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ABSTRACT With the advent of modern imaging and measurement technology, complex phenotypes are increasingly represented by
large numbers of measurements, which may not bear biological meaning one by one. For such multivariate phenotypes, studying the
pairwise associations between all measurements and all alleles is highly inefficient and prevents insight into the genetic pattern underlying
the observed phenotypes. We present a new method for identifying patterns of allelic variation (genetic latent variables) that are
maximally associated—in terms of effect size—with patterns of phenotypic variation (phenotypic latent variables). This multivariate
genotype–phenotype mapping (MGP) separates phenotypic features under strong genetic control from less genetically determined
features and thus permits an analysis of the multivariate structure of genotype–phenotype association, including its dimensionality and
the clustering of genetic and phenotypic variables within this association. Different variants of MGP maximize different measures of
genotype–phenotype association: genetic effect, genetic variance, or heritability. In an application to a mouse sample, scored for 353
SNPs and 11 phenotypic traits, the first dimension of genetic and phenotypic latent variables accounted for .70% of genetic variation
present in all 11 measurements; 43% of variation in this phenotypic pattern was explained by the corresponding genetic latent variable.
The first three dimensions together sufficed to account for almost 90% of genetic variation in the measurements and for all the
interpretable genotype–phenotype association. Each dimension can be tested as a whole against the hypothesis of no association,
thereby reducing the number of statistical tests from 7766 to 3—the maximal number of meaningful independent tests. Important
alleles can be selected based on their effect size (additive or nonadditive effect on the phenotypic latent variable). This low dimensionality
of the genotype–phenotype map has important consequences for gene identification and may shed light on the evolvability of organisms.
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STUDIES of genotype–phenotype association are central to
several branches of contemporary biology and biomedi-

cine, but they suffer from serious conceptual and statistical
problems. Most of these studies consist of a vast number
of pairwise comparisons between single genetic loci and sin-
gle phenotypic variables, typically leading—among other
reasons—to very low fractions of phenotypic variance explained
by genetic effects [“missing heritability” (Manolio et al. 2009;
Eichler et al. 2010)]. Post hoc corrections for multiple testing

can lead to a dramatic loss of statistical power and in fact
violate standard rules of statistical inference. Biologically
more important, most phenotypes are not determined by sin-
gle alleles, but by the joint effects, both additive and non-
additive, of a number of alleles at multiple loci. With the
advent of modern imaging and measurement technology,
complex phenotypes, such as the vertebrate brain or cranium,
often are represented by large numbers of variables. This
further complicates the study of genotype–phenotype associ-
ation by tremendously increasing the number of pairwise
comparisons between genetic loci and phenotypic variables,
which may not be meaningful traits per se [for instance, in
geometric morphometrics, voxel-based image analysis, and
many behavioral studies (Bookstein 1991; Ashburner and
Friston 2000; Mitteroecker and Gunz 2009; Houle et al.
2010)]. The genotype–phenotype associations we actually
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seek are between certain allele combinations from multiple
loci and certain combinations of phenotypic variables that
bear biological interpretation. The number of such pairs of
“latent” allele combinations and phenotypes that underlie the
observed genotype–phenotype association depends on the
genetic-developmental system under study, but typically is
less than the number of assessed loci and phenotypic vari-
ables (Hallgrimsson and Lieberman 2008; Martinez-Abadias
et al. 2012).

Several methods have been suggested for such a multivar-
iate mapping, including multiple and multivariate regression
(Haley and Knott 1992; Jansen 1993; Hackett et al. 2001; de
Los Campos et al. 2013), principal component regression
(Wang and Abbott 2008), low-rank regression models (Zhu
et al. 2014), partial least-squares regression (Bjørnstad et al.
2004; Bowman 2013), and canonical correlation analysis
(Leamy et al. 1999; Ferreira and Purcell 2009). We present
a multivariate analytic strategy—which we termmultivariate
genotype–phenotype mapping (MGP)—that embraces and re-
lates all of these methods and that circumvents several of the
problems resulting from pairwise univariate mapping and
from the multivariate analysis of the loci separately from
the phenotypes. Our approach does not primarily aim
for the detection and location of single loci segregating
with a given phenotypic trait. Instead, we present an ap-
proach that identifies patterns of allelic variation that are
maximally associated—in terms of effect size—with pat-
terns of phenotypic variation. In this way, we gain insight
into the multivariate structure of genotype–phenotype as-
sociation, including its dimensionality and the clustering of
genetic and phenotypic variables within this association—
the genetic-developmental properties determining the
evolvability of organisms (Wagner and Altenberg 1996;
Hendrikse et al. 2007; Mitteroecker 2009; Pavlicev and
Hansen 2011).

The Principle of Multivariate Genotype–Phenotype
Mapping

Let there be p genetic loci and q phenotypic measurements
scored for n specimens. Instead of assessing each of the pq
pairwise genotype–phenotype associations, we seek a genetic
effect—composed of the additive and nonadditive effects of
multiple alleles—onto a phenotypic trait that is a composite
of multiple measured phenotypic variables. As these genetic
and phenotypic features are not directly measured, but per-
haps present in the data, we refer to them as genetic and
phenotypic “latent variables,” LVG and LVP (Figure 1). The
molecular, physiological, and developmental processes that
underlie the genotype–phenotype relationship and that con-
stitute the latent variables likely are complex nonlinear
processes. In a first approximation, however, we consider
the latent variables as linear combinations of the alleles
and phenotypic measurements, respectively.

How do we identify these latent variables? This problem
can be viewed in a dual way. First, it can be assumed that the

effect of a genetic latent variable on a phenotypic latent
variable is stronger than the effect of any single locus on
any single phenotypic variable.Wemay thus seek genetic and
phenotypic latent variables (linear combinations) with max-
imal genotype–phenotype association. In addition, there might
be further pairs or “dimensions” of genetic and phenotypic
latent variables with maximal associations, mutually inde-
pendent across the dimensions, that together account for
the observed genotype–phenotype association. The classic
measures of genotype–phenotype association in the quanti-
tative genetic literature are (i) genetic effect (average, addi-
tive, and dominance effect); (ii) genetic variance (the
phenotypic variance accounted for by genetic effects); and
(iii) heritability, the ratio of genetic to total phenotypic var-
iance. Accordingly, we may compute latent variables that
maximize one of these measures of genotype–phenotype as-
sociation, depending on the scientific question and the infor-
mation content in the data.

A second, equivalent, way to view the problem is that of a
search for simple patterns underlying the observed pairwise
genotype–phenotype associations. Technically, we seek low-
rank (i.e., “simple”) matrices that approximate the p3 q
matrix of pairwise associations. A powerful standard tech-
nique in multivariate statistics for this purpose is singular
value decomposition (SVD). For a p3 q matrix of pairwise
genotype–phenotype associations, SVD finds pairs of singular
vectors (one of length p, one of length q) of which the outer
product best approximates the matrix in a least-squares
sense. The two singular vectors can be interpreted as the
genetic and phenotypic effects of the corresponding latent
variables (the coefficients ai; bi in Figure 1) that best approx-
imate the observed genotype–phenotype associations. When
connecting the two views, effect maximization and pattern
search, the question arises: For which kind of matrices do the
singular vectors (as simple patterns) lead to latent variables

Figure 1 Path diagram illustrating the principle of multivariate genotype–
phenotype mapping. For p loci x1; . . . ; xp and q phenotypes y1; . . . ; yq;
the genotype–phenotype map acts via a genetic latent variable (LVG)—a
joint effect of multiple loci—on a phenotypic latent variable (LVP), which
is a combination of multiple measured phenotypic variables. The ef-
fects of the loci on the phenotype are denoted by the coefficients
a1; a2; . . . ; ap; and the composition of the phenotypic latent variable is
denoted by the coefficients b1;b2; . . . ; bq: These latent variables and their
differential effects are properties of the genetic-developmental system of
the studied organisms. Multivariate genotype–phenotype mapping seeks
latent variables with a maximal genotype–phenotype association in the
given sample (thick arrow).
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that maximize the above measures of genotype–phenotype
association?

In Materials and Methods we demonstrate how to identify
these latent genetic and phenotypic variables by an SVD of
the appropriate association matrix. A more detailed deriva-
tion, including proofs, is given in Appendix A. In an applica-
tion to a classic mouse sample, scored for 353 genetic
markers and 11 phenotypic variables, we demonstrate the
effectiveness of multivariate genotype–phenotype mapping.
We show that a single dimension of latent variables already
suffices to account for .70% of genetic variance present in
the 11 traits. The first three dimensions together account for
almost 90% of genetic variation and capture all the interpret-
able genotype–phenotype association in the data. Each di-
mension can be tested as a whole against the hypothesis of
no association by a permutation approach, which reduces the
number of significance tests from 7766 to 3. We discuss the
consequences of this low dimensionality of the genotype–
phenotype map for gene identification and for understanding
the evolvability of organisms.

