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ABSTRACT Epistasis plays a significant role in the genetic architecture of many complex phenotypes in model organisms. To date, there
have been very few interactions replicated in human studies due in part to the multiple-hypothesis burden implicit in genome-wide tests of
epistasis. Therefore, it is of paramount importance to develop the most powerful tests possible for detecting interactions. In this work we
develop a new SNP–SNP interaction test for use in case-only trio studies called the trio correlation (TC) test. The TC test computes the
expected joint distribution of marker pairs in offspring conditional on parental genotypes. This distribution is then incorporated into a
standard 1 d.f. correlation test of interaction. We show via extensive simulations under a variety of disease models that our test substantially
outperforms existing tests of interaction in case-only trio studies. We also demonstrate a bias in a previous case-only trio interaction test
and identify its origin. Finally, we show that a previously proposed permutation scheme in trio studies mitigates the known biases of case-
only tests in the presence of population stratification. We conclude that the TC test shows improved power to identify interactions in
existing, as well as emerging, trio association studies. The method is publicly available at www.github.com/BrunildaBalliu/TrioEpi.
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GENETIC association studies, especially in humans, have
focused primarily onmarginal effects of genetic variants.

While this approach has successfully identified thousands of
variants associatedwithhundreds of complexhumandiseases
(Hindorff et al. 2009), it ignores the role of epistasis in shap-
ing phenotypes. Recent work in model organisms has shown
that epistasis is amajor contributor to broad sense heritability
(Ayroles et al. 2009; Ackermann and Beyer 2012; Bloom et al.
2013) and interactions have been repeatedly posited as a key
component of missing heritability in humans (Gibson 2012;
Zuk et al. 2012). Furthermore, identification of epistatic in-
teractions provides important insights into the functional or-
ganization of molecular pathways (Carlborg and Haley 2004;
Brem et al. 2005; Cordell 2009; Ayroles et al. 2009; Ma et al.
2012a,b, 2013).

One of the major obstacles in the identification of interac-
tions in genetic association studies is the multiple-hypothesis

correction penalty induced by the examination of millions of
pairs of SNPs. Therefore, it is of fundamental importance to
develop themost powerful possible test statistic when search-
ing for interactions. In this work we are concerned with
tests for epistasis in case-only trio studies in which mother–
father–offspring trios are genotyped and the offspring is a
carrier for the disease of interest or the phenotype of interest
is fitness.

There currently exist three classes of test for interaction
between pairs of markers in case-only trio studies. First, case-
only interaction tests can be used directly by discarding the
genotypes of theparents. These includea standard correlation
(SC) test between pairs of SNPs or haplotypes, where the null
hypothesis is no correlation between genotypes at the two
loci (Wellek and Ziegler 2009), which we consider here. Sim-
ilar to the SC test, the case-only interaction test proposed by
Piegorsch et al. (1994) compares the distribution of the prod-
uct of genotypes at a pair of SNPs to the expectation of that
product under the assumption of linkage equilibrium be-
tween the markers. Alternatively, the case-only interaction
test proposed by Yang et al. (1999) tests for departures from
additivity under a logit model and the case-only interaction
tests proposed by Wu et al. (2010) and improved in Ueki and
Cordell (2012) also consider a logit model. While easily
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performed, these case-only tests fail to leverage the informa-
tion available from the parents in the trios and are susceptible
to inflation from population structure.

In the second class of case-only trio interaction tests,
pseudocontrols are created via the nontransmitted parental
alleles. These can beused asmatched controls in a conditional
logistic regression framework (Cordell 2002; Cordell et al.
2004; Schwender et al. 2015) and have also been considered
in the use of testing for gene–environment interaction in
case-only trio studies as reviewed in Weinberg and Umbach
(2000). Third, and most recently, Ackermann and Beyer
(2012) proposed the imbalanced allele pair frequencies
(ImAP) test. Their insight was that the expected counts of
offspring alleles at a pair of SNPs could be computed condi-
tional on parental genotypes. They incorporated this into a
4 d.f. correlation test and used permutations to determine the
null distribution (Ackermann and Beyer 2012).

The primary contributions of this work are twofold. First,
we showthat in thepresenceofmarginal effects butabsenceof
interaction effects between pairs of markers, the ImAP test is
biased. We identify that the normalization procedure used in
ImAP is the source of this bias. Second, we develop a new
interaction test, called the trio correlation (TC) test, for use in
case-only trio studies. The TC test is a version of the case-only
SC test (Wellek and Ziegler 2009) that has been extended to
improve estimates of correlation by leveraging parental ge-
notypes as in the ImAP approach. We begin by computing the
expected distribution of the offspring’s genotype conditional
on the parental genotypes and use this distribution to build a
correlation test with 1 d.f.

The TC test has several advantages over previous ap-
proaches. First, it reduces the degrees of freedom from the
4 needed by ImAP to 1 for TC. Second, in contrast to ImAP, it
does not require permutation tests to compute P-values in the
absence of population structure. Third, we compare the TC
test with several previously proposed case-only and case-only
trio tests under a variety of logit, probit, and log penetrance
disease models and observe that the TC test is the most pow-
erful across all scenarios considered.

