-11 epithelial protein lost in neoplasm
(EPLIN)12,13 a-actinin14 and afadin,15,16 have been found
to bind to both a-catenin and actin and are therefore
suggested to act as a link between the cadherin-catenin
complex and actin. However, biochemical studies
showed that a minimal cadherin-catenin complex con-
sisting of E-cadherin, b-catenin and aE-catenin can
directly bind to filamentous actin (F-actin). Strong inter-
action of this minimal cadherin-catenin complex to actin
requires force.17 Interestingly, binding of vinculin to aE-
catenin has also been demonstrated to be stabilized by
tension.18,19 In endothelial cells, force exerted on cell-cell
junctions was shown to recruit vinculin, which protected
VE-cadherin junctions against opening.11 Together,
these data suggest that tension on junctions may pro-
mote binding of cadherin/b-catenin as well as vinculin
to a-catenin, resulting in their re-enforcement and
growth. Conversely, increased actomyosin generated
pulling force is important for opening of endothelial cell-
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cell junctions in response to permeability-inducing fac-
tors.20 By altering the magnitude and direction of the
forces that are exerted on cell-cell junctions, actin cyto-
skeleton rearrangements can change the integrity of VE-
cadherin-based cell-cell junctions.21 Thus, a finely bal-
anced regulation of actin network organization, together
with myosin-II activity, is needed to produce mechanical
forces that drive assembly, maintenance and remodeling
of adherens junctions (Fig. 1).

To achieve complete understanding of the tightly
regulated spatial organization of cytoskeletal net-
works near junctions, we need to understand the
dynamic signaling network in which Rho GTPases
and their activators, GEFs, take part and how they
impinge on actomyosin organization. We recently
showed that binding of the GEF Trio to VE-cadherin
is a crucial event to stabilize endothelial cell-cell
junctions.22 Trio displays 2 GEF domains of distinct
specificity, enabling activation of multiple Rho
GTPases: Rac1, RhoG and RhoA.23,24 Our findings
suggest that by activating Rac1 at junctions, Trio
promotes the formation of cortical actin bundles
adjacent to the junction, which is concomitant with
the stabilization of cell-cell junctions and supports
endothelial barrier function. Of note, the role of
Rac1 in endothelial cell-cell adhesion seems contra-
dictory in some occasions, as Rac1 has also been
described to be involved in regulation of loss of VE-
cadherin-based cell-cell contacts.25-27 This highlights
the importance of the context-dependent and spatio-
temporal regulation of Rac1 activity by GEFs at cell-
cell junctions. Here, we will discuss how the local
architecture of the actin cytoskeleton in proximity to
cell-cell junctions is regulated by different GEFs and

Rho GTPases and how this influences endothelial
barrier function.

Actin at endothelial cell-cell junctions

F-actin characteristically concentrates at cadherin adhe-
sion sites and can influence cell-cell junctions in different
ways. The appearance of junctional actin differs between
quiescent endothelium and endothelium that is chal-
lenged by permeability-inducing factors. In quiescent
endothelium, junctions are aligned by thick cortical actin
bundles. These cortical actin networks are regularly
observed in close proximity to linear junctions, which
show a continuous VE-cadherin labeling, and likely sup-
port the stabilization of cell-cell junctions.21 Challenging
the endothelium, e.g., by permeability-inducing factors,
induces cell-cell junction destabilization and is associated
with the presence of radial contractile actin bundles.
These radial F-actin bundles are perpendicular oriented
and terminate at discontinuous cell-cell junctions. To
discriminate between the distinct junction morphologies,
we will refer to these junctions as focal adherens junc-
tions (FAJs).3,11