Materials and Methods

Maximizing genotype–phenotype association

Let each allele at each locus be represented by a vector xi that
contains the additive genotype scores (0, 1, or 2) for all n
subjects. Additional vectors may represent interactions of al-
leles at one locus (dominance scores, 0 or 1). See below for the
implementation of epistasis, the interaction of alleles at dif-
ferent loci. We seek the combined effect of the alleles
ðx1; . . . ; xpÞ¼ X on a phenotype composed of the measured
variables ðy1; . . . ; yqÞ ¼ Y. For notational convenience, let the
columns of X and Y be mean centered. Let the effects of the
alleles on the phenotype be denoted by the p3 1 vector
a ¼ ða1; a2; . . . ; apÞ9 and the weightings of the measured var-
iables that determine the phenotype by the q31 vector
b ¼ ðb1; b2; . . . ; bqÞ9. Then the genetic and phenotypic latent
variables are given by the linear combinations a1x1 þ
a2x2 þ . . .þ apxp ¼ Xa and b1y1 þ b2y2 þ . . .þ bqyq ¼ Yb
(Figure 1). Since, by definition, the latent variables have a
stronger genotype–phenotype association than any single
variable, the coefficient vectors a;b are chosen to maximize
the association between the corresponding latent variables:
(i) genetic effect, (ii) genetic variance, or (iii) heritability
(see Appendix A, Univariate genotype–phenotype associa-
tion). In addition to this pair of latent variables, there are
further pairs of latent variables with effects ai and bi; in-
dependent of the previous ones, that together account for
the observed genotype–phenotype association.

For any real p3 q matrix, SVD yields a first pair of real
singular vectors u1; v1; both of unit length, and a real singular
value l1: The “left” singular vector u1 is of dimension p3 1;
and the “right” vector v1 is of dimension q3 1: The outer
product u1v91; scaled by l1; is the rank-1 matrix that best
approximates the matrix in a least-squares sense. There is

also a second pair of singular vectors u2; v2; orthogonal to
the first singular vectors, which are associated with a second
singular value l2: Together, the two pairs of singular vectors
give the best rank-2 approximation l1u1v91 þ l2u2v92 of the
matrix, and so forth for further dimensions. SVD yields opti-
mal low-rank approximations of the original matrix by max-
imizing the singular values, that is, the contribution of the
corresponding rank-1 matrix to the matrix approximation.
The summed squared singular values equal the summed
squared elements of the approximated matrix. The number
of relevant dimensions (the rank of the approximation) can
thus be determined by the squared singular values, expressed
as a fraction of the total squared singular values.

For amatrix of pairwise genotype–phenotype associations,
the singular vectors may serve as weightings for the genetic
and phenotypic variables to compute the latent variables
Xui and Yvi: The question is, For which kind of association
matrices are the singular vectors ui; vi the vectors ai;bi max-
imizing (i) genetic effect, (ii) genetic variance, and (iii)
heritability, respectively?

Genetic effect (i): The additive genetic effect of one allele
substitution is half the difference between the homozygote
mean phenotypes, and the dominance effect is the deviation of
the heterozygote mean phenotype from the midpoint of the
homozygote mean phenotypes. By contrast, the average effect
of an allele substitution is the average difference between
offspring that get this allele and random offspring (Falconer
and Mackay 1996; Roff 1997). In a sample of measured in-
dividuals, the average effect can be estimated by the regres-
sion slope of the phenotype on the additive genotype scores,
whereas additive and dominance effects can be estimated by
the two multiple-regression coefficients of the phenotype on
both the additive and dominance genotype scores (see Ap-
pendix A, Univariate genotype–phenotype association).

For multivariate genotypes and phenotypes, maximizing
the effect of the genetic latent variable on the phenotypic
latent variable translates into finding vectors a and b that
maximize the slope

CovðXa;YbÞ=VarðXaÞ (1)

of the regression of the phenotype Yb on the allele combina-
tion Xa: Under the constraint a9a ¼ b9b ¼ 1; this regression
slope is maximized by the first pair of singular vectors
a ¼ u1;b ¼ v1 of the matrix of regression coefficients

F ¼ �
X9X

�21
X9Y: (2)

For detailed derivations and proofs see Appendix A,Multivar-
iate genotype–phenotype association and Maximizing
genotype–phenotype association via SVD. See Appendix B,
Computational properties for a discussion of the computa-
tional difficulties arising from the matrix inversion if p. n:

If the genetic variables X comprise the p additive genotype
scores only, maximizing the regression slope (1) maximizes
the average effect, and the linear combination Xa can be
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interpreted as breeding values (sum of average effects). The p
elements of a are the partial average effects of the corre-
sponding alleles on the phenotype Yb (average effects con-
ditional on the other alleles); they are proportional to the
regression coefficients of Yb on X: The maximal slope (max-
imal average effect) associated with the linear combinations
is given by the singular value l1:

If both additive and dominance scores are included in X;
the sum of both additive and dominance effects is maxi-
mized and the linear combination can be interpreted as
genotypic values. The elements of a; which is now of di-
mension 2p3 1; would then correspond to the partial ad-
ditive and dominance effects on the phenotype Yb; and the
singular value is the sum of additive and dominance
effects.

Genetic variance (ii): For a population in Hardy–Weinberg
equilibrium, the additive genetic variance can be expressed
as the product of the variance of the additive genotype
scores and the squared average effect (cf. Equation A3 in
Appendix A). Maximizing genetic variance for multivariate
genotypes and phenotypes thus is achieved by maximizing
CovðXa;YbÞ2=VarðXaÞ over the vectors a and b: The latent
variables with maximal genetic variance are given by the
vectors a ¼ ðX9XÞ21=2u1 and b ¼ v1; where u1 and v1 are
the first left and right singular vectors of the matrix

G ¼ �
X9X

�21=2
X9Y: (3)

If the genetic variables comprise the additive scores only, this
approach maximizes the additive genetic variance, given by
l21=ðn2 1Þ; whereas if both additive and dominance scores
are included, the total genetic variance (additive plus domi-
nance variance) is maximized. This approach is computation-
ally equivalent to reduced-rank regression (Izenman 1975;
Aldrin 2000).

Heritability (iii):Heritability canbeexpressedas the squared
correlation coefficient of the phenotype and the genotype
scores (Appendix A, Univariate genotype–phenotype associ-
ation). Hence, maximizing heritability in the multivariate
context amounts to maximizing the squared correlation
CorðXa;YbÞ2;which is achievedby the vectorsa ¼ ðX9XÞ21=2u1

and b ¼ ðY9YÞ21=2v1; where u1 and v1 are the left and right
singular vectors of the matrix

H ¼ �
X9X

�21=2
X9Y

�
Y9Y

�21=2
: (4)

Including only the additive genotype scores in X maximizes
the narrow-sense heritability h2; whereas including both ad-
ditive and dominance scores maximizes the broad-sense her-
itability H2 resulting from additive and dominance variance.
These maximal heritabilities equal the squared singular value
l21: This approach is equivalent to canonical correlation anal-
ysis (e.g., Mardia et al. 1979).

Covariance (iv): Bjørnstad et al. (2004) and Mehmood et al.
(2011) applied partial least-squares analysis (PLS) to iden-
tify genetic and phenotypic latent variables. PLS maxi-
mizes the covariance between the two linear combinations
CovðXa;YbÞ: The unit vectors a;b maximizing this covari-
ance can be computed as the first pair of singular vectors
u1;b1 of the cross-covariance matrix X9Y: The maximal co-
variance is given by l1=ðn2 1Þ: The covariance between a
phenotypic variable and a genetic variable has no corre-
spondence in the classic genetic framework. However, this
approach has convenient computational properties as it re-
quires no matrix inverse (see Appendix B, Computational
properties). The scaled genetic coefficients liai=ðn2 1Þ are
equal to the covariances between the corresponding locus
and the phenotypic latent variable, without conditioning on
the other loci as in approaches i–iii. See Appendix A, Partial
least-squares analysis for more details.

Properties of the four approaches

For each of the four approaches (Table 1), further dimensions
(pairs of latent variables ai;bi) can be extracted by the sub-
sequent pairs of singular vectors of the corresponding asso-
ciation matrix. The second dimension consists of a new allele
combination (genetic latent variable) and a new phenotype
(phenotypic latent variable) that are independent of the ones
from the first dimension and have the second largest associ-
ation, and similarly for further dimensions. The maximal
number of dimensions is minðp; q; n2 1Þ: However, the no-
tion of “independence” differs among the four approaches. In
approaches i and iv—the maximizations of genetic effect
and covariance—the genetic coefficient vectors are orthog-
onal (a9iaj ¼ 0 for i 6¼ j and 1 for i ¼ j), whereas in ap-
proaches ii and iii—the maximizations of genetic variance
and heritability—the genetic latent variables are uncorre-
lated (a9iX9Xaj ¼ 0 for i 6¼ j and 1 for i ¼ j). The phenotypic
effects are orthogonal in approaches i, ii, and iv, whereas the
phenotypic latent variables are uncorrelated in approach iii.