Like other case-only tests (Piegorsch et al. 1994; Yang et al.
1999; Cordell 2002; Cordell et al. 2004; Wellek and Ziegler
2009; Wu et al. 2010; Ueki and Cordell 2012) and some case-
only trio tests (Ackermann and Beyer 2012), the TC test
assumes linkage equilibrium between SNPs being tested for
interaction. Proximal SNPs in linkage disequilibrium (LD)
and SNPs with different population minor allele frequencies
tested in structured cohorts will produce biased test statistics
leading to false positives. Bhattacharjee et al. (2010) show
that standard case-only correlation tests can be adjusted to
account for population structure by including principal com-
ponents (PCs) as covariates. They also propose using PCs to
group individuals into homogeneous subgroups and perform
a semiparametric case-only interaction test in the subgroups.
Here, we examine the effects of LD and population structure
on the TC test as well as several other case-only and case-only
trio tests on simulated data as well as simulated trios from

real genotypes taken from the Wellcome Trust Case Control
Consortium 2 (WTCCC2) National Blood Service (NBS) con-
trols (International Multiple Sclerosis Genetics Consortium
et al. 2011). We also show that a previously proposed
pseudocontrol-based permutation approach controls for bias
in the TC test in the presence of population structure.

The rest of this article is organized as follows. In Materials
and Methods, we introduce the existing tests and our proposed
TC test. In Simulation Study, we evaluate the finite sample
performance of the existing and proposed tests, using an exten-
sive simulation study. We close with a discussion in Discussion.

Materials and Methods

Consider a trio study inwhich nmother–father–offspring trios
are genotyped, and the offspring are carriers for the disease
of interest, or the phenotype of interest is fitness. In this
section we present existing tests for detecting interaction be-
tween pairs of markers as well as our novel TC approach.

The standard independence test

Consider a pair of biallelic markers with possible genotypes
g1; g2 2 f0; 1; 2g: Let Oðg1; g2Þ be the observed counts for the
nine possible genotype combinations at these two markers
in the offspring. Further, let Oðg1Þ ¼

P
g2Oðg1; g2Þ and

Oðg2Þ ¼
P

g1Oðg1; g2Þ be the observed marginal counts of the
three possible genotypes at each marker. Finally, let Eðg1; g2Þ
be the expected counts of all nine possible genotype combi-
nations at the two markers, computed from the products of
the observed marginal counts at each marker. That is,
Eðg1; g2Þ ¼ Oðg1Þ3Oðg2Þ=n:

A x2-test statistic can be obtained by first calculating the
squared difference of observed and expected counts for each
genotype combination of the two markers divided by the
corresponding expected counts. The final score for a marker
pair is the sum of these values over all nine possible genotype
combinations,

SI ¼
X

g1; g22f0;1;2g

h
Oðg1; g2Þ2Eðg1; g2Þ

i2

Eðg1; g2Þ ; (1)

where SI is standard independence. Under the null hypothesis
of marker independence, SI is asymptotically x2

4-distributed.

The ImAP test

Ackermann and Beyer (2012) proposed to calculate the
expected counts in the children, using the parental genotypes
and the laws of Mendelian inheritance. Under Mendelian
segregation, the offspring inherits alleles randomly from its
parents and the expected genotype of each marker can be
derived from the genotypes of the parents. The resulting
probabilities for all possible parental genotype combinations
are shown in Table 1.

LetGm
i ;G

f
i ;  and G

c
i be the genotypes of themother, father,

and child of trio i at a marker. Moreover, let
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Piðg1Þ ¼ P
�
Gc
i ¼ g1jGm

i ;G
f
i
�

(2)

be the probability of the offspring having genotype g1 condi-
tional on the parental genotypes, calculated using the prob-
abilities in Table 1. For example, if Gc

i ¼ 1; Gm
i ¼ 1; and

Gf
i ¼ 2; then Pið0Þ ¼ 0:25; Pið1Þ ¼ 0:5; Pið2Þ ¼ 0:25:
If the offspring are selected based on a phenotypic des-

ignation such as disease status, then a SNP increasing risk
for the disease will be nonrandomly inherited by the off-
spring. To correct for such main effects Ackermann and
Beyer (2012) proposed to multiply each offspring ’s
expected genotype by the ratio of the sample-wide ob-
served and expected counts for the corresponding marker;
that is,

P9i ðg1Þ ¼ Piðg 1Þ Oðg 1ÞPn
i¼1Piðg 1Þ

: (3)

The above computation of P9iðg1Þ does not guarantee thatP
g1P9iðg1Þ ¼ 1: Ackermann and Beyer (2012) proposed to use

the following normalization:

P*i ðg1Þ ¼
P9i ðg1ÞP

g12f0;1;2g
P9iðg1Þ : (4)

Subsequently, the expected counts of each genotype combi-
nation using the adjusted for main effects and normalized
genotype counts can be calculated as

Epðg1; g2Þ ¼
Xn

i¼1

P*i ðg1Þ3 P*i ðg2Þ:

The corresponding ImAP statistic is given as

ImAP ¼
X

g1;g22f0;1;2g

�
Oðg1; g2Þ2Epðg1; g2Þ

�2
Epðg1; g2Þ : (5)

Because this x2-like test statistic is not properly calibrated
under the null hypothesis, Ackermann and Beyer (2012) as-
sess the significance via a permutation approach. ImAP is
nearly x2

4-distributed and we use this approximation to com-
pute P-values in addition to the permutation approach. How-
ever, we show in Simulation Study that in the presence of
main effects the ImAP test statistic is inflated, even when

the permutation approach is used to compute the P-values.
The source of this inflation is the normalization step (4) (see
Supplemental Material, File S1).

