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tRNA synthase suppression activates de novo cysteine synthesis to compensate for
cystine and glutathione deprivation during ferroptosis
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ABSTRACT
Glutathione is a major endogenous reducing agent in cells, and cysteine is a limiting factor in glutathione
synthesis. Cysteine is obtained by uptake or biosynthesis, and mammalian cells often rely on either one or
the other pathway. Because of the scarcity of glutathione, blockade of cysteine uptake causes oxidative
cell death known as ferroptosis. A new study suggests that tRNA synthetase suppression activates the
endogenous biosynthesis of cysteine, compensates such cysteine loss, and thus makes cells resistant to
ferroptosis.
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Defining the connections between metabolic pathways may
illuminate therapeutic strategies for treating dysregulated
metabolism, tumors, and degenerative disease. Glutathione is a
major endogenous reducing agent that protects cells from oxi-
dative stress. Inhibition of glutathione synthesis depletes the
glutathione pool in cells; for example, buthionine sulphoximine
(BSO) inhibits glutamate-cysteine ligase, the first step in gluta-
thione synthesis, and induces oxidative stress.1 Glutathione is a
linear tripeptide, consisting of glutamate, glycine, and cysteine.
Of the 3 precursor amino acids, cysteine contributes primarily
to the cofactor’s reduction potential—its thiol group acts as an
electron donor. Glutathione-dependent oxidoreductases, such
as glutathione peroxidases (GPXs), transfer 2 electrons from
glutathione to effect substrate reduction. Moreover, cysteine is
a limiting factor for glutathione biosynthesis and a decrease in
cysteine abundance leads to glutathione depletion.

Cysteine can be obtained by mammalian cells in 2 ways.
First, the cells can obtain cysteine by importing cystine, the oxi-
dized disulfide of cysteine, via the cystine-glutamate antiporter
system xc

-.2 Mammalian cells can also synthesize cysteine de
novo utilizing 2 amino acids, methionine and serine in a pro-
cess known as the transsulfuration pathway.3 When cells rely
on cystine uptake via system xc

- as the primary source of cyste-
ine, inhibition of system xc

- causes depletion of cysteine, which
subsequently depletes glutathione and can induce oxidative
stress and subsequent cell death through a regulated, non-apo-
ptotic form of cell death termed ferroptosis.4,5 This is the lethal
mechanism that ensues after pharmacologic inhibition of sys-
tem xc

- by the neurotransmitter glutamate or the small mole-
cule erastin. This process is also relevant to some brain and
kidney pathologies.4,5 It has been found that glutathione deple-
tion inactivates glutathione peroxidase 4 (GPX4), a critical cel-
lular antioxidant enzyme that detoxifies lipid hydroperoxides.6

Inhibition of GPX4 enzymatic activity allows accumulation of
overwhelming amounts of lipid peroxides, leading to
ferroptosis.

Recently, genome-wide siRNA screening for suppressors of
ferroptosis revealed that knockdown of cysteinyl-tRNA synthe-
tase, encoded by the CARS gene, inhibits erastin-induced fer-
roptosis in multiple human and rat cell lines.7 Although
erastin- or glutamate-induced lethality was suppressed by
CARS knockdown, other classes of ferroptosis-inducing agents,
such as inhibitors of glutathione synthesis (e.g., BSO) or GPX4
enzymatic activity, were not suppressed by CARS knockdown
(Fig. 1). This indicates that CARS knockdown specifically inter-
feres with ferroptosis induced by cysteine deprivation caused
by erastin and glutamate. In fact, metabolomic profiling
revealed that CARS knockdown increases cysteine levels in
cells. Although the abundance of glutathione itself does not
change upon CARS knockdown, the level of cysteinyl glutathi-
one disulfide (CSSG) increases; CSSG may then be reduced to
form cysteine and glutathione. Thus, an intriguing hypothesis
is that CARS knockdown increases cysteine abundance and
thus glutathione synthesis; in addition, excess glutathione may
be stored as CSSG, which is reduced to recover glutathione as
needed. This view that glutathione abundance is increased by
CARS knockdown is supported by the fact that CARS knock-
down partially suppressed glutathione depletion upon erastin
treatment. Although the regulatory mechanism by which the
glutathione level is maintained is not fully understood, this dis-
covery highlights an important new connection between cyste-
ine and glutathione metabolism.

A logical question that emerges is how CARS knockdown
increases the cysteine pool. CARS knockdown activates de novo
cysteine synthesis via upregulation of the transsulfuration path-
way (Fig. 1). In fact, not only CARS knockdown, but also
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inhibition of some other tRNA synthetases (ARS), including
histidyl-tRNA synthetases (HARS) or glutamyl prolyl-tRNA
synthetases (EPRS), were also shown to activate the transsulfu-
ration pathway and rescue cells from erastin-induced ferropto-
sis; transcriptional expression of cystathionine-b-synthase
(CBS), a rate-limiting enzyme of the pathway,8 was significantly
upregulated in response to knockdown of these genes. The sup-
pressive effect of their knockdown on ferroptosis disappeared
when the transsulfuration pathway was pharmacologically or
genetically inhibited, confirming that ARS knockdown activates
the transsulfuration pathway as a mechanism for preventing
ferroptosis.

This study raises a number of intriguing questions. First,
why does knockdown of some, but not all, ARS activate cyste-
ine synthesis instead of the corresponding amino acids relevant
to each synthase? We suspect that ARS suppression that inhib-
its ferroptosis activates the transcription factor activating tran-
scription factor 4 (ATF4) (Fig. 1), which is activated in
response to amino acid deprivation and uncharged tRNAs.9

ARS inhibition increases the presence of uncharged tRNAs,
which is a signal for amino acid scarcity, and activates ATF4
expression. ATF4 alters amino acid metabolism pathways, and
the transsulfuration pathway is likely one of them.

Second, why is activation of the transsulfuration pathway
not the general response to cystine deprivation in all cells?
Some cells rely on the transsulfuration pathway as a major sup-
ply of cysteine.10 De novo cysteine synthesis induced by CARS
knockdown is not sufficient to fully suppress the consequences
of glutathione deprivation. Methionine, an essential amino acid
and the sole source of sulfur for cysteine biosynthesis, is needed
for other biochemical reactions such as methylation; redistrib-

uting the metabolic flux of methionine may involve expensive
rewiring of metabolic networks. Nonetheless, the finding that
loss of CARS suppresses ferroptosis has revealed an unexpected
connection between the pathways governing protein synthesis,
metabolism and cell death, providing insight into how cells
cope with stresses to homeostatic networks.
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Figure 1. Inhibition of tRNA synthetases restores glutathione from the effects of
cystine deprivation in ferroptosis. Ferroptosis-susceptible cells rely on cystine
uptake as the primary source of cysteine. However, tRNA synthetase (ARS) inhibi-
tion can activate the transsulfuration pathway to synthesize cysteine. The dashed
arrow indicates the hypothetical mechanism by which ATF4 activates the transsul-
furation pathway through ARS inhibition. Compounds in green indicate ferroptosis
inducers targeting different points. ARS, tRNA synthetase; ATF4, activating tran-
scription factor 4; BSO, buthionine sulfoximine; Cys-Cys, cystine; GPX4, glutathione
peroxidase 4; Met, methionine; Ser, serine.
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