In thefirst three approaches, the corresponding association
is maximized conditional on all other linear combinations of
alleles, including the other latent variables. The matrix of
regression coefficients of the phenotypic latent variables YB
on the genetic latent variables XA thus is diagonal, where the
matrix A contains the vectors ai and B the vectors bi: In
words, the prediction of the ith phenotypic latent variable
by the ith genetic latent variable is not improved by adding
any other latent variable or any linear combination of them as
predictor. In this sense, the effect of the allele combination
Xai on the phenotype Ybi is “independent” of that of any
other allele combination Xaj: Furthermore, in approaches ii,
iii, and iv the genetic latent variables are correlated only with
the corresponding phenotypic latent variable but not with
any of the other latent variables: CovðXai;YbjÞ ¼ 0 for i 6¼ j
(see Appendix A, Maximizing genotype–phenotype association
via SVD for proofs).

The constraints on the mutual independence (orthogonal-
ity or uncorrelatedness) of the genetic coefficient vectors ai
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and the phenotypic coefficient vectors bi are unlikely to re-
flect biological relationships and can complicate the reifica-
tion of multiple latent variables as biological factors (see, e.g.,
Cheverud 2007; Bookstein 2014). Supplemental Material,
Figure S1 illustrates these properties by applications to sim-
ple simulated data sets. Unless only a single dominant di-
mension (pair of latent variables) is present in the data or
all the important latent variables can clearly be interpreted,
multiple dimensions should be interpreted jointly, as span-
ning a genetic subspace that is maximally associated with a
phenotypic subspace. The summed squared singular values of
these dimensions indicate their joint genotype–phenotype
association.

Maximizing genetic effect (phenotypic change per unit
genetic change) in approach i imposes a constraint on the
norms of a and b; that is, it implies a concept of “total” genetic
and phenotypic effect. The vectors are computed to have a
norm (summed squared elements) of 1, which is common in
statistics but not an obvious choice in genetics (see Appendix
B, Geometric properties for further discussion). By contrast,
maximizing genetic variance and heritability in approaches ii
and iii requires no constraint on the norm of a; the explained
phenotypic variance is unaffected by the norm of a: (The SVD
scales a so that the latent variable Xa has unit variance, but
this choice has no effect on the maximal genetic variance.) In
approaches ii and iii, the singular values and the right singu-
lar vectors are even unchanged under all linear transforma-
tions of the genetic variables X (see Appendix B, Geometric
properties for a proof and Figure S1 for a demonstration).
This implies that the maximal genetic variances (singular
values) in approach ii as well as the phenotypes that show
these maximal variances (right singular vectors) do not de-
pend on the variances and covariances of the genetic variables
(as they are scale dependent), that is, on genetic variance and
linkage disequilibrium. They depend on the relative differences
between the genotype scores only. The same applies to ap-
proach iii, but the heritabilities are even invariant to affine
transformation of the phenotypic variables. To understand
these properties intuitively, consider that the regression slope
(genetic effect) depends on the variance of the predictor var-
iable (the genotype scores), but the explained variance (ge-
netic variance, heritability) does not. The genetic coefficients
(left singular vectors) are affected by linear transformations of
X because they are the multiple-regression coefficients of the
phenotypic latent variable on the loci.

Approaches i, ii, and iv require meaningful phenotypic
variances and covariances that are commensurate across

the variables (because b is constrained to a norm of 1). This
can be the case in morphometrics and chemometrics, but
rarely in the behavioral sciences and psychometrics (see also
Mitteroecker andHuttegger 2009;Huttegger andMitteroecker
2011). If correlations, but not variances, are interpretable, for
example when the variables have incommensurate scales,
approaches i, ii, and iv may be applied after standardizing
the variables separately to unit variance or unit mean
(Hansen and Houle 2008). However, linear combinations
of variance-standardized variables may be difficult to inter-
pret; multivariate genotype–phenotype mapping is most
powerful in contexts such as geometric morphometrics
and image analysis, where the variables do not require stan-
dardization and interpretations are always in terms of linear
combinations of measurements. When neither variances
nor correlations are interpretable for the phenotypes, only
approach iii—the maximization of heritability—can be
applied.

Epistasis

The interactions of alleles at different loci are not consid-
ered explicitly in the above descriptions. Epistatic effects
contribute to the estimates as far as they contribute to the
average or additive allelic effects (Cheverud and Routman
1995, 1996). However, it is possible to explicitly include
epistatic effects by appending a design matrix to X that
represents pairwise or higher-order allele interactions.
When adding such interaction terms, approach i maximizes
the sum of additive, dominance, and epistatic effects; ap-
proach ii maximizes genetic variance resulting from all
three kinds of genetic effects (additive plus interaction var-
iance); and approach iii maximizes the corresponding
heritability.

As noted earlier, the allele combinations Xai have no mu-
tual interactions in their effects on the corresponding pheno-
typic latent variable and in this sense show no epistasis. But
this property should not be overinterpreted; it is primarily a
convenient mathematical property, which holds true for all
data sets.

Statistical significance

The presented approaches are exploratory techniques for
identifying multivariate patterns underlying the observed
genotype–phenotype relationships. As long as no specific hy-
potheses about the effect of particular alleles have been for-
mulated, no allele-specific hypothesis tests are appropriate.
But one can test each pattern (pair of genetic and phenotypic
latent variables) as a whole against the hypothesis of no
genotype–phenotype association by a permutation test (e.g.,
Churchill and Doerge 1994; Good 2000): Randomly reassign
the phenotype vector of each individual to another individual
in the data set and recompute the singular value. The P-value
is given by the fraction of such permutations that yield an
equal or larger singular value than the original one. A struc-
tured pedigree in an experimental cross may require a re-
stricted or hierarchical permutation approach. Confidence

Table 1 The four different approaches and the quantities they
maximize, as well as the statistical methods to which they relate

Approach Maximization Related methods

i Genetic effect
ii Genetic variance Reduced-rank regression
iii Heritability Canonical correlation analysis
iv Covariance Partial least-squares analysis
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intervals of the genetic and phenotypic coefficients can be
estimated by a bootstrap approach (e.g., Visscher et al.
1996). These intervals can be used to compare the compu-
tational stability of coefficients across alleles or across di-
mensions. For the reasons mentioned earlier, they should
not be used for inferences about allele-specific statistical
significance.

Data and analysis

We demonstrate multivariate genotype–phenotype mapping
by an application to a classic mouse sample, comprising 1581
specimens of the F2 and F3 generations of an intercross of
inbred LG/J and SM/J mice, obtained from The Jackson Lab-
oratory (for details see Cheverud et al. 1996; Norgard et al.
2008). Each individual was genotyped at 384 polymorphic
SNPs, of which we used the 353 SNPs on the 19 autosomal
chromosomes. Every locus was represented by one variable
for the additive genotype scores and one variable for the
dominance scores. Total body weight (WTN) and the weights
of the reproductive fat pad (FP), the heart (HT), the kidney
(KD), the spleen (SP), and the liver (LV), as well as tail length
(TL), were recorded for each individual. In addition, the
lengths of the right set of long bones (humerus, ulna, femur,
and tibia) were measured. Measurements were corrected for
the effects of sex, litter size, and age at necropsy and stan-
dardized to unit variance. All work on mice was performed
using a protocol approved by the Institutional Animal Care
and Use Committee of the Washington University School of
Medicine (St. Louis). These data may not be representative of
modern high-throughput standards, but they allowed us to
test our approach on a well-explored sample with easily in-
terpretable variables.

We analyzed these data by approach ii—the maximization
of total genetic variance—because genetic variance is the
focus of most breeding studies and evolutionary models.
The computation of the inverse square root matrix was based
on a generalized inverse, using the first 80 principal compo-

nents of the genetic variables, which accounted for 76% of
total variation (see Appendix B, Computational properties). To
check for overfitting the data (see Discussion and Appendix B,
Computational properties), we used a leave-one-out cross-
validation: Each individual’s phenotype was predicted by
the genetic and phenotypic coefficient vectors that were com-
puted using only the other n2 1 individuals. The explained
variance was then computed from these predictions.

Data availability

All data used in the analysis are available at the DRYAD re-
pository: DOI:10.5061/dryad.fc55k. All computations and
visualizations were performed in Mathematica 9.0 (Wolfram
Research Inc.).

Results

Figure 2A shows the genetic variances for the 11 dimen-
sions of latent variables in the style of a scree plot. The first
dimension strikingly dominates the genotype–phenotype
map by accounting for 72% of the total genetic variance
summed over all 11 phenotypic variables (Table 2). The cor-
responding phenotypic latent variable represented overall
limb length (high positive coefficients for all long bones; Fig-
ure 3A). More than 43% of the variance in this phenotypic
latent variable was accounted for by the corresponding ge-
netic latent variable (Table 2). The additive and dominance
effects of the loci are represented by the genetic coefficients
shown in Figure 4. They indicate strong additive effects on limb
length mainly on chromosomes 1, 2, 3, 6, 8, 9, 13, and 17.