The SC test

The SC test assumes that under the null SNPs are in linkage
equilibrium and tests for interaction by estimating pair-
wise correlation (Wellek and Ziegler 2009). Let m1 ¼P

g12f0;1;2gg1 3Oðg1Þ=n be the expected value of the geno-

type at a marker and let s2
1 ¼ P

g12f0;1;2g½g21 3Oðg1Þ=n�2m2
1

be the corresponding variance. Moreover, let s12 ¼P
g1;g22f0;1;2gðg1 2m1Þ3 ðg2 2m2Þ3Oðg1; g2Þ=n be the co-

variance of genotypes at the two markers and r ¼
s12=

ffiffiffiffiffiffiffiffiffiffiffi
s2
1s

2
2

q
be their Pearson’s correlation coefficient. The

test statistic is given as

SC ¼ n3 r2: (6)

Under the null hypothesis, SC is asymptotically x2
1-

distributed.

The TC test

Let Epðg1Þ ¼
Pn

i¼1Piðg1Þ be the expected counts of genotypes
at each of the twomarkers in the pair, computed based on the
unadjusted for main effects and unnormalized conditional
genotype counts of the offspring in (2). To extend the stan-
dard correlation test based on Pearson’s correlation coeffi-
cient such that information from parental genotypes is
incorporated, we propose to compute m1 and m2 from the
expected counts Epðg1Þ and Epðg2Þ; rather than the observed
genotype counts Oðg1Þ and Oðg2Þ:

Let m*
1 ¼ P

g12f0;1;2gg1 3 Epðg1Þ=n be the new mean and

s*2
1 ¼ P

g12f0;1;2g½g21 3Oðg1Þ=n�2m*2
1 be the new variance.

Moreover, let s*
12 ¼ P

g1;g22f0;1;2gðg1 2m*
1Þðg2 2m*

2Þ3
Oðg1; g2Þ=n be the new covariance and r* ¼ s*

12=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s*2
1 s*2

2

q

be the new correlation coefficient. Then the TC test statistic
is given as

TC ¼ n3 r*2: (7)

The TC test is an extension of the SC test in which the
genotype means (m1; m2) are replaced with their expected
means conditional on the parental genotypes (m*

1;m
*
2) in the

estimation of variances and covariance. Under the complete
null, when no main effects are present, E½m  *� ¼ E½m� at
both SNPs because Mendelian inheritance preserves the
expected population mean. Therefore, E½s*2� ¼ E½s2� at
both SNPs, E½s*

12� ¼ E½s12�; and E½r   *� ¼ E½r�: The TC test is
therefore an unbiased test of correlation under the null and
will be asymptotically x2

1-distributed. Because twice as
many individuals are used to estimate m  * as m, the result-
ing estimates of variances and covariance will be more
efficient, leading to a more powerful correlation test than
the SC test.

Table 1 Expected genotype probabilities of an offspring given the
parental genotypes according to Mendelian inheritance law

Offspring

Parent 1 Parent 2 0 1 2

0 0 1 0.00 0.00
0 1 0.50 0.50 0.00
0 2 0.00 1 0.00
1 1 0.25 0.50 0.25
1 2 0.00 0.50 0.50
2 2 0.00 0.00 1
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When main effects are present, E½m*
1� ¼ E½m1� þ e1 and

E½m*
2� ¼ E½m2� þ e2: This induces a bias in both the estimate

of the covariance, E½s*
12� ¼ E½s12� þ e1*e2; as well as the var-

iances, E½s*2
1 � ¼ E½s2

1� þ e21; and similarly for s*2
2 : In most

cases in genetics e1 and e2 will be small and we assume that
e1 3 e2 � e21 � e22 � 0: Under this assumption, the TC test
will remain asymptotically x2

1-distributed. However, when
main effects are very large, alternatives to the TC test should
be used to investigate interaction. Note that in the case of
largemarginal effects, many tests of interaction can be biased
as well due to ascertainment effects (Zaitlen et al. 2012a,b).

Conditional logistic regression with pseudocontrols

In addition to the correlation- and independence-based tests
described above, tests based on conditional logistic regression
withpseudocontrols (CLRPC)havebeenproposed fordetecting
epistasis in case-only trio studies. Briefly, 15 pseudocontrols are
constructed via theMendelian genotype realizations, given the
parents’ genotypes at the two loci, which are then used as
matched controls in a conditional logistic regression model.
Here we consider two types of tests based on CLRPC. First,
interactions might be tested with a likelihood-ratio test such
as the one proposed by Cordell (2002). In this case, two con-
ditional logistic regression models are fitted to the cases and
the respective matched pseudocontrols, one consisting of two
coding variables for each of the two SNPs and the other addi-
tionally containing the four possible interactions of these var-
iables. Then, P-values can be computed by approximation to a
x2-distribution with 4 d.f. We refer to this test as CLRPC1:

Alternatively, amore simple approach can be used inwhich
interactions could be tested with a likelihood-ratio test com-
paring a conditional logistic regression model containing one
parameter for each SNP and one parameter for the interaction

of these two SNPs with a model consisting only of the two
parameters for the main effects of the SNPs, where a single
genetic mode of inheritance is assumed for each SNP (e.g.,
additive, dominant, or recessive). In this work we use addi-
tive marginal effects for both SNPs. The P-values can be com-
puted by approximation to a x2-distribution with 1 d.f. We
refer to this test as CLRPC2:

In this work we use the R (R Core Team 2014) implemen-
tation of these tests available in the trio package (Schwender
et al. 2015) at http://www.bioconductor.org/ (Gentleman
et al. 2004; Huber et al. 2015).