Regulation of actin dynamics during endothelial
cell-cell junction remodeling

Many kinds of dynamic actin-based structures and
organizations exist, depending on the proteins that bind
to it.28 Endothelial cells use distinct actin-based struc-
tures at different stages during the process of cell-cell
junction formation, maintenance and remodeling, as was
described in detail by Hoelzle and colleagues.29 Initial
cell contact formation is driven by protruding lamellipo-
dia of adjacent cells. Lamellipodia are generally initiated
by the activated actin-related protein (ARP) 2/3 complex
that induces actin nucleation and branching. Subse-
quently, retraction of lamellipodia leads to the formation
of filopodia-like bridges connected through adherens
junctions. This is accompanied by the recruitment of fas-
cin and Myosin II activity. These bridges mature into
stress fibers and are thought to strengthen the nascent
junction by maintaining cells in close proximity to each
other, which increases the chance of junction expan-
sion.29 In contrast to endothelial cells which undergo
multiple lamellipodia protrusion-retraction cycles during
junction initiation,30 epithelial cells do not display a tran-
sition from lamellipodia to filopodia. Upon contact for-
mation, cadherin molecules that were previously
diffusing in the plasma membrane engage in homophilic
interactions and form clusters. This homophilic ligation
of cadherins triggers actin cytoskeleton rearrangements,
driving contact expansion and stabilization.31 Thus,

Figure 1. Organization of the actin cytoskeleton at endothelial
cell-cell junctions. Left: Focal adherens junctions, or zipper-like
junctions, are supported by radial actin bundles that exert ten-
sion on junction regions resulting in instable junctions and
reduced integrity. Right: Linear junctions show the presence of
cortical or so-called circumferential actin bundles that promote
junction stability.
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there is bidirectional interplay, and cadherin ligation has
been demonstrated to recruit several actin regulators,
including Rac1, Cdc42, Arp2/3, cortactin, N-WASP and
Ena/VASP.32-36 37-40

Actin-driven membrane protrusions are not only
required for nascent cell-cell junction formation, but are
also described to be important for maintenance of integ-
rity of mature junctions.41,42 At gaps between individual
VE-cadherin clusters, lamellipodia arise and induce
membrane overlap of adjacent cells. These structures
were recently designated as junction-associated intermit-
tent lamellipodia (JAIL).41 JAIL are described to facilitate
lamellar-like VE-cadherin adhesion sites that are incor-
porated into the cell junctions upon JAIL retraction. By
driving VE-cadherin dynamics, JAIL are suggested to
allow adherens junctions to rapidly respond to inflam-
matory agents and growth factors.

Recently, Hultin and colleagues showed that the
scaffolding protein AmotL2 links the VE-cadherin
complex to MAGI-1 and actin filaments and in this
way controls forces between neighboring cells via the
cell-cell junctions.43 They additionally show that this
interaction is required for the opening of the vascular
lumen during vascular development. Yamamoto and
colleagues revealed the importance of b1-integrins in
the stabilization of cell-cell junctions.44 They demon-
strate that integrin b1 is indispensable for proper
localization of VE-cadherin, which is required for the
formation of stable, non-leaky blood vessels. Thus,
endothelial cell-cell junctions are highly dynamic and
tightly regulated and there is interplay between cell-
extracellular matrix adhesion and cell-cell adhesion
within the blood vessel. Interestingly, Zovein and co-
workers showed that b1-integrin is required for arte-
rial endothelial cell polarity and lumen formation
during development.45 This involves the polarity gene
Par3 which is down regulated in b1-deficient endo-
thelial cells and animals lacking endothelial b1 die at
E9.5 and 10.46 Recently, Barry and colleagues showed
the importance of VE-cadherin and the small GTPase
Cdc42 in opening the vascular lumen.47 Hence, b1-
integrins may be directly or indirecty linked to VE-
cadherin during vessel development. If this interac-
tion occurs during the maturation of vessels remains
to be seen. But although focal adherent proteins such
as vinculin 11 and also paxillin, FAK48 and zyxin49

have been detected in adherens junctions to co-local-
ize with VE-cadherin under certain conditions (e.g.,
tension-induced or S-1-P), there is no complete
understanding how integrins and VE-cadherin may
collaborate or cross-talk to regulate the vascular bar-
rier in matured junctions. In the next section, we
focus more on the signaling pathways that control

junctional actin remodeling and thereby determine its
function.