The second phenotypic latent variable reflected body and
organ weight (Figure 3B), with additive and dominance ef-
fects mainly on chromosomes 2, 3, 6, 9, 10, 11, 12, 13, and 19
(Figure S2). Compared to dimension 1, the explained vari-
ance of body/organ weight was relatively small (7% of phe-
notypic variance). This pattern differs from the third
phenotypic latent variable, which contrasted distal vs.

Figure 2 (A) Genetic variances of the 11 latent variables, expressed as fractions of total genetic variance summed over all 11 dimensions, resulting from
approach ii applied to the 353 loci and the 11 phenotypic measurements. The genetic variance comprises both additive and dominance variance. These
are the 11 squared singular values of the matrix G in Equation 3, divided by their sum of squares. (B) Fractions of genetic variance for the 11 latent
variables of the analysis of chromosome 6 only.
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proximal long bone length. This trait varied little in the stud-
ied population but was under stronger genetic control than
body weight (25% explained phenotypic variance). The
strongest additive genetic effects were located on chromo-
somes 1 and 11 (Figure S3). These three dimensions together
accounted for 87% of the genetic variance present in the 11
variables of this sample. The subsequent dimensions accounted
for small portions of genetic variance only (,3%) and had no
obvious interpretation.

Figure 5 shows a plot of the three scaled phenotypic coeffi-
cient vectors, constituting a phenotype space in which the phe-
notypic variables cluster according to their genetic structure.
For approach ii applied here, the squared length of the vectors
approximates the genetic variance of the corresponding phe-
notypic variable, and the cosine of the angle between the vec-
tors approximates their genetic correlation. The long bones
clustered together to the exclusion of the weight measure-
ments, indicating a shared genetic basis. Humerus and femur
as well as tibia und ulna showed particularly strong genetic
correlations. Tail length was more closely correlated with the
weight measurements than with the long bone lengths.

In a second analysis, we performed a separate and more
detailed studyof chromosome6,which showed stronggenetic
effects. As genetic predictors we used the additive and dom-
inance genotype scores for each of the 22 screened SNPs as
well as for 89 loci imputed every 1 cM. This allows for the
implementation of interval mapping (Lander and Botstein
1989) in multivariate genotype–phenotype mapping. These
222 genetic variables and the 11 phenotypic variables were
analyzed again with approach ii, the maximization of genetic
variance, resulting in two interpretable dimensions (Figure
2B and Figure 6). Bootstrap confidence intervals are shown
for both the genetic and phenotypic effects. The computation
of the matrix inverse was based on the first eight principal
components of the genetic variables (89% of variance). The
first dimension again represented limb length and accounted
for even 85% of total genetic variance within the 11 pheno-
typic variables (P, 0:001). The additive genetic effects had
twodistinguishedpeaks, oneat�60–70Mbandoneat�140Mb.
Both peaks were associated with small dominance effects.
These results correspond well to the two loci affecting long
bone length identified by Norgard et al. (2008); they were
estimated at 85 and 144 Mb on chromosome 6 by applying
traditional methods to the same data. The second dimension
represented body and organ weight and accounted for 8% of
total genetic variance (P ¼ 0:090). Additive and dominance
effects had three peaks, one close to the centromere, one at

�60–70 Mb, and one at the end of the chromosome. For the
latter region, additive and dominance effects were of oppo-
site sign. These three locations are in accordance with the loci
identified by Vaughn et al. (1999) and Fawcett et al. (2008)
for body and organ weight in the F2 and F3 generations of the
same cross. The confidence intervals of both genetic and phe-
notypic coefficients for dimension 2 were considerably wider
than that for dimension 1. Note that the confidence intervals
should not be used for statistical inference in this exploratory
context, only for the comparison of computational stability
within the sample.

Since the F3 population consisted of 200 sets of full sibs,
we accounted for the genetic similarity between individuals
in a separate analysis. We constructed an n3 n matrix that
represents genetic similarity between individuals (we tested
both the expected similarity based on relatedness and the
actual similarity based on the SNP data) and implemented
this matrix in the estimation by a generalized least-squares
approach (see Appendix B, Generalized least squares). This
had only a limited effect on the results and we thus presented
just the ordinary least-squares solutions here. We also re-
peated the analyses with different numbers of principal com-
ponents (PCs) used for the matrix inversion. The genetic
coefficients were stable against small changes of the numbers
of PCs; the phenotypic coefficients and the shape of the scree
plot were stable even over a very wide range of PCs. Taking
the cube root of the weight measurements before variance
standardization had basically no effect on the results. We
checked whether outliers could drive some of the results,
but found no evidence in scatter plots of genetic vs. pheno-
typic latent variables. We also applied the other three maxi-
mization approaches to the data, which basically resulted in
the same first two pairs of phenotypic and genetic latent
variables with similar explained variances (see Appendix C
for a brief presentation of these results).

Discussion

Many traits are affected by numerous alleles with small or
intermediate effects, which are difficult to detect by mapping
each locus separately. Loci selected by separately computed P-
values often account for low fractions of phenotypic vari-
ance and provide an incomplete picture of the genotype–
phenotype map (Manolio et al. 2009; Eichler et al. 2010).
“Whole-genome prediction” methods, which are based on all
scored loci, have proved more effective in explaining pheno-
typic variation of a trait (Yang et al. 2010; de Los Campos et al.

Table 2 The first three dimensions of latent variables resulting from approach ii, the maximization of total genetic variance

Dimension Phenotypic variance Genetic variance (%) Fraction of genetic variance P-value

1 3.35 1.43 (0.43) 0.72 ,0.001
2 3.01 0.20 (0.07) 0.10 0.063
3 0.39 0.10 (0.25) 0.05 ,0.001

Shown are the variance of the phenotypic latent variable (linear combination of standardized phenotypic variables), the variance of this phenotypic latent variable explained
by the genetic latent variable (i.e., genetic variance), the genetic variance as a fraction of total genetic variance of all traits (plotted in Figure 2), and the P-value for the test of
this dimension against the hypothesis of complete independence between genetic and phenotypic latent variables.
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2013). However, many complex phenotypes cannot be ade-
quately represented by a single variable but require multiple
measurements. For such multivariate traits, we presented a
“whole-genome, whole-phenotype prediction” method that
identifies the genetically determined traits and their associated
allelic effects in a single step. This avoids an inefficient de-
composition (such as principal component analysis) of the
phenotypic variables separately from the genetic variables
(Cheverud 2007); instead our method provides a decomposi-
tion of the genotype–phenotype map itself.

Multivariate genotype–phenotype mapping separates
phenotypic features under strong genetic determination from
features with less genetic control, whereas traditional map-
ping of complex traits typically lumps different phenotypic
features with different heritabilities. For example, we found
that overall limb length in our mouse sample is both highly
variable and highly heritable (43% explained phenotypic var-
iance); a second feature, distal vs. proximal limb bone length,
is much less variable but still shows an explained variance of
25%. All other aspects of long bone variation, e.g., forelimb
vs. hindlimb length, show very little genetic variation. Map-
ping each of the four limb bones separately thus leads to
estimates of explained variance that are averages across all
these features, some of which have high heritability and some
of which have basically none. It thus misses the actual signal:
the traits (latent variables) under strong genetic control.
Multivariate genotype–phenotype mapping can tell one
where to look for the (missing) heritability in the phenotype
and shows the allelic pattern associated with this phenotype.

For the same mouse population, Norgard et al. (2008)
estimated the heritability of long bone length to be �0.9, of
which we could explain almost half by dimension 1 of the
multivariate mapping. The lack of the remaining heritability
is due likely to the limited number of SNPs and incomplete
linkage disequilibrium between causal variants and geno-
typed SNPs (Yang et al. 2010).

Estimates of explained variance based on all scored loci
tend to be too high because of massive overfitting and, hence,
may not reflect actual prediction accuracy (Makowsky et al.
2011; Gianola et al. 2014). After applying leave-one-out
cross-validation, dimension 1 (limb length) still showed an

explained variance of 0.36 and dimension 3 of 0.17. The re-
duction of the genetic variables to the first 80 PCs together
with the identification of the relevant predictor variable (the
genetic latent variable) thus prevented severe overfitting.
Our estimates include both additive and dominance effects,
but most of the explained variance was due to additive
gene effects (fractions of phenotypic variance explained
by additive effects were 0.40, 0.05, and 0.23 for the three
dimensions).