Simulation Study

Data generation

To evaluate the relative performance of the tests described in
the previous section in terms of type I error rate and power,we
performed a series of simulation studies under three different
disease models: a liability threshold (probit) model, a logit
model, and a model for the log penetrance. Using random
mating and Hardy–Weinberg equilibrium assumptions, we
generated genotypes at twomarkers, eachwith aminor allele
frequency of 0.5, for a population of N trios, with N = 10 K,
50 K, and 100 K. Under a probit model, we generated yi; the
liability of offspring i, using the regression model

yi ¼ b1g1i þ b2g2i þ gg1i 3 g2i þ ei;

where b1 and b2 are the main effects of each marker and g is
their interaction effect, and ei � Nð0;s2Þ is a random error
term with variance s2 chosen such that both markers explain
1% of the heritability of the liability, when b1 and b2 are not
zero. Then we selected from the initial population of N trios

Table 2 Type I error rate ð%Þ of each test under the null hypothesis of no interaction effect, i.e., g ¼ 0

Type I error rate ð%Þ
Probit Logit Log penetrance

Tests d.f. p ¼ 10% p ¼ 1% p ¼ 0:1% p ¼ 10% p ¼ 1% p ¼ 0:1% p ¼ 10% p ¼ 1% p ¼ 0:1%

A. b1 ¼ b2 ¼ 0
SI 4 4.96 5.28 5.07 5.22 4.96 5.03 5.39 4.95 5.34
ImAP 4 3.06 3.28 3.16 3.10 3.32 3.09 3.36 3.21 3.38
ImAP2 4 2.49 2.80 2.59 2.54 2.82 2.52 2.90 2.72 2.89
ImAP3 4 12.34 12.40 12.27 12.32 12.34 12.39 12.68 12.13 12.19
CLRPC1 4 4.97 5.25 5.01 5.14 5.23 5.04 5.44 5.05 5.29
SC 1 5.29 5.19 4.83 4.77 4.83 4.98 5.00 5.10 5.43
CLRPC2 1 5.42 5.17 5.00 4.57 4.71 5.01 5.06 4.98 5.34
TC 1 5.28 5.13 4.84 4.78 4.79 5.04 4.90 5.08 5.42

B. b1 ¼ b2 ¼ 0:2
SI 4 5.10 5.01 4.73 5.05 4.92 5.39 5.13 4.80 4.67
ImAP 4 8.45 26.05 60.20 8.03 10.57 10.68 11.13 10.81 10.69
ImAP2 4 2.56 2.60 2.51 2.87 2.62 2.80 2.82 2.58 2.48
ImAP3 4 79.41 99.42 100.00 77.02 88.38 89.14 89.19 89.08 88.92
CLRPC1 4 4.93 5.13 5.07 5.40 4.81 5.08 5.15 4.70 5.06
SC 1 5.43 4.97 5.21 5.66 5.04 5.28 5.03 4.91 4.81
CLRPC2 1 4.98 4.87 4.76 5.52 4.98 5.43 5.38 4.71 5.29
TC 1 5.03 4.94 5.77 5.44 5.30 5.44 5.24 5.06 5.17

Each entry represents an average over 10,000 simulated data sets. p, disease prevalence in the population.
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the 1000 offspringwith the highest phenotype values and their
parents. The higher the value of N, the stronger the ascertain-
ment is and the lower the disease prevalence is, since the
sample of 1000 trios represents a smaller fraction of the initial
sample. This results in scenarios with marginal disease proba-
bility in the population of 10%; 1%; and 0:1%; respectively.

Under a logit or log penetrance model, we generated the
probability of disease status of offspring i conditional on their
genotype, using the regression model

Pðyi ¼ 1jg1i; g2iÞ ¼ g21ðb0 þ b1g1i þ b2g2i þ gg1i3 g2iÞ;

where g21 is the exponential function for the penetrance
model and the inverse logit function for the logit model. b0
was chosen such that the marginal disease probability in the

population was 10%; 1%; and 0:1%; respectively. Then we
randomly sample 1000 offspring with the disease as well as
their parents.

For each choice of parameters and model we generated
10,000 data sets and applied the SI, ImAP, SC, andTC tests, as
well as the two CLRPC tests, to each data set. We also
examined the ImAP test without the normalization step (4),
which we refer to as ImAP2. The ImAP2 test statistic is com-
puted as the ImAP test statistic in (5) but the expected counts
of each genotype combination are computed using the prod-
uct of the adjusted for main effects only genotype counts P9;
as opposed to the product of the adjusted for main effects and
normalized counts P  * used for ImAP: The reason we show
results for ImAP2 is to present the source of bias in the ImAP
test, i.e., the normalization step in (4).

Figure 1 QQ plots of all tests under the probit model with 1% disease prevalence and marginal effects.
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In addition, we also examined the ImAP test without the
adjustment for main effects (3) and without the normaliza-
tion step (4), which we refer to as ImAP3. Similarly to the
ImAP2 test statistic, the ImAP3 is computed as the ImAP test
statistic in (5) but now the expected counts of each geno-
type combination are computed using the product of P, i.e.,
the genotype counts without main effect adjustment or nor-
malization. Results for ImAP3 are presented to study the
impact of main effect adjustment when main effects are
not present.