Endothelial adherens junction control by
Rho GTPases

Members of the Rho family of small GTPases are known
to reorganize junction-associated actin and thereby regu-
late cell-cell adhesion. Small Rho GTPases cycle between
an active GTP-bound state and an inactive GDP-bound
state.50 In the activated state, Rho GTPases bind effector
proteins to initiate a downstream response. Activation of
Rho GTPases is mediated by guanine nucleotide-
exchange factors (GEFs) that catalyze the exchange of
GDP for GTP.51 Conversely, GTPase activating proteins
(GAPs) enhance the intrinsic GTPase activity to inacti-
vate the protein. Moreover, guanine-nucleotide-dissocia-
tion inhibitors (GDIs) sequester the GTPase within the
cytosol and stabilize the GDP-bound state.52 RhoA and
Rac1 are the so far best-characterized Rho GTPases.

The predominant effect of RhoA activation is forma-
tion of radial stress fibers and increased contractility,
leading to enhanced vascular permeability. Effector pro-
teins involved in RhoA-mediated signaling include the
Rho-kinases (ROCKs), which further signal to Myosin
Light Chain to stimulate actomyosin contraction.53 This
has been shown to be essential for permeability induced
by thrombin, VEGF, histamine and TNF-a.54-56 In con-
trast, RhoA activation in response to angiopoietin-1 has
been described to result in cell-cell junction stabilization.
This endothelial barrier-protective effect of RhoA in
response to angiopoietin-1 is mediated via the Rho-effec-
tor mDia, inducing actin polymerization.57

Rac1 is often reported to be required for endothelial bar-
rier maintenance and stabilization. Various barrier-stabiliz-
ing mediators activate Rac1, including sphingosine 1-
phosphate (S1P) and angiopoietins.58-60 Barrier-protective
cAMP signaling activates Rac1 indirectly via the Ras-
GTPase Rap1.61,62 In addition, Rac1 activation downstream
of thrombin promotes reassembly of cell-cell junctions dur-
ing the endothelial barrier recovery phase.22,63 To promote
(re)assembly of cell-cell junctions, Rac1 induces formation
of lamellipodia protrusions. Using a novel FRET-based
Rac1 biosensor we observed a global increase of Rac1 activa-
tion in these protrusions at the periphery of the endothelial
cell. Rapidly after adjacent cells contacted each other, high
Rac1 activity was measured locally at the nascent junction.
This local Rac1 activity co-localized with a-catenin, one of
the VE-cadherin complexmembers, and likely stabilized the
nascent contacts by promoting the formation of cortical
actin bundles.22 In line with this finding, a rapid increase in
Rac1 activity upon VE-cadherin homotypic adhesion was
detected biochemically, which was induced using beads
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coated with the VE-cadherin ectodomain. Thus, as was
shown for E-, M- and N-cadherin,64-67 we showed that VE-
cadherin can signal in an outside-in fashion to activate
Rac1, providing a bidirectional feedback mechanism.22 Of
note, ongoing local remodeling of cell-cell junctions is
observed even in apparently stable endothelial monolayers.
The involvement of Rac1 in maintenance of the endothelial
barrier may, in part, reflect its requirement during cell-cell
junction reassembly. In mature junctions, Rac1 activation
was also recently demonstrated to reduce the rate of VE-
cadherin dissociation, by using a photo-activatable probe to
locally activate Rac1 at adherens junctions. Rac1 was shown
to stabilize theVE-cadherin trans-interaction by counterbal-
ancing RhoA-mediated actomyosin tension.68

Nevertheless, Rac1 activation also causes loss of cell-
cell contacts upon stimulation of endothelial cells with
VEGF, PAF and TNF-a, as well as clustering of vascular
cell adhesion molecule (VCAM)-1.25,69-73 These data
seem to be conflicting; however, they in fact underlie the
importance of understanding the particular GEF-
GTPase-effector complexes that are locally activated
under resting and inflammatory conditions. We have

summarized this in Figure 2. Thus, distinct spatiotempo-
ral activation of these Rho GTPases can have different
effects on endothelial junction organization and func-
tional outcome. In many studies only global, but no local
Rho-GTPase-mediated signaling events are detected.
The effect of Rho-GTPase activity on cell-cell junctions
also depends on the stimulus, demonstrating that the
route of activation is critical.