The variance of body/organ weight (second latent vari-
able) that was explained by the genetic latent variable was
relatively small (7% of phenotypic variance), which is some-
what surprising since the two parental strains were selected
for small and large body size, respectively. Apart from sub-
stantial environmental variance, this may result from the
considerable sex interactions identified by Fawcett et al.
(2008), which we did not include in our analysis. Note also
that dimension 2 covers the genetic effects on body/organ
weight, independent of the effects on limb length, so some of
the QTL effects on weight might have been captured by a
more general size factor with the limb length. Higher esti-
mates of explained variance of body weight in earlier
genome-wide studies likely resulted from overfitting the
genotype–phenotype relationship. For example, Kramer
et al. (1998) explained 47% of phenotypic variance in body
weight by a multiple regression on the additive and domi-
nance scores of all scored SNPs. We could reproduce this
result with the present sample, but when applying a leave-
one-out cross-validation, this fraction dropped to �3%. This
severe overfitting by the multiple regression is not surpris-
ing, given that we found only a single allele combination to
be considerably (and presumably causally) associated with
body/organ weight. The 705 remaining combinations of ge-
notype scores inflated the “explained variance” by random
associations with bodyweight (note that we had additive and
dominance scores for 353 loci and hence 706 independent
linear combinations of scores).

Multivariate genotype–phenotypemapping is primarily an
exploratory method for investigating the multivariate struc-
ture of genotype–phenotype association. However, it can pro-
vide crucial information for gene identification. In our mouse

Figure 3 Phenotypic coefficients for the first three dimensions (A–C) of the analysis of all 19 chromosomes. These are the vectors b1;b2;b3 resulting
from approach ii and represent the composition of the phenotypic latent variables. The phenotypic measurements are the lengths of the femur, the
humerus, the tibia, and the ulna (FEM, HUM, TIB, ULN); weight of the fat pad (FP); body weight (WTN); tail length (TL); and the weights of the heart, the
kidneys, the spleen, and the liver (HT, KD, SP, LV).
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data, for instance, we found three independent dimensions of
genotype–phenotype association, each of which could be
tested as a whole against the null hypothesis of no associa-
tion. In fact, this is the number of independent statistically
meaningful tests that can be made. The performance of all
pairwise tests between genetic and phenotypic variables
(7766 for our data) is a misuse of significance testing in an
entirely exploratory context (McCloskey and Zilik 2009;
Bookstein 2014; Mitteroecker 2015) that does not guarantee
repeatable results (Morgan et al. 2007). Of course, the bi-
ological meaning of a hypothesis about the complete lack of
genotype–phenotype association remains doubtful nonethe-
less. Dimensions 1 and 3 were highly statistically significant
as a whole in our data; dimension 2 was convincing as a
pattern but not as clearly significant as the other dimensions
because of the large fraction of environmental variance
(P ¼ 0:063; Table 2). Identification of important alleles
should be based on the effect sizes (the genetic coefficients),

unless more specific prior hypotheses about gene effects
existed. The fourth and all subsequent dimensions did not
differ significantly from a random association (P. 0:30).

For complex phenotypes measured by multiple variables,
multivariate genotype–phenotype mapping should precede
any other mapping technique to identify the number of in-
dependent dimensions of genotype–phenotype association.
In particular, this applies to variables that do not bear biolog-
ical meaning one by one, such as in modern morphometrics
and image analysis, but also to gene expression profiles and
similar “big data.” Multivariate genotype–phenotype map-
ping identifies the phenotypes (linear combinations of mea-
surements) under strong genetic control that are worth
considering for further genetic analysis. In addition to the
allelic effects estimated by multivariate mapping, other
measures of allelic effects or LOD scores can be computed
by more classic methods for the identified phenotypic latent
variables.

Figure 4 Genetic coefficients for the first dimension of the analysis of all 19 chromosomes. They are the elements of the vector a1 from approach ii and
represent the partial additive and dominance effects (blue and red lines) of all 353 loci on the corresponding phenotypic latent variable (limb length; cf.
Figure 3).
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We presented four different variants of multivariate
genotype–phenotypemapping,whichmaximize differentmea-
sures of association: (i) genetic effect, (ii) genetic variance, (iii)
heritability, and (iv) the covariance between genetic and phe-
notypic latent variables (Table 1). The choice among them
depends on the scientific question and the kind of
phenotypic variables. While the genetic effect may be of in-
terest in certain medical studies, additive genetic variance
is central to many evolutionary studies and breeding
experiments. Maximizing heritability tends to be the most
unstable approach because it maximizes genetic variance
and minimizes environmental variance at the same time. Ap-
proach iv, the maximization of covariance, has no correspon-
dence in quantitative genetics but it is computationally
simple and avoids severe overfitting without prior variable
reduction (Martens and Naes 1989). The genetic coefficients
in approaches i–iii represent partial effects (i.e., effects con-
ditional on the other loci), whereas the coefficients in ap-
proach iv do not depend on the other loci in this way.
Approach iv thus offers an alternative to the other approaches
when computational simplicity is preferred over interpret-
ability or when partial coefficients should be avoided.

In addition to purely additive or average gene effects,
nonadditive effects can be incorporated into the analysis by
adding variables representing dominance or epistasis (pair-
wise or higher-order interaction terms) to the genetic pre-
dictors. Accordingly, the genetic latent variables can be
interpreted either as breeding values or as genotypic values.

Multivariate genotype–phenotype mapping can be applied to
crosses of inbred strains as well as to natural populations.
Genetic similarity and common ancestry can be accounted
for by generalized least-squares variants (see Appendix B,
Generalized least squares). In addition to genetic variables,
covariates such as environmental variables can be included
in the predictors as well. In approaches i–iii, the resulting
coefficients of the gene effects are then conditional on these
covariates. The presented methods make no distributional
assumptions and do not require linear relationships between
genetic and phenotypic latent variables or covariates. How-
ever, only if all relationships are linear (and, hence, the var-
iables jointly normally distributed), uncorrelatedness implies
actual independence. The interpretation of the singular val-
ues of F; G; and H as genetic effect, genetic variance, and
heritability, respectively, is exact only for randomly mating
populations in Hardy–Weinberg equilibrium. The more a
population deviates from equilibrium, the more the singular
values may deviate from these genetic quantities.

For a singlephenotypicvariableonly, approaches i–iii lead to
the same genetic latent variables and the same genetic coeffi-
cients, which are the regression coefficients of the phenotype
on the loci. The corresponding linear combination of loci max-
imizes all three measures of genotype–phenotype association:
genetic effect, genetic variance, and heritability. In the classic
genetic literature, this is also known as the “selection index”
(Smith 1936; Hazel 1943). The three approaches can thus
be construed as three different generalizations of multiple

Figure 5 Two different projections of the three-
dimensional phenotype space resulting from the
first three scaled phenotypic coefficient vectors
(l1b1;l2b2;l3b3). For approach ii applied here—
the maximization of genetic variance—the squared
length of the vectors approximates the genetic var-
iance of the corresponding phenotypic variable,
and the cosine of the angle between the vectors
approximates their genetic correlation. Clustering
of phenotypic variables in this diagram thus indi-
cates shared genetic control.
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regression to many phenotypic traits; the genetic coefficients
(the elements of the vectors ai) in all three approaches equal
the multiple-regression coefficients of the corresponding ith
phenotypic latent variable on the loci.

This property allows one to rotate the phenotypic latent
variables to increase their biological interpretability, as in
exploratory factor analysis, and to estimate the corresponding
genetic effects. For the mouse data, the first 3 dimensions of
phenotypic latent variables constituted a 3-dimensional sub-
space of the 11-dimensional phenotype space, which con-
tained almost all of the genetic variation in the data. The
first latent variable was overall limb length, and the third one
was a contrast betweendistal andproximal limbbone lengths.
Hence, femurandhumerus,aswellas tibiaandulna,werehighly
correlated and clustered in Figure 5. Alternative latent variables
would thus be proximal limb length (femurþ humerus) and
distal limb length (tibiaþ ulna). The corresponding genetic
latent variables can be computed by multiple regression of
the new latent variable on the loci.

In most modern genetic data sets p clearly exceeds n,
which challenges least-squares methods such as approaches
i–iii. In Appendix B, Computational properties we show how
they can be computed based on generalized inverses or ma-
trix regularizations. Approach iv—the partial least-squares
analysis—does not require the inversion of a matrix and
can also be applied to collinear genetic variables and when

p. n: Clearly, there is much room for improvement, such as
an implementation in a Bayesian framework and the ap-
plication of other penalized or BLUE/BLUP methods (e.g.,
Meuwissen et al. 2001; Lopes andWest 2004; de Los Campos
et al. 2013; Zhu et al. 2014). The use of information mea-
sures, such as the application of PLS to Kullback–Leibler di-
vergences by Bowman (2013), may allow for the application
of the presented approaches to a wide range of heteroge-
neous variables.