Results on type I error rate

Wefirst examined the type I error rate performanceof the tests
under thenull hypothesis of nomaineffects andno interaction
effects. The results in Table 2A show that all tests with the
exception of the ImAP tests are well calibrated, with type I
error rate at 5% nominal level. We then examined the robust-
ness of the tests whenmain effects, but no interaction effects,
exist. The results displayed in Table 2B show that all tests
with the exception of the ImAP tests are well calibrated. The
ImAP test is severely inflated under this marginal effects only
model and is very likely to produce false positives. As noted in
the previous section, this inflation is driven by the normali-
zation procedure as evidenced by the fact that without nor-
malization (ImAP2), the test is conservative. We also note
that under a probit model, when both SNPs have large mar-
ginal effects and this disease prevalence is low, the ascertain-
ment in case-only studies will induce correlation between
these SNPs, leading to inflation of all test statistics considered
here (Zaitlen et al. 2012a,b). To further investigate the null
distribution of the tests, we examined QQ plots of all simu-
lations. In Figure 1, we show QQ plots for all tests under the
probit model with 1% disease prevalence and marginal

effects. No substantive differences were observed for QQ
plots of the other disease models and prevalences.

It is well known that the ImAP tests are not x2-distributed
and so we computed the permutation-based P-values for
the ImAP, ImAP2, and ImAP3 test statistics as described in
Ackermann and Beyer (2012). For each scenario, we ran-
domly chose 1000 of the 10,000 data sets. For each of the
1000 data sets, 1000 permuted data sets were generated and
the ImAP test statistics were calculated. To generate the per-
muted data sets, the genotypes of the parents remained un-
changed and the genotypes of the children were generated
assuming Mendelian inheritance. Permutation P-values were
calculated as the percentage of permuted test statistics larger
than the test statistic in the original data set.

The type I error rates under a probit model for each of
the three ImAP tests based on the permutation P-values are
listed in Table 3. For comparison purposes, we also show
permutation-based type I error rates for all other tests con-
sidered here. Under the null hypothesis of no interaction and
the absence of main effects, all tests including the ImAP tests
are well calibrated (Table 3A). In the presence of main ef-
fects, ImAP and ImAP3 are very inflated (Table 3B). ImAP3 is
inflated due to the presence of main effects. ImAP2 is adjusted
to some degree for the presence of main effects and has a
much lower type I error rate. However, in the recommended
ImAP test, the normalization step is performed, which leads
to an increased type I error rate even after performing
permutations.

Impact of population stratification and correlation on
type I error rate

The TC test, as well as most other case-only and case-only trio
interaction tests, assumes linkage equilibrium between SNPs.
Population structure can induce correlation between distant
SNPs. To examine the effects of population structure on the
interaction tests we performed another set of simulations
under a probit model in a stratified population. We gener-
ated genotypes in two populations with Fst = 0.04 by
selecting minor allele frequencies of 0.1 and 0.2 in popula-
tions one and two, respectively. This genetic distance is
greater than that between northern and southern European
populations (1000 Genomes Project Consortium 2010). For
each mother and father pair we drew their population from a
binomial with probability 0.5 for each population. Then, we
drew parental genotypes based on the minor allele frequen-
cies of the population to which they belong. The rest of the
simulation proceeded as above.

The results of the simulationswithpopulation stratification
under the null hypothesis of no interaction effect are presented
in Table S1. As expected all interaction tests except the
CLRPC tests are inflated in structured populations. We also
examined the use of a permutation procedure to account for
bias in interaction tests affected by population structure. For
each scenario, we randomly chose 1000 of the 10,000 simu-
lated data sets. Following the permutation scheme described
in Ackermann and Beyer (2012) and above, we generated

Table 3 Permutation-based type I error rate of all tests under the
null hypothesis of no interaction effect, i.e., g ¼ 0

Type I error rate ð%Þ
Tests d.f. p ¼ 10% p ¼ 1% p ¼ 0:1%

A. b1 ¼ b2 ¼ 0
SI 4 4.72 5.14 5.58
ImAP 4 5.22 5.81 5.48
ImAP2 4 5.02 5.70 5.68
ImAP3 4 4.82 5.25 5.89
CLRPC1 4 5.33 6.60 5.19
SC 1 6.02 6.37 5.68
CLRPC2 1 6.43 6.37 5.89
TC 1 6.02 6.26 5.58

B. b1 ¼ b2 ¼ 0:2
SI 4 4.91 4.97 4.10
ImAP 4 11.54 37.99 73.77
ImAP2 4 4.70 5.40 4.71
ImAP3 4 61.11 97.78 100.00
CLRPC1 4 4.23 5.88 4.17
SC 1 5.02 6.14 5.43
CLRPC2 1 5.24 6.03 4.92
TC 1 5.24 6.67 6.15

Each entry is based on 1000 permuted data sets. p, disease prevalence in the
population.
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1000 pseudocontrol-based permutations for each of the 1000
simulated data sets. Because each pseudocontrol child will
come from the same population as its parents, the population
structure is preserved in each permutation. The results shown
in Table S1 demonstrate that this permutation procedure
accounts for the bias induced by population structure.

Correlation between proximal markers in the general
population can also create spurious interaction effects in
the cases, and we therefore recommend the TC test be run
only on distance pairs of SNPs. To study the impact of low and
moderate correlation between markers on the interaction
tests, we performed an additional set of simulations in a
population in which SNPs had a correlation of 0.1 or 0.5.
The simulation proceeded as above with the exception of
correlation between markers.

The results of the simulations with correlation between
markers under the null hypothesis of no interaction effect and
a probit model are presented in Table S1. As expected all
interactions tests are inflated when such correlations exist.
The permutation results in Table S1 show that the permuta-
tion scheme does not account for this source of correlation
because the genotypes at each SNP are inherited indepen-
dently in each permutation, breaking their correlation.