In epithelial cells, Yamada and colleagues studied the
localization of RhoA and Rac1 activation during junction
formation using a Raichu FRET-based biosensor.74 They
demonstrated that Rac1 activity is high at the periphery
of contacting membranes, triggering initiation of cell-cell
adhesion. In addition, RhoA activity at the contact edges
was required to drive expansion and completion of the
epithelial cell-cell junction.74 To what extent this study
on spatiotemporal activation of Rho GTPases during epi-
thelial cell contact formation also applies to VE-cad-
herin-based cell-cell junctions in endothelia remains to
be explored.75

Another key player in endothelial cell-cell junction
formation is the small GTPase Rap1.76 Rap1 can be

Figure 2. Regulation of VE-cadherin-based cell-cell adhesion by Rho-GTPases. Rho-GTPase signaling can either promote stabilization or
disruption of cell-cell junctions. The effect of Rac1 and RhoA activity on cell-cell junctions depends on the stimulus. Different activation
routes impact on distinct GEFs and effectors, specifying Rho-GTPase signaling. For details see main text.
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artificially stimulated using the cAMP analog 8-pCPT-
20OMe-cAMP (also known as 007),77 which directly
stimulates the Rap-GEF EPAC. Using this cAMP analog,
Rap1 activation was shown to require VE-cadherin to
improve the barrier function.76,78,79 Noda and coworkers
showed that Rap1 activity promotes the stability of cell-
cell junctions by reducing the mobility of VE-cadherin.80

More specifically, they showed that active Rap1 promotes
the formation of circumferential actin bundles. In turn,
VE-cadherin is connected to these bundles through a-
and b-catenin. As a follow up, the same group showed
that Rap1 activates Cdc42 through the Rho-GEF
FGD5.81 This includes the local phosphorylation of myo-
sin light chain (MLC) by the myotonic dystrophy-kinase
related Cdc42-binding kinase (MRCK). Interestingly, a
study by the Bos lab showed that Rap1 activation results
in inhibition of RhoA activity, releasing tension from the
junction region and thereby promoting stabilization of
endothelial cell-cell junctions.82-84 Mechanistically they
showed that the adapter protein Ras-interacting protein
1 (Rasip1) is involved in the formation of the endothelial
barrier by forming a complex with Rap1 and promoting
its activity.83 This results in the recruitment of ARH-
GAP29, a GAP that inactivates RhoA. Thus, by recruit-
ing ARHGAP29, RhoA activity is believed to be locally
inhibited, releasing junctional tension and thereby pro-
moting cell-cell junction interaction.85,86

Endothelial Rho-GEFs and adherens junctions

GEFs outnumber their target Rho-GTPase by more than
3-fold.51 Therefore, different GEFs likely control different
pools of the Rho GTPases, which directs local signaling
pathways resulting in different outcomes.52 Thus far, a
small number of studies aimed to unravel the precise role
of different GEFs in the regulation of endothelial cell-cell
junctions under resting and inflammatory conditions.
An example of a RhoA-GEF localizing at cell-cell con-
tacts is Syx, which promotes junction integrity by activat-
ing mDia. Of interest, VEGF-induced translocation of
Syx away from cell-cell junctions resulted in junction dis-
assembly, whereas angiopoietin-1 stabilized junctions by
maintaining Syx at the junctions.87 The knowledge of
Rac1-GEFs that participate in VE-cadherin signaling is
also quite limited. Lampugnani and colleagues studied
the effect of VE-cadherin expression on Rho-GTPase
activity.88 Compared with VE-cadherin-deficient endo-
thelial cells, VE-cadherin-reconstituted cells showed
increased Rac1 activity and decreased activation of
RhoA. This increase in Rac1 activity was suggested
to be mediated by the GEF Tiam-1, since expression of
VE-cadherin increased protein and mRNA levels of
Tiam-1 and induced its localization at cell-cell

junctions.88 Others showed that endothelial junction dis-
ruption in response to TNF-a was mediated by the GEF
P-Rex1 through activation of Rac1. The P-Rex1-Rac1 sig-
naling axis was described to induce generation of reactive
oxygen species (ROS).89 ROS in turn increases vascular
permeability by actin reorganization or by inactivating
junction-associated phosphatases.90,91 Moreover, VEGF-
induced Rac1 activation has been demonstrated to be
regulated by the GEF Vav2, leading to generation of ROS
and VE-cadherin internalization.25,92,93