In our 11-dimensional phenotype space, only 3 dimensions
had considerable genetic variation, but themajority of genetic
variationwas even concentrated in a single dimension. In this
sense, the genotype–phenotype map in this population is of
surprisingly “low dimension” (even if themetaphor of dimen-
sionality does not uniquely translate into an integer or a real
number). In a preliminary analysis, we found similar results
for the F9 and F10 generations of the same mouse cross. At
least in part, this low-dimensional genotype–phenotype map
resulted from the intercross of two inbred populations. It
remains to be investigated to what degree it is also charac-
teristic of outbred populations. Current studies of phenotypic
and genetic variance–covariance patterns provide inconsis-
tent results in this regard (e.g., Kirkpatrick and Lofsvold
1992; Mezey and Houle 2005; Hine and Blows 2006; Pavlicev
et al. 2009). Hallgrimsson and Lieberman (2008) speculated
that a low-dimensional pattern of phenotypic variation is a

Figure 6 (A and B) Phenotypic and genetic coefficients with 90% confidence intervals of the first (A) and the second (B) pair of latent variables for the
separate analysis of chromosome 6. The first phenotypic latent variable reflected limb length and the second one body and organ weight. Additive and
dominance effects are represented by blue and red lines, respectively. The 22 screened loci are represented by large symbols and the 89 imputed loci by
small symbols.
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general phenomenon that results from the “funneling” of
the vast amount of genetic variation by a few central de-
velopmental pathways and morphogenetic processes. This
would massively bias and constrain a population’s pheno-
typic response to natural or artificial selection and generate
a broad heterogeneity of genetic responses within a single
selection scenario. If such funneling processes exist, multi-
variate genotype–phenotype mapping can help to identify
these central pathways.
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Appendices

Appendix A: Derivation and Proofs

Univariate genotype–phenotype association
To show how—for an idealized, randomly mating population—the singular value decompositions of the matrices F; G; and H
introduced in (2), (3), and (4), respectively, lead to latent variables with maximal genotype–phenotype association, we first
review the classic measures of association in the simple case of one diploid locus with two alleles affecting one quantitative
phenotypic trait. For a sample of n specimens, let the n3 1 vector x contain the additive genotype scores (1 for heterozygotes
and 0 or 2 for the two possible homozygotes) and the n3 1 vector y contain the corresponding phenotypes. Consider further
the n3 1 vector d containing the dominance scores (0 for homozygotes and 1 for heterozygotes) and the n32 matrix
Z ¼ ðx;dÞ: For notational convenience, let x; y; and d be mean centered so that x91 ¼ y91 ¼ d91 ¼ 0; where the superscript
9 indicates the transpose operation and 1 a vector of 1’s.

In a sample of measured individuals, the additive and dominance effects, a and d, are numerically identical to the regression
coefficients of the multiple regression of the phenotype y on both x and d :

ða; dÞ9 ¼ �
Z9Z

�21
Z9y: (A1)

By contrast, the average effect, a, of an allele substitution equals the bivariate regression slope of the phenotype y on the
additive genotype scores x :

a ¼ Covðx; yÞ=VarðxÞ ¼ x9y
�
x9x: (A2)

The sum of the average effects of all alleles constitutes the breeding value of an individual.
The additive genetic variance, VA; of y owing to the variance in x equals 2p1p2a2 (Falconer and Mackay 1996; Roff 1997).

For a population in Hardy–Weinberg equilibrium, 2p1p2 ¼ VarðxÞ; and thus the additive genetic variance can be expressed as

VA ¼ VarðxÞCovðx; yÞ2=VarðxÞ2
¼ Covðx; yÞ2=VarðxÞ
¼ Covðxs; yÞ2;

(A3)

where xs ¼ x=VarðxÞ1=2 is x standardized to unit variance. The dominance variance, VD; is equal to ð2p1p2dÞ2 ¼ VarðxÞ2d2:
The additive genetic variance of y due to x; expressed as a fraction of the total variance of y; is the narrow-sense heritability h2 of

y resulting from variation in the studied locus. It can be expressed as the squared correlation between the locus and the phenotype,

h2 ¼ VA=VarðyÞ
¼ Corðx; yÞ2
¼ Covðxs; ysÞ2;

(A4)

where ys is the phenotype standardized to unit variance. The broad-sense heritabilityH2 is the sum of additive and dominance
variance as a fraction of phenotypic variance, which equals the squared multiple correlation coefficient resulting from the
regression of y on Z:

All these parameters represent different aspects of the genotype–phenotype relationship.While a and d are properties of the
genotype alone, a and VA are population properties that represent the potential to respond to natural or artificial selection. In
contrast to a and d, the average effecta depends on the allele frequencies p1 and p2 ¼ 12 p1 in a population:a ¼ aþ dðp2 2 p1Þ:
The heritability depends on both genetic and nongenetic variation in the population (see also Hansen et al. 2011).

Multivariate genotype–phenotype association
For multiple loci and multiple phenotypic variables, we seek the combined effect of the alleles ðx1; . . . ; xpÞ ¼ X on a phenotype
composed of themeasured variables ðy1; . . . ; yqÞ ¼ Y: In a cross of two inbred lines, each locus is represented by one variable for the
additive genotype scores and one for the dominance scores. In natural populations, where each locus can have multiple alleles, each
allele at each locus is represented by a separate variable containing the number of this allele (0, 1, 2) at the locus and one variable for
the dominance scores. In the following notation, the variables xi, yi are again assumed to be mean centered. Let the effects of the
alleles on the phenotype be denoted by the p3 1 vector a ¼ ða1; a2; . . . ; apÞ9 and the weightings of the measured variables that
determine the phenotype by the q3 1 vectorb ¼ ðb1; b2; . . . ; bqÞ9: Then the two latent variables are given by the linear combinations
Xa andYb (Figure 1). The coefficient vectorsa;b are chosen tomaximize the association between the corresponding latent variables,

max
a;b

AðXa;YbÞ;

1358 P. Mitteroecker, J. M. Cheverud, and M. Pavlicev



where A represents one of the above association functions (genetic effect, genetic variance, heritability) between the genetic
and phenotypic latent variables. In addition to this pair of latent variables, there might be further pairs of latent variables with
effects ai and bi; independent of the previous ones, that together account for the observed genotype–phenotype association.

Maximizing genotype–phenotype association via SVD
The association functions (A1)–(A4) extend naturally from a single locus and a single trait to a linear combination of loci and a
linear combination of phenotypic variables.

Genetic effect (i): Under the constraint a9a ¼ b9b ¼ 1; the regression slope CovðXa;YbÞ=VarðXaÞ of Yb on Xa; conditional on
all other linear combinations of X; is maximized by the first pair of singular vectors a ¼ u1;b ¼ v1 of the matrix of multiple-
regression coefficients F ¼ ðX9XÞ21X9Y: If X contains the p additive scores only, the singular value l1 represents the average
effect associated with the allele combination and the phenotype specified by the singular vectors. Whereas if X comprises both
additive and dominance scores (2p in total), the singular value is the sum of additive and dominance effects.

To prove this, consider the matrix of regression coefficients for the linear combinations XA and YB; where A and B are
orthonormal matrices containing the vectors ai and bi; respectively:

�
ðXAÞ9XA

�21ðXAÞ9YB ¼ A9
�
X9X

�21
X9YB

¼ A9FB:
(A5)

(Note that this equation holds only under the constraint that the vectors ai are mutually orthogonal so that the matrix A is
orthonormal and A9 ¼ A21:) The right part of Equation A5 is a classic singular value problem (e.g., Mardia et al. 1979). If A is
equal to the matrix U of left singular vectors of F and B is equal to the matrix V of right singular vectors, then A9FB ¼ L is the
diagonal matrix of singular values of F: These singular values are equal the regression slopes of the phenotypic latent variables
on the corresponding genetic latent variables. The pair of singular vectors associatedwith the largest singular value determines
the pair of genetic and phenotypic latent variables with maximal regression slope (i.e., maximal genetic effect), l1:

Genetic variance (ii): The variance in the phenotype Yb explained by the allele combination Xa is given by
CovðXa;YbÞ2=VarðXaÞ (compare Equation A3). It is maximized by the vectors a ¼ ðX9XÞ21=2u1 and b ¼ v1; where u1 and
v1 are the first left and right singular vectors of G ¼ ðX9XÞ21=2X9Y: The matrix G is equal to the covariance matrix between Y
and X after X is transformed to a spherical distribution. If X contains the additive scores only, l21=ðn2 1Þ is the additive genetic
variance associated with the corresponding allele combination and phenotype, whereas if X contains both additive and
dominance scores, it represents the total genetic variance.