To quantify the extent to which population stratification
poses a problem for case-only interaction tests in real data we
performed a set of analyses in the WTCCC2 NBS cohort
(International Multiple Sclerosis Genetics Consortium et al.
2011). We randomly sample 10,000 pairs of SNPs from chro-
mosome 1 and chromosome 2, with minor allele frequen-
cies .0.1. For each pair of SNPs we randomly assigned
1317 individuals as mother–father pairs and then generated
a child genotype under Mendelian segregation. We observed
type I error rates of 5.16, 3.15, 2.51, 11.99, 5.01, 5.22, 5.45,

and5.20 for the SI, ImAP, ImAP2, ImAP3, CLRPC1, SC, CLRPC2,
and TC tests, respectively. This indicates that the effect of strat-
ification in this cohort was not strong enough as to induce
substantial bias. However, this is not necessarily the case for
all cohorts and care must be taken to account for population
structure, for example as described in Bhattacharjee et al.
(2010) or via the permutation procedure described above.

Results on power

Table 4 shows power results under the alternative hypothesis
of the interaction effect for both absence and presence of
main effects. Significance was determined at a threshold of
a ¼ 5%: For all tests and disease models power increases as
disease prevalence decreases since a larger genetic burden is
required to become a case.

The TC test is themost powerful test with a 13%, 18%, and
19%gain inpower relative to theSC test under aprobitmodel,
a 24%, 12%, and 10% gain under a logit model, and a 10%,
11%, and 11% gain under a log penetrance model, for a
disease prevalence of 10%; 1%; and 0:1%; respectively.
The pseudocontrol-based interaction tests, i.e., CLRPC1 and
CLRPC2, did not perform as well as the TC, SC, and SI in-
teraction tests. The SC test outperformed the SI tests due to
the reduction in degrees of freedom and the additive gener-
ative model for the phenotype used in these simulations. The
ImAP test is disqualified due to inflation introduced by the
normalization. The ImAP2, which did not suffer this inflation,
is underpowered relative to the other tests. By comparing
ImAP2 to ImAP3 we can see that the reason ImAP2 is under-
powered is mainly because of the “overadjustment” for main
effects. ImAP3 is also disqualified as a proper test because it is
severely inflated under the null hypothesis in the presence of
main effects.

Table 4 Power (%) of each test under the alternative hypothesis of interaction effect, g ¼ 0:2

Power ð%Þ
Probit Logit Log penetrance

Tests d.f. p ¼ 10% p ¼ 1% p ¼ 0:1% p ¼ 10% p ¼ 1% p ¼ 0:1% p ¼ 10% p ¼ 1% p ¼ 0:1%

A. b1 ¼ b2 ¼ 0
SI 4 43.94 83.49 96.46 54.29 68.75 69.86 71.03 69.31 69.55
ImAP 4 35.20 87.53 99.31 47.71 66.90 68.65 68.71 68.02 69.22
ImAP2 4 20.45 55.13 80.91 27.15 38.39 40.17 39.90 39.37 39.66
ImAP3 4 88.76 99.89 100.00 95.39 99.06 99.05 99.12 99.17 99.24
CLRPC1 4 33.32 70.24 89.30 41.58 54.65 55.88 56.04 55.88 56.24
SC 1 65.84 95.04 99.50 75.65 87.13 87.63 88.08 87.67 87.69
CLRPC2 1 52.74 87.64 97.25 62.82 76.15 76.59 77.46 76.29 77.31
TC 1 69.70 97.16 99.87 79.67 90.23 90.71 91.21 90.97 90.81

B. b1 ¼ b2 ¼ 0:2
SI 4 13.77 27.50 43.71 34.79 62.81 66.54 67.22 67.67 67.56
ImAP 4 15.52 52.95 89.41 83.43 99.50 99.70 99.74 99.77 99.65
ImAP2 4 6.10 12.71 20.90 16.72 35.99 38.62 40.02 40.18 40.42
ImAP3 4 83.47 99.83 100.00 100.00 100.00 100.00 100.00 100.00 100.00
CLRPC1 4 11.73 21.84 33.07 26.71 49.92 51.99 53.24 53.77 53.41
SC 1 23.14 47.00 65.28 53.61 82.69 85.60 86.04 85.50 85.58
CLRPC2 1 18.28 36.36 52.98 42.39 71.19 73.90 74.92 74.95 74.57
TC 1 26.74 57.45 81.22 70.72 94.66 96.09 96.16 96.22 96.22

Results are based on 10,000 simulated data sets. p, disease prevalence in the population.
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To further explore the properties of the methods we
conducted additional simulations over a range of minor allele
frequencies and sample sizes; see Table S2 and Table S3.
We observed no substantive differences between the results
presented above and these additional simulations.

Discussion

In this work we develop the TC test, a new 1 d.f. statistical
interaction test for use in trio studies that leverage information
fromtheparentalgenotypes.Wecompareour testwithexisting
tests for epistasis and show via simulations that the TC test
properly controls the type I error in the absence of population
stratification. The TC test substantially outperforms all other
testsof interactionconsideredhere incase-onlytriostudies.The
TCtest is anextensionof theSC test fromcase-onlydata to case-
only trio data. However, many other case-only interaction tests
have been proposed (Piegorsch et al. 1994; Yang et al. 1999;
Bhattacharjee et al. 2010; Wu et al. 2010; Ueki and Cordell
2012), and the extension described here may also be applica-
ble to other case-only interaction tests.