We recently showed that the multi-domain GEF Trio
interacts with VE-cadherin. Trio is a member of the Dbl-
family, containing 2 Dbl-homology-Pleckstrin-homoly
(DH-PH) Rho-GEF units. In addition, Trio encodes an
N-terminal putative lipid-transfer SEC14 domain, 9
spectrin-repeats, 2 SH3-domains, an Ig-like domain and
a C-terminal serine/threonine kinase domain.94-101 The
presence of these numerous domains indicates that Trio
may function as an integrator of multiple signaling path-
ways. Trio is unique in that it can activate Rac1, RhoG
and RhoA with its 2 separate GEF units.94-96 This diver-
sity in Trio-targeted Rho GTPases seems contradictory
since RhoA and Rac1 have apparent antagonistic effects.
However, Rac1 and RhoA activity may be required at the
same location but not at the same time. Our recent data
allow us to propose a model that implicates the Rho-
GEF Trio as an important regulator of endothelial adhe-
rens junctions (Fig. 3). During cell-cell junction (re-)
assembly, initial cell-cell contact formation is promoted
by Rac1 activity in the cell periphery, which occurs inde-
pendent of Trio and induces lamellipodia protrusions.
Subsequent trans-interactions between VE-cadherins
from adjacent endothelial cells trigger outside-in signal-
ing resulting in the recruitment of Trio to the intracellu-
lar tail of VE-cadherin and a local Trio-mediated
activation of Rac1, specifically at the cell-cell junctions.22

This local Rac1 activity supports reorganization of the
actin cytoskeleton in close proximity to the nascent con-
tacts, promoting the switch of FAJs into linear junctions.
In this model, Trio facilitates the transition from
nascent-to-stable VE-cadherin-based cell-cell junctions
and promotes the integrity of the endothelial monolayer.
When cell-cell junctions are destabilized or physically
disrupted, Trio dissociates from the VE-cadherin com-
plex and is unable to promote Rac1 activity at cell-cell
junction areas. Our data reveal an important and
dynamic role for Trio to regulate the integrity of the
endothelial barrier.

Although our findings indicate that junction forma-
tion is specifically associated with Trio-mediated Rac1
activation, our data do not exclude that Trio-mediated
RhoA activation also can contribute to VE-cadherin-
mediated cell-cell adhesion. In this regard, development
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of a specific inhibitor against the C-terminal domain of
Trio, including its RhoA-GEF domain, may help to eluci-
date whether Trio may be capable to activate both Rac1
and RhoA in a spatially and temporally coordinated
manner during the process of cell-cell junction remodel-
ing. Of interest, Trio has been previously described by
our group to control transendothelial migration of leuko-
cytes by simultaneous induction of RhoG and Rac1 acti-
vation upon clustering of the adhesion receptor ICAM-
1.102 Up to now, the mechanisms by which the individual
domains of Trio are activated and by which distinct Rho
GTPases are targeted are unclear.103

Concluding remarks

A particular Rho-GTPase can be part of signaling mech-
anisms that have opposing effects on endothelial cell-cell
junctions. Local and time-dependent Rho-GTPase activ-
ity is crucial to ensure an optimal endothelial barrier
function. Complexity of junction regulation is further
increased by the bidirectional interplay between Rho
GTPases and cadherins: Rho-GTPase activity can modu-
late cell-cell adhesion directly, but vice versa, engage-
ment of cadherins upon cell-cell junction assembly can
also stimulate or inhibit the activities of Rho
GTPases.22,104,105 Hence, in addition to their structural
role in mediating strong homotypic cell-cell adhesion,
cadherins have the signaling capacity to regulate Rho-
GTPase activity. A comprehensive view of the complex
interplay between VE-cadherin, GEFs and Rho GTPases
during diverse endothelial processes is still missing. A
key issue for future research in this regard will be how
Rho GTPases are localized to and activated at VE-cad-
herin-based cell-cell contacts. This will include study of
GEFs in combination with the use of biosensors,
enabling us to measure spatial and temporal activation
of small GTPases. Eventually, understanding the molecu-
lar basis for vascular permeability, including signaling
mechanisms regulating closure of endothelial junctions,

will help to discover new therapeutic targets for diseases
that involve excessive permeability or uncontrolled leu-
kocyte infiltration into tissues.
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