To show this, express the maximization of CovðXa;YbÞ2=VarðXaÞ as the maximization of CovðXa;YbÞ2 ¼ ða9X9Yb=ðn21ÞÞ2
subject to VarðXaÞ ¼ a9X9Xa=ðn2 1Þ ¼ 1: Write a ¼ ðX9XÞ1=2a; then the maximization is of ða9ðX9XÞ21=2X9Yb=ðn21Þ2Þ; sub-
ject to a9a=ðn2 1Þ ¼ 1: This is well known to be solved by the first pair of singular vectors u1; v1 of ðX9XÞ21=2X9Y; where
a ¼ ðX9XÞ21=2u1 and b ¼ v1; with the maximal variance equal to l21=ðn21Þ (cf. Mardia et al. 1979; p. 284).

Heritability (iii): The squared correlation coefficient CorðXa;YbÞ2 is maximized by the vectors a ¼ ðX9XÞ21=2u1 and
b ¼ ðY9YÞ21=2v1; where u1 and v1 are the left and right singular vectors of the matrix H ¼ ðX9XÞ21=2X9YðY9YÞ21=2; the
covariance matrix between the spherized Y and spherized X: Depending on whether X contains the additive scores or both
additive and dominance scores, the squared singular value l21 (squared canonical correlation) is the narrow-sense or broad-
sense heritability, respectively. The proof follows by extending the one of approach ii; it equals the standard proof of canonical
correlation analysis (e.g., in Mardia et al. 1979).

For each of the three approaches, further dimensions (pairs of latent variables) can be extracted by the subsequent pairs of
singular vectors of the corresponding association matrix:

ðiÞ ai ¼ ui;bi ¼ vi;

ðiiÞ ai ¼
�
X9X

�21=2
ui;bi ¼ vi;

ðiiiÞ ai ¼
�
X9X

�21=2
ui;bi ¼

�
Y9Y

�21=2
vi:

In approach i, the genetic effects (the vectors ai) are orthogonal because they are the singular vectors of a real matrix. In the
maximizations of (ii) genetic variance and (iii) heritability, by contrast, the genetic latent variables are uncorrelated. This can
be shown by expressing the covariance matrix of the genetic latent variables as U9ðX9XÞ21=2X9XðX9XÞ21=2U ¼ U9U ¼ I; where
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the orthonormal matrixU contains the singular vectors ui; and I is the identity matrix. The phenotypic effects are orthogonal in
approaches i and ii, whereas the phenotypic latent variables are uncorrelated in approach iii.

In all three approaches, the corresponding association is maximized conditional on all other linear combinations of alleles,
including the other dimensions ai: This implies that bXai;Ybi ¼ bXai;Ybi:Xc; where bXai;Ybi is the regression slope of the ith
phenotypic latent variable on the ith genetic latent variable and bXai;Ybi :Xc is the regression slope conditional on another linear
combination Xc; for any vector c 6¼ ai: Thematrix of regression coefficients of the phenotypic latent variables YB on the genetic
latent variables XA thus is diagonal.

The proof of these properties for approach i follows from the fact that the matrix of regression coefficients for the latent
variables,XA and YB; can bewritten asA9FB ¼ L (see Equation A5), whereL is the diagonal matrix of singular values of F: For
approach ii,A ¼ ðX9XÞ21=2U andB ¼ V;whereU andV are the orthonormalmatrices of left and right singular vectors ofG: The
matrix of regression coefficients for the latent variables can thus be written as

�
U9

�
X9X

�21=2
X9X

�
X9X

�21=2
U
�21

U9
�
X9X

�21=2
X9YV ¼ U9

�
X9X

�21=2
X9YV ¼ L; (A6)

where the diagonal matrix L now contains the singular values of G: The proof for approach iii can be constructed similarly.
Furthermore, in approaches ii and iii the genetic latent variables are correlated only with the corresponding phenotypic latent
variable but not with any of the other latent variables: CovðXai;YbjÞ ¼ 0 for i 6¼ j: This can be shown by expressing the cross-
covariance matrix of the latent variables as U9ðX9XÞ21=2X9YV in approach ii and as U9ðX9XÞ21=2X9YðY9YÞ21=2V in approach iii,
which both are diagonal.

Partial least-squares analysis
The fourth approach, PLS, maximizes the covariance between the two linear combinations CovðXa;YbÞ: The unit vectors a;b
maximizing this covariance can be computed as the first pair of singular vectors u1; v1 of the cross-covariance matrix X9Y: The
proof of this classic singular value problem is given, e.g., in Mardia et al. (1979); see also Sampson et al. (1989). Subsequent
pairs of singular vectors yield further genetic and phenotypic dimensions ai;bi that are mutually orthogonal. Furthermore,
CovðXai;YbjÞ ¼ 0 for i 6¼ j and li=ðn2 1Þ for i ¼ j; where li is the ith singular value of X9Y:

The scaled genetic coefficients (the elements of the scaled singular vectors liai=ðn2 1Þ are equal to the covariances between
the corresponding locus and the phenotypic latent variable, without conditioning on the other loci as in approaches i–iii. When
the genetic variables are standardized to unit variance through division by their standard deviation, the squared scaled genetic
coefficients equal the explained variance of the phenotypic latent variable owing to the corresponding locus considered
separately, i.e., without conditioning on the other loci (compare Equation A3).

Appendix B: Properties

Geometric properties
Themaximizations of genetic effect andof covariance inapproaches i and iv require a constraint on the lengthofaandb:Because
they are the singular vectors ui; vi; they are computed to have a 2-norm of 1. When the variables can be equipped with a
meaningful Euclidean metric, this constraint translates into an interpretable notion of total genetic and phenotypic effects. For
the genetic variables, this choice of constraint is not particularly obvious as it implies that an allele with an effect of 1 is
equivalent inmagnitude to two alleles with effects of

ffiffiffiffiffiffiffiffi
1=2

p
each. It may seemmore intuitive that two alleles with effects of 1=2

are equivalent to a single allele with an effect of 1. This latter choice would impose a constraint on the sum of the absolute
values of the elements of a (the 1-norm), not on the sum of the squared elements. Regression approacheswith constraints other
than the 2-norm have been proposed [e.g., the Lasso technique (Tibshirani 1996)], but this generalization goes beyond the
scope of the present article.

The invariance to the length of a in approach ii can also be seen from Equation A3, which expresses the additive genetic
variance of a single trait as its squared covariance with xs; the additive genotype scores scaled to unit variance. The scale of x is
removed through dividing by its standard deviation. In the multivariate context, the maximal genetic variance,
CovðXa;YbÞ2=VarðXaÞ; can be found by maximizing CovðXSa;YbÞ2; where XS is the matrix of genetic variables transformed
so that every linear combination has unit variance: VarðXScÞ ¼ 1 for any unit vector c: This transformation is achieved by
multiplyingX by the inverse square root of its covariancematrix:XS ¼ XðX9XÞ21=2: The vectors a and b can thus be found by the
singular vectors u1; v1 of ðX9XÞ21=2X9Y; after u1 has been transformed back into the original coordinate system. The singular
values of this matrix (the genetic variances) as well as the right singular vectors determining the phenotypes are invariant to
affine transformations of X: This can be shown when considering that the right singular vectors and squared singular values of
G are the eigenvectors and eigenvalues ofG9G (cf. Equation B1). Let X* ¼ XT be a linear transformation of X;where T is a full-
rank p3 p matrix, and G* ¼ ððX*Þ9X*Þ21=2ðX*Þ9Y :
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ðG*Þ9G* ¼ Y9XTððXTÞ9XTÞ21=2ððXTÞ9XTÞ21=2ðXTÞ9Y
¼ Y9XT

�
T9X9XT

�21
T9X9Y

¼ Y9XTT21�X9X�21�
T9
�21

T9X9Y

¼ Y9X
�
X9X

�21
X9Y

¼ G9G:

It follows from this property that themaximal genetic variances (singular values ofG) aswell as the phenotypes that show these
maximal genetic variances (right singular vectors) remain unchanged by linear transformations of the genetic variables; thus
they also do not depend on the variances and covariances of the genetic variables, that is, on genetic variance and linkage
disequilibrium. The same property holds for approach iii. Approaches i and iv are not invariant to transformations of X;
implying that the genetic variances and covariances need to be interpretable for computing the maximal genetic effects. Only
approach iii is invariant to affine transformation of the phenotypic variables Y; all other approaches require meaningful
phenotypic variances and covariances as well as commensurate units.

Computational properties
For typical genetic data, approaches i–iii are not computable by the presented least-squares methods because of collinearities
between loci or because p. n: The covariance matrix X9X is singular and its inverse or inverse square root cannot be computed
without the use of a pseudoinverse or of regularization techniques. The Moore–Penrose pseudoinverse of a matrix M is
Mþ ¼ QLþQ9; where Q is the matrix of eigenvectors of M and Lþ is a diagonal matrix with the reciprocal of the m largest
nonzero eigenvalues in the diagonal. The remaining p2m eigenvalues are set to 0. This is equivalent to reducing the data to
the firstm principal components for the inversion, discarding all subsequent principal components with small or zero variance.
The partial coefficients resulting from such an approach are not conditional on all other variables, but only on the major
patterns of multivariate variation (discarding rare alleles). In the simplest form of Tikhonov regularization, also referred to as
ridge regression, ðX9XÞ21 is replaced by ðX9Xþ gIÞ21;where I is the identity matrix and g is a positive real. The larger g is, the
more are components with low variance downweighted in the matrix inverse; i.e., rare alleles or less variable allele combi-
nations are downweighted relative to more variable alleles or allele combinations.