Ackermann and Beyer (2012) showed that in the absence
of main effects the significance of the ImAP test statistic for
each marker pair can be properly assessed via a permutation
approach. We showed here that the permutation approach
used to calibrate the ImAP test statistic in the absence of main
effects will not address the inflation caused in the presence of
main effects. We identify as a source of inflation the normal-
ization step in (4), which alters the correlation structure of
the expected genotype probabilities and introduces bias in
the test statistic (see File S1).

All methods considered here will be slightly inflated in the
presence ofmain effects andascertainment for lowprevalence
diseases under a probit diseasemodel (Zaitlen et al. 2012a,b).
However, this inflation will be minimal and not enough
to pass a genome-wide significance threshold unless the
marginal effect sizes are extreme. Population structure can
induce long-range LD, inflating correlation-based tests. We
demonstrate that a previously described permutation ap-
proach (Ackermann and Beyer 2012; Schwender et al.
2015) can be used to account for bias induced by population
stratification. The conditional logistic regression-based
method with pseudocontrol can directly account for popula-
tion stratification without permutations and can flexibly
model 1 d.f. up to 4 d.f. tests of interaction (Cordell et al.
2004). However, this test was the least powerful in our sim-
ulations and will lose power when there is assortative mating
for the phenotype of interest (Klei et al. 2012).

In this work we simulated data under additive-by-additive
interaction effects. However, if the true model is 4 d.f., e.g.,
contains additive-by-dominance effects, our test, which
models only additive-by-additive effects, may no longer be
the most powerful test. Because the ImAP test is inflated in
the presence of main effects, a powerful and unbiased 4 d.f.
test leveraging trios remains an open research question as
does a 1 d.f. allelic test.

Similar to commonly used tests for marginal effects, the
interaction tests presented here are inappropriate for rare
variants. In the marginal case it is recommended to use
Fisher’s exact test when the minor allele frequency is small.
The definition of rare depends on the sample size of the
study, as the number of observations of the rare allele is
the quantity of interest. For interaction tests one must use
a threshold on the product of the minor allele frequencies of
pairs of markers.

There has been a renewed interest in trio cohorts with
affected offspring for the purposes of identifying de novomu-
tations and parent-of-origin effects (Arjomandi et al. 2011;
O’Roak et al. 2011, 2012; Neale et al. 2012; Sanders et al.
2012). While these collections have identified many de novo
mutations, they have not yet been examined for the presence
of interactions and our test is therefore of immediate benefit
to these rapidly growing trio cohorts.
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File S.1. Source of inflation of the ImAP test

Let p0 = [p1(0), . . . , pn(0)], p1 = [p1(1), . . . , pn(1)], and p2 = [p1(2), . . . , pn(2)] vectors of the expected probability of genotypes 0,

1, and 2 for all offspring at a marker as calculated using the probabilities in Table 1 and let R =


r(p1,p0) 1

r(p2,p0) r(p2,p1)

�
be the matrix of

pairwise correlations between p0, p1, and p2. Similarly, let p0
0, p0

1, and p0
2 the vectors of the expected probabilities after main effects

adjustment in (3), with R0 their correlation matrix; and p⇤
0, p⇤

1, and p⇤
2 the vectors of expected probabilities after main effects adjustment

and normalization in (4), with R⇤ their correlation matrix.
We showed in Section 3 that under the null hypothesis of no interaction effect but presence of main effects the ImAP test statistic is

inflated. We also showed that the ImAP permutation procedure does not address this inflation. Since ImAP2, the test without the
normalization step, is not inflated under this scenario, we concluded that the normalization of the expected genotype probabilities in 4
is causing the inflation. We mention in the previous section that, in the presence of main effects, the normalization in (4) alters the
correlation of the genotype probabilities used to compute the expected joint distribution of the markers in the cases but not in the
pseudo-controls. To illustrate this, we compare the R, R0 and R⇤ matrices of the cases and pseudo-controls generated under the null
hypothesis of no interaction and main effects, i.e. g = b1 = b2 = 0, with the matrices for the cases and the pseudo-controls under
the null hypothesis of no interaction effect, i.e. g = 0, and presence of main effects, i.e. b1 = b2 = 0.1. We used a probit model with
heritability of 10% and a marginal disease probability in the population of 10%. These matrices are listed in Table A.

In the absence of main effects R = R0 and R ⇡ R⇤ . On the other hand, in the presence of main effects the two matrices are similar
for the pseudo-controls but are very different for the cases. The largest difference being between r(p1, p0) and r(p

⇤
1, p⇤

0), correlation
of �0.240 before normalization and �0.135 after normalization, and between r(p1, p2) and r(p

⇤
1, p⇤

2), correlation of �0.633 before
normalization and �0.719 after normalization.

Table A Correlation matrices of the expected genotype probabilities before and after adjustment for main effects, i.e. R, R
0
, and

after adjustment for both main effects and normalization R⇤. Results are based on mean over 1,000 simulated data sets.

(a) b1 = b2 = 0 , g = 0

R Cases

-0.446

-0.601 -0.447

R Pseudo-Controls

-0.445

-0.600 -0.449

R
0

Cases

-0.446

-0.601 -0.447

R
0

Pseudo-Controls

-0.445

-0.600 -0.449

R⇤ Cases

-0.447

-0.600 -0.447

R⇤ Pseudo-Controls

-0.445

-0.599 -0.449

(b) b1 = b2 = 0.1 , g = 0

R Cases

-0.240

-0.600 -0.633

R Pseudo-Controls

-0.239

-0.600 -0.632

R
0

Cases

-0.240

-0.600 -0.633

R0 Pseudo-Controls

-0.239

-0.600 -0.632

R⇤ Cases

-0.135

-0.590 -0.719

R⇤ Pseudo-Controls

-0.240

-0.600 -0.632
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Table S.1 Impact of population stratification and correlation between SNPs on type I error rate. Type I error rate and permuta-
tion based type I error rate (%) of each test under the null hypothesis of no interaction effect, i.e. g = 0, in the presence of pop-
ulation stratification and low or high correlation among SNPs for a probit model with disease prevalence of 10%. Each entry
represents an average over 10,000 simulated data sets. pop strat: population stratification; cor: correlation.