The results of approaches i–iii depend on the number of selected components or on g and require a careful decision.
Typically, after adding the first few components that cover the relevant signals, adding further components has little effect,
until the number of components becomes too large and the increasing noise leads to unstable results. Adding further com-
ponents may still increase the explained phenotypic variance, but this is due to overfitting; the genetic coefficients may not be
interpretable. Exploring different numbers of components underlying the pseudoinverse (or different values of g) thus often
leads to a range of stable components (or a stable range of g) that lead to similar and equally interpretable results. A cross-
validation approach can help to find the optimal number of principal components or the optimal g for the data set. Approach
iv—the partial least-squares analysis—involves no matrix inverse and can also be computed for collinear loci and if p.n;
overfitting is less a problem in this approach (Martens and Naes 1989). It is thus useful to compare the results of approaches
i–iii to that of approach iv. Bayesian approaches and numerous other penalized methods offer promising alternatives to the
presented least-squares methods (Meuwissen et al. 2001; Lopes and West 2004; de Los Campos et al. 2013; Zhu et al. 2014).

If the number of genetic variables p or the number of phenotypic variables q is very large, the singular value decomposition of
the association matrix can be computationally demanding. Here one can make use of the property that the left singular vectors
ui of a matrix M are equal to the eigenvectors of MM9 and the right singular vectors vi are the eigenvectors of M9M: Thus, if
p � q or q � p; one can compute either ui or vi as the eigenvectors of the smaller matrix product. Since M9ui ¼ livi and
Mvi ¼ liui; the other singular vectors can be obtained by premultiplication withM: In approach ii, for instance, the vectors bi

are given by the eigenvectors of

G9G ¼ Y9X
�
X9X

�21
X9Y: (B1)

Note that the eigenvalues of (B1) are equal to the squared singular values of G:
If both p and q are very large and if only the first few dimensions need to be computed, the singular vectors can be computed

more effectively via an iterative approach. Start with any p3 1 vector u1 and estimate v1 asM9u1; scaled to unit vector length.
In the next step, u1 is estimated asMv1; again scaled to unit vector length. These steps are repeated until convergence, which is
usually reached fast. The singular value equals l1 ¼ 

M9u1



 ¼ kMv1k: To compute the next pair of singular vectors u2; v2; let
Mð1Þ ¼ M2 l1u1v91 and repeat the iterative approach with Mð1Þ instead of M; and similarly for subsequent dimensions.

Generalized least squares
In a samplewith a family structure, the presented least-squares estimates are unbiased but the standard errors of the parameters
may be inflated. This can be addressed by generalized least squares. Let the n3 n matrix V contain measures of expected or
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realized genetic relatedness between pairs of individuals (e.g., Hayes et al. 2009). Then the maximization in the four ap-
proaches is based on the following matrices:

ðiÞ
�
X9V21X

�21
X9V21Y;

ðiiÞ
�
X9V21X

�21=2
X9V21Y;

ðiiiÞ
�
X9V21X

�21=2
X9V21Y

�
Y9V21Y

�21=2
;

ðivÞX9V21Y:

The genetic variance–covariance structure
Because in approach ii—themaximization of genetic variance—the vectors bi constitute an orthonormal basis of the phenotype
space with associated genetic variances l2i =ðn2 1Þ; the genetic variance–covariance matrix SG of the measured phenotypic
variables can be computed asBL2B9=ðn2 1Þ;whereB contains the phenotypic coefficient vectors bi (the left singular vectors of
G), and L2 is a diagonal matrix of the squared singular values of G: Because of (B1), the genetic variance–covariance matrix
can also be computed directly as

SG ¼ Y9X
�
X9X

�21
X9Y

.
ðn2 1Þ: (B2)

This can also be seen when considering the phenotypic predictions from the genetic variables, XðX9XÞ21X9Y; of which SG is the
variance–covariance matrix. Note that when X contains the additive genotype scores only, (B2) is the additive genetic
variance–covariance matrix, whereas if X contains additive and dominance scores, (B2) is the total genetic covariance matrix.

Appendix C: Alternative Analyses

Herewepresent the results of theother threeapproachesapplied to thesamemousedataas in themain text.All threeapproaches
lead to similar scree plots as in approach ii: The first dimension clearly dominates the genotype–phenotype relationship (Figure
C1). In all approaches, the first dimension represents limb length (Figure C2) and, hence, also the genetic coefficients are
highly consistent (not shown).

Approach iii, themaximizationofheritability, ismostunstableandrequiresadimension reductionof thephenotypicvariables.
In this analysisweused thefirst fourprincipal componentsof the11measurements. Bycontrast, thepartial least-squaresanalysis
in approach iv does not require variable reduction or regularization for the genetic and phenotypic variables.

The second dimension largely reflects body and organ weight in all four approaches (Figure C2), and also the genetic
coefficients are very similar (not shown). The third dimension differs among the approaches. Only in approach iv the third
dimension reflects a contrast between distal and proximal long bones as in approach ii.

Figure C1 Scree plots resulting from approaches i, iii, and iv, which maximize genetic effect, genetic variance, and the covariance between genetic and
phenotypic latent variables, respectively.

1362 P. Mitteroecker, J. M. Cheverud, and M. Pavlicev



Figure C2 Phenotypic coefficients resulting from approaches i, iii, and iv applied to the 353 loci on the 19 chromosomes. The phenotypic measure-
ments are the lengths of the femur, the humerus, the tibia, and the ulna (FEM, HUM, TIB, ULN); weight of the fat pad (FP); body weight (WTN); tail
length (TL); and the weights of the heart, the kidneys, the spleen, and the liver (HT, KD, SP, LV).
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Figure S1

Application of the four approaches to simulated data. Each dataset consists of two genetic

variables (random variables scaled to unit variance), G1, G2, and two phenotypic variables,

P1, P2, that are a linear function of the genetic variables without adding any noise. (A) The

genetic variables are completely uncorrelated and affect one phenotypic variable each, where the

effect of G1 is three times as large as the effect of G2. (B) The genetic variables are uncorrelated

but have pleiotropic effects on both phenotypic variables. The effects of G1 are orthogonal to

that of G2 (the vectors of genetic effects are (1,1) and (-1,1), respectively). (C) The genetic

variables are uncorrelated and their effects are non-orthogonal: (1,0) versus (0.5,1). (D) The genetic 

variables have a correlation of 0.7 and equally affect the phenotypic variables. (E) The genetic variables 

are correlated and have non-orthogonal effects.

In (A) and (B), where the genetic variables are uncorrelated and have orthogonal effects, all

four approaches recover the structure: the vectors ai,bi correspond to the path coefficients in

the models. In (C), where the genetic effects are non-orthogonal, approaches (I), (II), and (IV)

lead to the same vectors ai,bi, which deviate from the path coefficients. The first dimension

is a “common factor”, representing the joint effect of both loci on both phenotypic variables,

whereas the second dimension is a “contrast”. The vectors resulting from approach (III) are

more difficult to interpret. These results are similar to those of (E).

In (D) the genetic variables are correlated und have orthogonal effects. Approach (I) recovers

the path coefficients, because a1 and a2 contain the genetic effects independent of the other

loci/alleles. By contrast, approach (II) maximizes genetic variance, not genetic effect, and

so the first dimension captures the joint effect of the two correlated loci on both phenotypic

variables, which has almost six times as much genetic variance as the contrast between the loci

and 1.7 times as much genetic variance as each locus considered separately. For these data,

approach (IV) leads to the same results.

In (F) the same data is used as in (A) except that the genetic variables are linearly trans-

formed: G1 is multiple by 2, and G1/2 is added to G2, thus inducing a correlation between the

two transformed genetic variables. The results of approaches (I) and (IV) differ between (A)

and (F) because the genetic variances are changed by the transformation. For approaches (II)

and (III), the vectors b1,b2 as well as the singular values λ1, λ2 are not affected by the linear

transformation (see A.2.1).
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Figure S2

Genetic coefficients for the second dimension of the analysis of all 19 chromosomes. They are

the elements of the vector a2 from approach (II) – the maximization of genetic variance – and

represent the partial additive and dominance effects (blue and red lines) of all 353 loci on the

corresponding phenotypic latent variable (Figure 3b).
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Figure S3

Genetic coefficients for the third dimension of the analysis of all 19 chromosomes. They are the

elements of the vector a3 from approach (II) and represent the partial additive and dominance

effects (blue and red lines) of all 353 loci on the corresponding phenotypic latent variable (Figure

3c).
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