Tests d.f. Type I error rate (%) Permutation-based Type I Error Rate (%)

pop strat cor=0.1 cor=0.5 pop strat cor=0.1 cor=0.5

(a) b1 = b2 = 0

SI 4 18.52 28.70 75.24 5.92 14.00 30.20

ImAP 4 3.55 10.06 66.15 6.43 14.32 70.11

ImAP2 4 3.07 8.82 65.12 6.53 14.10 70.11

ImAP3 4 11.81 23.52 75.08 5.32 12.93 67.92

CLRPC1 4 5.08 15.88 69.07 - a - b - b

SC 1 24.28 40.85 75.21 5.52 15.06 31.45

CLRPC2 1 5.14 24.37 52.81 - a - b - b

TC 1 24.28 40.83 75.21 5.62 15.49 31.45

(b) b1 = b2 = 0.2

SI 4 17.25 27.07 76.46 4.45 15.89 27.00

ImAP 4 10.84 19.17 69.00 15.38 26.86 73.90

ImAP2 4 2.03 9.48 64.56 5.20 16.57 70.60

ImAP3 4 77.05 80.88 91.81 62.46 66.63 83.40

CLRPC1 4 4.03 16.44 67.29 - a - b - b

SC 1 24.46 38.17 76.33 5.30 18.06 27.70

CLRPC2 1 4.93 25.19 51.60 - a - b - b

TC 1 27.35 40.44 76.31 6.89 20.46 27.90

a Results for CLRPC tests not needed since they are not affected from population stratification.
b CLRPC tests as inflated as all other tests in the presence of correlation.
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Table S.2 Impact of allele frequencies on type I error rate. Type I error rate (%) of each test under the null hypothesis of no inter-
action effect, i.e. g = 0, and a probit model with population disease prevalence of 10%. Each entry represents an average over
10,000 simulated data sets.

Tests d.f. Type I Error Rate (%)

h1=.05, h2=.05 h1=.05, h2=.2 h1=.05, h2=.5 h1=.2, h2=.5

(a) b1 = b2 = 0

SI 4 6.40 6.80 3.54 5.00

ImAP 4 2.95 4.25 2.76 3.44

ImAP2 4 3.03 3.57 2.16 2.93

ImAP3 4 8.35 12.48 11.97 12.78

CLRPC1 4 NA a 5.59 1.51 5.55

SC 1 4.64 5.34 5.09 4.94

CLRPC2 1 5.45 5.15 4.92 4.84

TC 1 4.61 5.31 5.19 4.92

(b) b1 = b2 = 0.2

SI 4 4.84 5.30 4.08 5.00

ImAP 4 8.63 12.16 9.81 9.71

ImAP2 4 1.59 3.01 2.31 2.86

ImAP3 4 81.55 82.49 81.59 81.24

CLRPC1 4 0.00 3.64 2.35 5.57

SC 1 4.70 4.92 5.08 5.08

CLRPC2 1 5.20 5.41 5.17 5.26

TC 1 4.53 4.58 4.76 4.83

a For this parameter combination, the fitting of the models fails and the corresponding test statistic and the p-value are automatically set to NA by the trio package.
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Table S.3 Impact of sample size on type I error rate and power. Type I error rate (%) of each test under the null hypothesis of no
interaction effect, i.e. g = 0 and power (%) of each test under the alternative hypothesis of interaction effect, i.e. g = 0.2, under
a probit model and a sample size of n=250 cases and their parents. Each entry represents an average over 10,000 simulated data
sets.

Tests d.f. Type I error rate (%) Power (%)

p = 10% p = 1% p = 0.1% p = 10% p = 1% p = 0.1%

(a) b1 = b2 = 0

SI 4 4.88 5.04 5.08 12.55 25.94 40.7

ImAP 4 3.02 3.13 3.24 7.58 17.94 32.95

ImAP2 4 2.66 2.67 2.93 5.56 11.17 19.74

ImAP3 4 12.2 11.7 12.45 34.85 67.06 89.43

CLRPC1 4 5.06 5.12 5.34 11.37 20.92 31.12

SC 1 5.07 5.07 4.78 21.28 43.38 61.59

CLRPC2 1 5.32 4.59 4.37 17.09 33.98 49.58

TC 1 5.08 4.97 4.79 22.59 48.26 69.07

(b) b1 = b2 = 0.2

SI 4 4.81 5.03 4.87 7.03 9.61 13.41

ImAP 4 3.72 5.18 6.73 4.98 8 14.63

ImAP2 4 2.55 2.8 2.85 3.51 4.46 5.93

ImAP3 4 28.26 52.52 74.49 30.33 59.82 83.11

CLRPC1 4 5.11 5.46 5.29 7.03 8.53 11.78

SC 1 4.89 4.73 5.07 9.59 14.83 22.1

CLRPC2 1 4.94 4.55 5.12 8.42 12.28 17.35

TC 1 4.81 4.63 5.29 10.36 17.91 28.75
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